2 research outputs found

    The Need of Multidisciplinary Approaches and Engineering Tools for the Development and Implementation of the Smart City Paradigm

    Get PDF
    This paper is motivated by the concept that the successful, effective, and sustainable implementation of the smart city paradigm requires a close cooperation among researchers with different, complementary interests and, in most cases, a multidisciplinary approach. It first briefly discusses how such a multidisciplinary methodology, transversal to various disciplines such as architecture, computer science, civil engineering, electrical, electronic and telecommunication engineering, social science and behavioral science, etc., can be successfully employed for the development of suitable modeling tools and real solutions of such sociotechnical systems. Then, the paper presents some pilot projects accomplished by the authors within the framework of some major European Union (EU) and national research programs, also involving the Bologna municipality and some of the key players of the smart city industry. Each project, characterized by different and complementary approaches/modeling tools, is illustrated along with the relevant contextualization and the advancements with respect to the state of the art

    A User-Satisfaction Based Offloading Technique for Smart City Applications

    No full text
    The Smart cities applications are gaining an increasing interest among administrations, citizens and technologists for their suitability in managing the everyday life. One of the major challenges is regarding the possibility of managing in an efficient way the presence of multiple applications in a Wireless Heterogeneous Network (HetNet) environment, alongside the presence of a Mobile Cloud Computing (MCC) infrastructure. In this context we propose a utility function model derived from the economic world aiming to measure the Quality of Service (QoS), in order to choose the best access point in a HetNet to offload part of an application on the MCC, aiming to save energy for the Smart Mobile Devices (SMDs) and to reduce computational time. We distinguish three different types of application, considering different offloading percentage of computation and analyzing how the cell association algorithm allows energy saving and shortens computation time. The results show that when the network is overloaded, the proposed utility function allows to respect the target values by achieving higher throughput values, and reducing the energy consumption and the computational time
    corecore