3 research outputs found

    Harnessing heterogeneous social networks for better recommendations: A grey relational analysis approach

    Get PDF
    Most of the extant studies in social recommender system are based on explicit social relationships, while the potential of implicit relationships in the heterogeneous social networks remains largely unexplored. This study proposes a new approach to designing a recommender system by employing grey relational analysis on the heterogeneous social networks. It starts with the establishment of heterogeneous social networks through the user-item bipartite graph, user social network graph and user-attribute bipartite graph; and then uses grey relational analysis to identify implicit social relationships, which are then incorporated into the matrix factorization model. Five experiments were conducted to test the performance of our approach against four state-of-the-art baseline methods. The results show that compared with the baseline methods, our approach can effectively alleviate the sparsity problem, because the heterogeneous social network provides richer information. In addition, the grey relational analysis method has the advantage of low requirements for data size and efficiently relieves the cold start problem. Furthermore, our approach saves processing time, thus increases recommendation efficiency. Overall, the proposed approach can effectively improve the accuracy of rating prediction in social recommendations and provide accurate and efficient recommendation service for users

    Web Person Name Disambiguation Using Social Links and Enriched Profile Information

    Get PDF
    In this article, we investigate the problem of cross-document person name disambiguation, which aimed at resolving ambiguities between person names and clustering web documents according to their association to different persons sharing the same name. The majority of previous work often formulated cross-document name disambiguation as a clustering problem. These methods employed various syntactic and semantic features either from the local corpus or distant knowledge bases to compute similarities between entities and group similar entities. However, these approaches show limitations regarding robustness and performance. We propose an unsupervised, graph-based name disambiguation approach to improve the performance and robustness of the state-of-the-art. Our approach exploits both local information extracted from the given corpus, and global information obtained from distant knowledge bases. We show the effectiveness of our approach by testing it on standard WePS datasets. The experimental results are encouraging and show that our proposed method outperforms several baseline methods and also its counterparts. The experiments show that our approach not only improves the performances, but also increases the robustness of name disambiguation
    corecore