4,793 research outputs found

    Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking

    Full text link
    The natural language generation (NLG) component of a spoken dialogue system (SDS) usually needs a substantial amount of handcrafting or a well-labeled dataset to be trained on. These limitations add significantly to development costs and make cross-domain, multi-lingual dialogue systems intractable. Moreover, human languages are context-aware. The most natural response should be directly learned from data rather than depending on predefined syntaxes or rules. This paper presents a statistical language generator based on a joint recurrent and convolutional neural network structure which can be trained on dialogue act-utterance pairs without any semantic alignments or predefined grammar trees. Objective metrics suggest that this new model outperforms previous methods under the same experimental conditions. Results of an evaluation by human judges indicate that it produces not only high quality but linguistically varied utterances which are preferred compared to n-gram and rule-based systems.Comment: To be appear in SigDial 201

    Experiments on domain adaptation for English-Hindi SMT

    Get PDF
    Statistical Machine Translation (SMT) systems are usually trained on large amounts of bilingual text and monolingual target language text. If a significant amount of out-of-domain data is added to the training data, the quality of translation can drop. On the other hand, training an SMT system on a small amount of training material for given indomain data leads to narrow lexical coverage which again results in a low translation quality. In this paper, (i) we explore domain-adaptation techniques to combine large out-of-domain training data with small-scale in-domain training data for English—Hindi statistical machine translation and (ii) we cluster large out-of-domain training data to extract sentences similar to in-domain sentences and apply adaptation techniques to combine clustered sub-corpora with in-domain training data into a unified framework, achieving a 0.44 absolute corresponding to a 4.03% relative improvement in terms of BLEU over the baseline

    Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems

    Full text link
    Natural language generation (NLG) is a critical component of spoken dialogue and it has a significant impact both on usability and perceived quality. Most NLG systems in common use employ rules and heuristics and tend to generate rigid and stylised responses without the natural variation of human language. They are also not easily scaled to systems covering multiple domains and languages. This paper presents a statistical language generator based on a semantically controlled Long Short-term Memory (LSTM) structure. The LSTM generator can learn from unaligned data by jointly optimising sentence planning and surface realisation using a simple cross entropy training criterion, and language variation can be easily achieved by sampling from output candidates. With fewer heuristics, an objective evaluation in two differing test domains showed the proposed method improved performance compared to previous methods. Human judges scored the LSTM system higher on informativeness and naturalness and overall preferred it to the other systems.Comment: To be appear in EMNLP 201

    Robust Grammatical Analysis for Spoken Dialogue Systems

    Full text link
    We argue that grammatical analysis is a viable alternative to concept spotting for processing spoken input in a practical spoken dialogue system. We discuss the structure of the grammar, and a model for robust parsing which combines linguistic sources of information and statistical sources of information. We discuss test results suggesting that grammatical processing allows fast and accurate processing of spoken input.Comment: Accepted for JNL

    An Empirical Evaluation of Zero Resource Acoustic Unit Discovery

    Full text link
    Acoustic unit discovery (AUD) is a process of automatically identifying a categorical acoustic unit inventory from speech and producing corresponding acoustic unit tokenizations. AUD provides an important avenue for unsupervised acoustic model training in a zero resource setting where expert-provided linguistic knowledge and transcribed speech are unavailable. Therefore, to further facilitate zero-resource AUD process, in this paper, we demonstrate acoustic feature representations can be significantly improved by (i) performing linear discriminant analysis (LDA) in an unsupervised self-trained fashion, and (ii) leveraging resources of other languages through building a multilingual bottleneck (BN) feature extractor to give effective cross-lingual generalization. Moreover, we perform comprehensive evaluations of AUD efficacy on multiple downstream speech applications, and their correlated performance suggests that AUD evaluations are feasible using different alternative language resources when only a subset of these evaluation resources can be available in typical zero resource applications.Comment: 5 pages, 1 figure; Accepted for publication at ICASSP 201

    External Lexical Information for Multilingual Part-of-Speech Tagging

    Get PDF
    Morphosyntactic lexicons and word vector representations have both proven useful for improving the accuracy of statistical part-of-speech taggers. Here we compare the performances of four systems on datasets covering 16 languages, two of these systems being feature-based (MEMMs and CRFs) and two of them being neural-based (bi-LSTMs). We show that, on average, all four approaches perform similarly and reach state-of-the-art results. Yet better performances are obtained with our feature-based models on lexically richer datasets (e.g. for morphologically rich languages), whereas neural-based results are higher on datasets with less lexical variability (e.g. for English). These conclusions hold in particular for the MEMM models relying on our system MElt, which benefited from newly designed features. This shows that, under certain conditions, feature-based approaches enriched with morphosyntactic lexicons are competitive with respect to neural methods
    corecore