19,558 research outputs found

    Stochastic Prediction of Multi-Agent Interactions from Partial Observations

    Full text link
    We present a method that learns to integrate temporal information, from a learned dynamics model, with ambiguous visual information, from a learned vision model, in the context of interacting agents. Our method is based on a graph-structured variational recurrent neural network (Graph-VRNN), which is trained end-to-end to infer the current state of the (partially observed) world, as well as to forecast future states. We show that our method outperforms various baselines on two sports datasets, one based on real basketball trajectories, and one generated by a soccer game engine.Comment: ICLR 2019 camera read

    Revisiting several problems and algorithms in continuous location with lp norms

    Get PDF
    This paper addresses the general continuous single facility location problems in finite dimension spaces under possibly different ℓp norms in the demand points. We analyze the difficulty of this family of problems and revisit convergence properties of some well-known algorithms. The ultimate goal is to provide a common approach to solve the family of continuous ℓp ordered median location problems in dimension d (including of course the ℓp minisum or Fermat-Weber location problem for any p ≥ 1). We prove that this approach has a polynomial worse case complexity for monotone lambda weights and can be also applied to constrained and even non-convex problems.Junta de AndalucíaFondo Europeo de Desarrollo RegionalMinisterio de Ciencia e Innovació

    A Semidefinite Programming approach for minimizing ordered weighted averages of rational functions

    Full text link
    This paper considers the problem of minimizing the ordered weighted average (or ordered median) function of finitely many rational functions over compact semi-algebraic sets. Ordered weighted averages of rational functions are not, in general, neither rational functions nor the supremum of rational functions so that current results available for the minimization of rational functions cannot be applied to handle these problems. We prove that the problem can be transformed into a new problem embedded in a higher dimension space where it admits a convenient representation. This reformulation admits a hierarchy of SDP relaxations that approximates, up to any degree of accuracy, the optimal value of those problems. We apply this general framework to a broad family of continuous location problems showing that some difficult problems (convex and non-convex) that up to date could only be solved on the plane and with Euclidean distance, can be reasonably solved with different â„“p\ell_p-norms and in any finite dimension space. We illustrate this methodology with some extensive computational results on location problems in the plane and the 3-dimension space.Comment: 27 pages, 1 figure, 7 table
    • …
    corecore