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Revisiting several problems and algorithms in

continuous location with ℓp norms

V́ıctor Blanco, Justo Puerto, Safae El Haj Ben Ali

Abstract

This paper addresses the general continuous single facility location
problems in finite dimension spaces under possibly different ℓp norms
in the demand points. We analyze the difficulty of this family of prob-
lems and revisit convergence properties of some well-known algorithms.
The ultimate goal is to provide a common approach to solve the family
of continuous ℓp ordered median location problems in dimension d (in-
cluding of course the ℓp minisum or Fermat-Weber location problem
for any p ≥ 1). We prove that this approach has a polynomial worse
case complexity for monotone lambda weights and can be also applied
to constrained and even non-convex problems.
Keywords: Continuous location ·Ordered median problems · Semidef-
inite programming · Moment problem.

1 Introduction

Location analysis is a very active topic within the Operations Research com-
munity. It has giving rise to a number of nowadays standard optimization
problem some of them in the core of modern mathematical programming.
One of its branches is continuous location a family of models directly related
to important areas of mathematics such as linear and non-linear program-
ming, convex analysis and global optimization (see e.g. [20] and the refer-
ences therein). It is widely agreed that modern continuous location started
with the paper by Weber (1909) [51] who first considers the minimization of
weighted sums of distances as an economical goal to locate industries. This
problem is currently known as Fermat-Weber, also because of the three
points Fermat problem (s. XVII) firstly solved by Torricelli in 1659. The al-
gorithmic part of this history starts at 1937 with the paper by Weiszfeld [52]
who proposed an iterative gradient type algorithm to find or to approximate
the solutions of the above mentioned Fermat-Weber problem.

For several decades this algorithm remains forgotten but in 1973 Kuhn
[29] rediscovered it and proved its convergence, under some conditions, in the
Euclidean case. One year later Katz [30] gives another convergence result.
Several years later, a number of authors considered the weighted minisum
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problem under different norms mainly ℓp or polyhedral (see e.g. [20] for a
detailed literature review) and Chandrasekaran and Tamir [12] raise several
interesting questions concerning resolubility of Weiszfeld algorithm. Eventu-
ally, starting in the nineties, several authors were very interested in proving
the convergence of some modifications of the Weiszfeld algorithm, usually
called modified Weiszfeld or generalized iterative procedure for minisum lo-
cation problems.

The convergence for Euclidean distances (p = 2) was studied later by [29,
30], among others. Since then, we can find in the literature many references
concerning this algorithm, as for instance the generalization to ℓp distances
with p ∈ [1, 2] [38] or the analysis of its local and global convergence [4, 5, 6,
10]. Also, these results were extended to more general problems: on Banach
spaces [23, 43, 44], on the sphere [53], with regional demand [13, 49], with
sets as demand facilities and using closest Euclidean distances [7] or with
radial distances [14, 15, 16, 31, 39]. In addition, one can find in the literature
papers where the convergence is accelerated using alternative step sizes [17,
18, 25, 30, 42] or some related properties concerning the termination of the
algorithm in any of the demand points after a finite number of iterations
[6, 9, 8, 11, 12, 29].

The influence of Weiszfeld algorithm in Location Analysis has been
rather important very likely due to its very easy implementation. For several
years, it was a very effective method to solve minisum continuous location
problems, even though its theoretical convergence was not proven. Thus,
locators have devoted a lot of effort to prove its convergence. The global
convergence result of this algorithm for ℓp p ∈ [1, 2] was proved in [5] and
recently [48] has given a proof to close the cases (p > 2) that were not yet
justified. This has been an important effort from a mathematical point of
view. Nevertheless, pursuing this goal locators did not focus on the origin of
the problem, namely to search for alternative, efficient algorithms to solve
the ℓp minisum and some more general families of location problems.

The situation is even harder if we consider a more general family of lo-
cation problems that have attracted a lot of attention in the field in the
last years, namely continuous ordered median location problems [41]. Or-
dered median problems represent as special cases nearly all classical objec-
tive functions in location theory, including the Median, CentDian, center
and k-centra. More precisely, the 1-facility ordered median problem can
be formulated as follows: A vector of weights (λ1, . . . , λn) is given. The
problem is to find a location for a facility that minimizes the weighted sum
of distances where the distance to the closest point to the facility is multi-
plied by the weight λn, the distance to the second closest, by λn−1, and so
on. The distance to the farthest point is multiplied by λ1. Many location
problems can be formulated as the ordered 1-median problem by selecting
appropriate weights. For example, the vector for which all λi = 1 is the
unweighted 1-median problem, the problem where λ1 = 1 and all others are

2



equal to zero is the 1-center problem, the problem where λ1 = . . . = λk = 1

and all others are equal to zero is the k-centrum. Minimizing the range of
distances is achieved by λ1 = 1, λn = −1 and all others are zero. Despite
its full generality, the main drawback of this framework is the difficulty of
solving the problems with a unified tool. There have been some successful
approaches that are now available whenever the framework space is either
discrete (see [3, 36]) or a network (see [27], [28], [40] or [45]). Nevertheless,
the continuous case has been, so far, only partially covered even under the
additional hypothesis of convexity. There have been some attempts to over-
come this drawback and there are nowadays some available methodologies
to tackle these problems, at least in the plane and with Euclidean norm. In
Drezner [19] and Drezner and Nickel [21, 22] the authors present two differ-
ent approaches. The first one uses a geometric branch and bound method
based on triangulations (BTST) and the second one on a D-C decomposition
for the objective function that allow solving problems on the plane. Espejo
et al [24] also address the unconstrained convex ordered median location
problem on the plane and Rodriguez-Chia et al. [47] attacks the k-centrum
problem using geometric arguments and developing a better algorithm ap-
plicable only for that unconstrained problem on the plane and Euclidean
distances. More recently, Blanco et al. [2] have presented a new method-
ology based on a hierarchy of SDP relaxations that can be used to solve
(approximate) the optimal solutions of the general ordered median location
problems which main drawback is the size of the SDP objects that have to
be used to get good accuracy in high dimension.

The above discussion points out that there exists a lack of a unified res-
olution approach to those problems as well as effective algorithms for the
general cases. Our goal in this paper is to design a common approach to solve
the family of continuous ℓp ordered median location problems in dimension
d (including of course the ℓp minisum or Fermat-Weber location problem for
any p ≥ 1). We prove that this approach has a polynomial worse case com-
plexity for monotone lambda weights and can be also applied to constrained
and to approximate even non-convex problems. Thus, providing a unify-
ing new algorithmic paradigm for this class of location problems. First,
for convex location problems it avoids the drawback of limit convergence
proven for the Weiszfeld type algorithms. Then, it can be applied to any
convex ordered median problem, even with mixed norms, in any dimension
and with rather general convex constraints. Moreover, we show an explicit
reformulation of these problems as SDP problems which enables the usage
of standard free source solvers (SEDUMI, SDPT3,...) to solve them up to
any degree of accuracy. Finally, we also show how to adapt this approach to
approximate up to any degree of accuracy non-convex constrained location
problems using a hierarchy of convergent relaxed problems.

The paper is organized in 5 sections. In Section 2 we provide a compact
representation, valid for any unconstrained convex ordered location prob-
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lem, by means of a new formulation that reduces these problems to semidef-
inite problems. This approach allows us to ensure that all these problems
are polynomially solvable in finite dimension. Section 3 is devoted to ex-
tend the results of Section 2 to the case of constrained problems under the
condition of SDP-representability. Then, we handle the general case of non-
convex constrained ordered median location problem for which we construct
a hierarchy of SDP relaxations that converges to the optimal solution of the
original problem. Our Section 4 is devoted to the computational experi-
ments. We report results in four different problems type, namely minisum
(Weber), minimax (center), k-centrum (minimizing the sum of the k-largest
distances) and general ordered median problems. The paper ends, in Section
5, with some conclusions and an outlook for further research .

2 A compact representation of the convex ordered

median problem

In this section we present the convex ordered median problem in dimension
d where the distances are measured with a general ℓτ-norm being τ ∈ Q.
We are given a set of demand points S = {a1, ..., an} and two sets of scalars
Ω := {ω1, ...,ωn}, ωi ≥ 0, ∀ i ∈ {1, . . . , n} and Λ := {λ1, ..., λn} where
λ1 ≥ ... ≥ λn ≥ 0. The elements ωi are weights corresponding to the
importance given to the existing facilities ai, i ∈ {1, ..., n} and depending on
the choice of the elements of Λ we get different classes of problems. We
denote by Pn the set of permutations of the first n natural numbers.

Given a permutation σ ∈ Pn satisfying

ωσ(1)‖x− aσ(1)‖τ ≥ . . . ≥ ωσ(n)‖x − aσ(n)‖τ,

the unconstrained ordered median problem (see [41]) consists of

min
x∈Rd

n∑

i=1

λiωσ(i)‖x − aσ(i)‖τ. (1)

We start by showing a compact reformulation of the above problem that
will be later useful in our approach.

Special Theorem 1. Let τ = r
s be such that r, s ∈ N \ {0}, r > s and

gcd(r, s) = 1. For any set of lambda weights satisfying λ1 ≥ ... ≥ λn,
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Problem (1) is equivalent to

min

n∑

k=1

vk +

n∑

i=1

wi (2)

s.t vi +wk ≥ λkzi, ∀i, k = 1, ..., n, (3)

yij − xj + aij ≥ 0, i = 1, . . . , n, j = 1, ..., d, (4)

yij + xj − aij ≥ 0, i = 1, . . . , n, j = 1, ..., d, (5)

yr
ij ≤ us

ijz
r−s
i , i = 1, . . . , n, j = 1, ..., d, , (6)

ω
r
s

i

∑d
j=1 uij ≤ zi, i = 1, . . . , n, (7)

uij ≥ 0, i = 1, . . . , n, j = 1, . . . , d. (8)

Proof. Because of the condition λ1 ≥ ... ≥ λn, Problem (1) can be equiva-
lently written as

min
x∈Rd

max
σ∈Pn

n∑

i=1

λiωσ(i)‖x− aσ(i)‖τ, (9)

Let us introduce auxiliary variables zi, i = 1, . . . , n to which we impose
that zi ≥ ωi‖x−ai‖τ, to model the problem in a convenient form. Now, for
any permutation σ ∈ Pn, let zσ = (zσ(1), . . . , zσ(n)). Moreover, let us denote
by (·) the permutation that sorts any vector in nonincreasing sequence, i.e.
z(1) ≥ z(2) ≥ . . . ≥ z(n). Using that λ1 ≥ ... ≥ λn and since zi ≥ 0, for all
i = 1, . . . , n then

n∑

i=1

λiz(i) = max
σ∈Pn

n∑

i=1

λizσ(i).

The permutations in Pn can be represented by the following binary vari-
ables

pik =

{
1, if zi goes in position k,

0, otherwise,

imposing that they verify the following constraints:






n∑

i=1

pik = 1, ∀k = 1, ..., n,

n∑

k=1

pik = 1, ∀i = 1, ..., n.

(10)

Next, combining the two sets of variables we obtain that the objective
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function of (9) can be equivalently written as::






n∑

i=1

λiz(i) = max

n∑

i=1

n∑

k=1

λkzipik

s.t

n∑

i=1

pik = 1, ∀k = 1, ..., n,

n∑

k=1

pik = 1, ∀i = 1, ..., n,

pik ∈ {0, 1}.

(11)

Now, we point out that for fixed z1, ..., zn, the above problem is an as-
signment problem and its constraint matrix is totally unimodular, so that
solving a continuous relaxation of the problem always yields an integral so-
lution vector [1], and thus a valid permutation. Moreover, the dual of the
linear programming relaxation of (11) is strong and also gives the value of
the original binary formulation of (11).

Hence, for any vector z ∈ Rn, by using the dual of the assignment
problem (11) we obtain the following expression






n∑

i=1

λiz(i) = min

n∑

k=1

vk +

n∑

i=1

wi

s.t vi +wk ≥ λkzi, ∀i, k = 1, ..., n.

(12)

Finally, we replace (12) in (9) and we get






min
n∑

k=1

vk +

n∑

i=1

wi

s.t vi +wk ≥ λkzi, ∀i, k = 1, ..., n,

zi ≥ ωi‖x− ai‖τ, i = 1, ..., n.

(13)

It remains to prove that each inequality zi ≥ ωi‖x − ai‖τ, i = 1, ..., n

can be replaced by the system:

yij − xj + aij ≥ 0, j = 1, ..., d.

yij + xj − aij ≥ 0, j = 1, ..., d.

yr
ij ≤ us

ijz
r−s
i , j = 1, ..., d.

ω
r
s

i

d∑

j=1

uij ≤ zi,

uij ≥ 0, ∀ j = 1, . . . , d.

Indeed, set ρ = r
r−s

, then 1
ρ
+ s

r
= 1. Let (x̄, z̄i) fulfill the inequality
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zi ≥ ωi‖x − ai‖τ. Then we have

ωi‖x̄ − ai‖τ ≤ z̄i ⇐⇒ ωi





d∑

j=1

|x̄j − aij|
r
s





s
r

≤ z̄
s
r

i z̄
1
ρ

i

⇐⇒ ωi





d∑

j=1

|x̄j − aij|
r
s z̄

r
s
(− r−s

r
)

i





s
r

≤ z̄
s
r

i

⇐⇒ ω
r
s

i

d∑

j=1

|x̄j − aij|
r
s z̄

− r−s
s

i ≤ z̄i (14)

Then (14) holds if and only if ∃ui ∈ Rd, uij ≥ 0, ∀j = 1, ..., d such that

|x̄j − aij|
r
s z̄

− r−s
s

i ≤ uij, satisfying ω
r
s

i

d∑

j=1

uij ≤ z̄i,

or equivalently,

|x̄j − aij|
r ≤ us

ijz̄
r−s
i , ω

r
s

i

d∑

j=1

uij ≤ z̄i. (15)

Set ȳij = |x̄j−aij| and ūij = |x̄j−aij|
τz̄

−1/ρ
i . Then, clearly (x̄, z̄i, ȳ, ū) satisfies

(4)-(8).
Conversely, let (x̄, z̄i, ȳ, ū) be a feasible solution of (4)-(8). Then, ȳij ≥

|x̄ij − aij| for all i, j and by (6) ūij ≥ ȳ
(r/s)
ij z

− r−s
s

i ≥ |x̄j − aij|
τz̄

− r−s
s

i . Thus,

ω
r/s
i

d∑

j=1

|x̄j − aij|
r/sz̄

− r−s
s

i ≤ ω
r/s
i

d∑

j=1

ūij ≤ z̄i,

which in turns implies that ω
r/s
i

∑d
j=1 |x̄j−aij|

r/s ≤ z̄iz̄
r−s
s

i and hence, ωi‖x̄−
ai‖ ≤ z̄i.

�

Problem (2) -(8) is an exact representation of Problem (1) in any dimen-
sion and for any ℓτ-norm.

For the case τ = 1, the above problem reduces to a linear programming
problem.
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Corollary 2. If τ = 1 the reformulation given by Problem (1) is






min

n∑

k=1

vk +

n∑

i=1

wi

s.t vi +wk ≥ λkzi, ∀i, k = 1, ..., n,

zi ≥ ωi

∑d
j=1 uij, i = 1, ..., n,

xj − aij ≤ uij i = 1, ..., n, j = 1, . . . , d,

−xj + aij ≤ uij i = 1, ..., n, j = 1, . . . , d.

(16)

The reader may observe that the representation given in Theorem 1 is
new and different from the one used in [2]. On the one hand, this new
formulation is more efficient than the one presented in [2] and specially
tailored for the case of non-increasing monotone lambda weights, see e.g. [2,
Lemma 8]. For the sake of readability we include it in the following.

Let

Sk(x) :=

k∑

j=1

z(j), (17)

where z(j) is such that z(1) ≥ . . . ≥ z(n). That formulation applied to the
setting of this paper reads as:

min
∑n

k=1(λk − λk+1)Sk(x) (18)

tk + rkj ≥ zj(x), j, k = 1, . . . , n,

rkj ≥ 0, j, k = 1, . . . , n,

zj ≥ ωj‖x − aj‖τ, j = 1, ..., n.

It is easy to see that formulation (18) has O(n2+d) variables and O(n2)

constraints whereas the new one written in similar terms as presented in
(13) has O(n + d) variables and O(n2) constraints.

Our goal is to show that for any τ ∈ Q, Problem (2) -(8) also admits
a compact formulation within another easy class of polynomially solvable
mathematical programming problems. In order to get that we need to prove
a technical lemma. Let #A denote the cardinality of the set A.

Lemma 3. Let τ = r
s be such that r, s ∈ N \ {0}, r > s and gcd(r, s) = 1.

Let x, u and t be non negative and satisfying

xr ≤ ustr−s. (19)

Assume that 2k−1 < r ≤ 2k where k ∈ N \ {0} such that

x2
k ≤ ustr−sx2

k−r, (20)
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and

s = αk−12
k−1 + αk−22

k−2 + . . . + α12
1 + α02

0, (21)

r − s = βk−12
k−1 + βk−22

k−2 + . . . + β12
1 + β02

0, (22)

2k − r = γk−12
k−1 + γk−22

k−2 + . . . + γ12
1 + γ02

0, (23)

where αi, βi, γi ∈ {0, 1}.
Then, if (x, t, u) is a feasible solution of (19) there exists w such that

either

1. (x, t, u,w) is a solution of System (24), if αi + βi + γi = 1, for all
0 < i < k− 1.






w2
1 ≤ uα0tβ0xγ0 ,

w2
i+1 ≤ wiu

αitβixγi , i = 1, . . . , k− 2

x2 ≤ wk−1d,

(24)

where d =

{
wk−2 if αk−1βk−1 + γk−1 = 0

uαk−1tβk−1uγk−1 if αk−1βk−1 + γk−1 = 1

2. (x, t, u,w) is a solution of System (25), if there exist ij and il(j), j =

1, . . . , c such that:
1. 0 < i1 < i2 < . . . < ic ≤ k− 2,
2. ij < il(j) < ij+1,
3. αij + βij + γij = 3, αil(j) + βil(j) + γil(j) = 0 and αh + βh + γh = 2

for h = ij + 1, . . . , il(j)−1.






w2
1 ≤ uα0tβ0xγ0 ,

w2
i+1 ≤ wiu

αitβixγi , i ∈ {1, . . . , i1 − 1}

−−−−−−−− for each j = 1, . . . , c−−−−−−−−−

w2
θ(j) ≤ ut,

w2
θ(j)+1 ≤ wθ(j)−1x

w2
θ(j)+2∗s

≤ wθ(j)+2(s−1)aij+s

w2
θ(j)+2∗s+1

≤ wθ(j)+2s−1bij+s

}
,

s = 1, . . . , il(j) − ij − 1 and

aij+s + bij+s = u
αij+st

βij+sx
γij+s,

w2
θ(j)+2(il(j)−ij)

≤ wθ(j)+2(il(j)−ij−1)wθ(j)+2(il(j)−ij−1)+1,
{

if m − 1 >
θ(j) + 2(il(j) − ij − 1) ,

w2
θ(j)+2(il(j)−ij)+s ≤ wθ(j)+2(il(j)−ij)+s−1u

αil(j)+st
βil(j)+sx

γil(j)+s,
{

for all s = 1, . . . ,
ij+1 − il(j) − 1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

x2 ≤ wmd.

(25)
where θ = (θ(j))cj=1 such that θ(j) = 2#{i : αi + βi + γi ≥ 2, 1 < i ≤
ij} +#{i : αi + βi + γi ≤ 1, 1 < i ≤ ij} for j = 1, ..., c, m = 1 + 2#{i :

αi + βi + γi ≥ 2, 1 < i < k} +#{i : αi + βi + γi = 1, 1 < i < k} ≤ 2k

and d =

{
wm−1 if αk−1 + βk−1 + γk−1 = 0

uαk−1tβk−1uγk−1 if αk−1 + βk−1 + γk−1 = 1
.
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Conversely, if (x, t, u,w) is a solution of (24) or (25) then (x, t, u) is a
feasible solution of (19).

Proof. . To get the expressions of any of the systems (24) or (25), we
discuss the decomposition (21), (22), (23) of s, r− s and 2k − r in the basis
B = {2l}, l = 0, ..., k − 1.

Since 2k = 2k − r + (r − s) + s, we observe that (21)+(22)+(23) gives a
decomposition of 2k in power of 2 summands with coefficients less than or
equal than 3. Namely,

2k = (αk−1+βk−1+γk−1)2
k−1+. . .+(α1+β1+γ1)2

1+(α0+β0+γ0)2
0. (26)

We discuss two cases depending on the parity of r.
If r is even then s is odd since gcd(r, s) = 1, thus r − s is odd and 2k − r is
even.
If r is odd then s can be odd or even; if s is odd then r− s is even and 2k− r

is odd; otherwise r− s is odd and 2k − r is odd.
From the above discussion, we observe that there are always two odd

and one even numbers in the triplet (s, r−s, 2k − r). Therefore, we conclude
that

α0 + β0 + γ0 = 2.

On the other hand, since

k−1∑

i=0

2i = 2k − 1, then another representation of

2k is:
2k = 1.2k−1 + 1.2k−2 + . . . + 1.21 + 2.20. (27)

Considering the fact that (27) and (26) are two representations of 2k,
by equating coefficients, we deduce some properties of the sums (αi + βi +

γi), i = 1, ..., k − 1.

• First of all, we observe that αk−1+βk−1+γk−1 can only assume the values
0 or 1.

• Second, since α0 +β0 +γ0 = 2 then it implies that α1 +β1 +γ1 = 1 or 3,
otherwise if α1+β1+γ1 = 0 or 2, then we will get 0.21 = 0 or 2.21 = 22

which means that we can not recover the term 21 and then we will not
get the decomposition as in (27).

• Third, let i0 be the first index, counting in a decreasing order from k− 1

to 1, so that αi0 + βi0 + γi0 6= 1 and ∀ i, i0 < i ≤ k − 1 we have
αi + βi + γi = 1. Then three cases can occur:

10



1. if αi0 + βi0 + γi0 = 3, then

2k = 1.2k−1 + ... + 1.2i0+1 + 3.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

= 1.2k−1 + ... + 2.2i0+1 + 1.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

...

= 2.2k−1 + ... + 0.2i0+1 + 1.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

which it is not possible and therefore it implies that αi0 + βi0 +

γi0 = 2 or 0.

2. if αi0 + βi0 + γi0 = 2, then

2k = 1.2k−1 + ... + 1.2i0+1 + 2.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

= 1.2k−1 + ... + 2.2i0+1 + 0.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

...

= 2.2k−1 + ... + 0.2i0+1 + 0.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

which again it is not possible and therefore it implies that αi0 +

βi0 + γi0 = 0.

From the above two cases, we summarize that the first sum αi0 +

βi0 + γi0 6= 1 must be necessarily αi0 + βi0 + γi0 = 0. Based on
this we consider the only possible case.

3. if αi0 + βi0 + γi0 = 0, then it must exist i1 < i0, satisfying
that αi1 + βi1 + γi1 = 3 and such that for all k, i1 < k ≤ i0,
αk + βk + γk = 2. Indeed,

(a) if αi0−1 + βi0−1 + γi0−1 = 1, then

2k = 1.2k−1 + ... + 1.2i0+1 + 0.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i−1 + ... + 2.20,

= 1.2k−1 + ... + 1.2i0+1 + 0.2i0 + 1.2i0−1 + ... + 2.20.

Hence, since the sums αj + βj + γj ≤ 3 for all j, one cannot
recover the sum 2k in (27) and the representation of 2k would
be wrong.

(b) if αi0−1 + βi0−1 + γi0−1 = 3, then

2k = 1.2k−1 + ... + 1.2i0+1 + 0.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

= 1.2k−1 + ... + 0.2i0 + 3.2i0−1 + ... + 2.20,

= 1.2k−1 + ... + 1.2i0 + 1.2i0−1 + ... + 2.20.

The representation of 2k would be valid until the term i0 − 1

and we can repeat the argument with the next element whose
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coefficient is different in the representation of 2k in (26) and
(27).

(c) if αi0−1 + βi0−1 + γi0−1 = 2, then

2k = 1.2k−1 + ... + 1.2i0+1 + 0.2i0 + (αi0−1 + βi0−1 + γi0−1)2
i0−1 + ... + 2.20,

= 1.2k−1 + ... + 0.2i0 + 2.2i0−1 + ... + 2.20,

= 1.2k−1 + ... + 1.2i0 + 0.2i0−1 + ... + 2.20,

This way we get that the representations of 2k are equal until
the term i0. Next, to recover the term 2i0−1 then αi0−2 +

βi0−2 + γi0−2 = 2 or 3 so that we are in cases (b) or (c) and
we repeat until we get the decomposition (27).

The analysis above justifies that the only possible cases in any represen-
tation of 2k in the form (2k − r) + (r − s) + s and each of the addends
(2k − r, r − s and s) in the basis B = {2l}, l = 0, . . . , k − 1 are those that
correspond to cases 1 or 2 in the statement of the lemma.

Let m denote the number of inequalities in any of the systems (24) or
(25). First of all, we observe that the last inequality has a common form in
any of the systems, namely x2 ≤ wmd. Indeed, if αk−1 + βk−1 + γk−1 = 0

then we shall consider the inequality

x2 ≤ wmwm−1 (28)

otherwise i.e if αk−1 +βk−1 +γk−1 = 1 then we shall consider the inequality

x2 ≤ wmu
αk−1tβk−1xγk−1 . (29)

Based on the above observation, we have that the systems (24) and (25)
always include (28) or (29) and other inequalities depending on the cases.
Let us analyze the two cases.

Case 1. Let (x, t, u) be a solution of system (20) and αi + βi + γi = 1 for

all 0 < i < k − 1. Set w1 =
√
uα0tβ0xγ0 and wi+1 =

√

wiuαitβixγi ,
i = 2, . . . , k− 2. Clearly, (x, t, u,w) is a solution of system (24).

Conversely, if (x, t, u,w) is a solution of system (24) then propagating
backward from the last inequality to the first one we prove that (x, t, u)
is also a feasible solution of (20).

Finally, it is clear that in this case, m, the number of inequalities
necessary to represent (20) as system (24) is m = k− 1.

Case 2. Let (x, t, u) be a solution of system (20) and αi + βi + γi for all
0 < i < k− 1 satisfying the hypotheses of Item 2. in the thesis of the
lemma. Set w1 =

√
uα0tβ0xγ0 and wi+1 for i = 2, . . . ,m being defined

12



recursively according to the inequalities in (29) from the previous val-
ues of wj, j = 1, . . . , i, and u, t, x. Clearly, (x, t, u,w) is a solution of
system (24).

Conversely, if (x, t, u,w) is a solution of system (29) then propagating
backward from the last inequality to the first one we prove that (x, t, u)
is also a feasible solution of (20).

We conclude the proof observing that the number of inequalities m in
any of the two representations is fixed and it is equal to m = 1+2#{i :

αi + βi + γi ≥ 2, 1 < i < k}+#{i : αi + βi + γi = 1, 1 < i < k} ≤ 2k.

�

We illustrate the application of the above lemma with the following ex-
ample.

Example 4. Let us consider τ = 100000
70001 which in turns means that r = 105

and s = 70001.

x100000 ≤ u70001t29999,

x2
17

= x131072 ≤ u70001t29999x31072.

The representations of the exponents of u, t, x in the inequality above in
power of 2 summands are:

u : 70001 = 1.216 + 0.215 + 0.214 + 0.213 + 1.212 + 0.211 + 0.210 + 0.29 + 1.28 +

0.27 + 1.26 + 1.25 + 1.24 + 0.23 + 0.22 + 0.21 + 1.20

t : 29999 = 0.216 + 0.215 + 1.214 + 1.213 + 1.212 + 0.211 + 1.210 + 0.29 + 1.28 +

0.27 + 0.26 + 1.25 + 0.24 + 1.23 + 1.22 + 1.21 + 1.20

x : 31072 = 0.216 + 0.215 + 1.214 + 1.213 + 1.212 + 1.211 + 0.210 + 0.29 + 1.28 +

0.27 + 1.26 + 1.25 + 0.24 + 0.23 + 0.22 + 0.21 + 0.20

From the above decomposition, we realize that this example falls in case 2
and we obtain c = 3. The table below shows the corresponding indexes of
the w-inequalities of each bloc ij, j = 1, 2, 3.

i1 = 5 i2 = 8 i3 = 12

il(1) = 7 il(2) = 9 il(3) = 15

θ(1) = 6 θ(2) = 11 θ(3) = 16

,

the total number of inequalities is m = 1 + 2 ∗ 6+ 9 = 22.
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Then we get the decomposition

level 1 level 2 level 3 level 4 level 5

w2
1 ≤ ut w2

2 ≤ w1t w2
3 ≤ w2t w2

4 ≤ w3t w2
5 ≤ w4t

Bloc i1
level 6 level 7 level 8

w2
6 ≤ ut w2

8 ≤ w6u w2
10 ≤ w8w9

w2
7 ≤ w5x w2

9 ≤ w7x

Bloc i2
level 8 level 9 level 10

w2
10 ≤ w8w9 w2

11 ≤ ut w2
13 ≤ w11w12

w2
12 ≤ w10x

level 11 level 12

w2
14 ≤ w13t w2

15 ≤ w14x

Bloc i3
level 13 level 14 level 15 level 16

w2
16 ≤ ut w2

18 ≤ w16t w2
20 ≤ w18t w2

22 ≤ w20w21

w2
17 ≤ w15x w2

19 ≤ w17x w2
21 ≤ w19x

level 17

x2 ≤ w22u

From that set of inequalities one can easily obtain the original inequality by
expanding backward, starting from the last level (level 17). Indeed,

level 17 level 16 level 15 level 14

x2 ≤ w22u x2
2 ≤ u2w20w21 x2

3 ≤ u4txw18w19 x2
4 ≤ u8t3x3w16w17

level 13 level 12 level 11

x2
5 ≤ u17t7x7w15 x2

6 ≤ u34t14x15w14 x2
7 ≤ u68t29x30w13

level 10 level 9 level 8

x2
8 ≤ u136t58x60w11w12 x2

9 ≤ u273t117x121w10 x2
10 ≤ u546t234x242w8w9

level 7 level 6 level 5

x2
11 ≤ u1093t468x485w6w7 x2

12 ≤ u2187t937x971w5 x2
13 ≤ u4375t1874x1942w4
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level 4 level 3 level 2

x2
14 ≤ u8750t3749x3884w3 x2

15 ≤ u17500t7499x7768w2 x2
16 ≤ u35000t14999x15536w1

level 1

x2
17 ≤ u70001t29999x31072

Remark 5. The particular case of the Euclidean norm (τ = 2) leads to a
simpler representation based on a direct application of Schur complement.

Observe that the constraint z2i ≥ ω2
i‖x−ai‖22 = ω2

i

d∑

j=1

(xj−aij)
2, i = 1, ..., n

can be written as Li � 0, being

Li =











zi − (x1 − ai1) x2 − ai2 · · · xd − aid

x2 − ai2 zi + (x1 − ai1) 0
...

. . .

xd − aid 0 zi + (x1 − ai1)











.

(Recall that for a symmetric matrix A, A � 0 means A to be positive semidef-
inite.)

Next, based on Lemma 3 we can state the final representation result for
the family of convex ordered continuous single facility location problems.

Special Theorem 6. For any set of lambda weights satisfying λ1 ≥ ... ≥ λn
and τ = r

s such that r, s ∈ N \ {0}, r > s and gcd(r, s) = 1, Problem (1) can
be represented as a semidefinite programming problem with n2 + n(2d + 1)

linear constraints and at most 4nd log r positive semidefinite constraints.

Proof. Using Theorem 1 we have that Problem (1) is equivalent to

min

n∑

k=1

vk +

n∑

i=1

wi (30)

s.t vi +wk ≥ λkzi, ∀i, k = 1, ..., n, (31)

yij − xj + aij ≥ 0, ∀i = 1, ..., n, j = 1, ..., d. (32)

yij + xj − aij ≥ 0, ∀i = 1, ..., n, j = 1, ..., d.

yr
ij ≤ us

ijz
r−s
i , ∀i = 1, ..., n, j = 1, ..., d, (33)

ω
r
s

i

∑d
j=1 uij ≤ zi, ∀i = 1, ..., n, (34)

uij ≥ 0, ∀ i = 1, ..., n, j = 1, . . . , d. (35)

Then, we use Lemma 3 to represent each one of the inequalities (33) for each
i, j, as a system of at most 2 log r inequalities of the form (24) or (25). Next,
we observe that all the inequalities that appear in (24) or (25) are of the
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form a2 ≤ bc, involving 3 variables, a, b, c with b, c non negative. Finally,
it is well-known by Schur complement that

a2 ≤ bc ⇔





b+ c 0 2a

0 b+ c b− c

2a b− c b+ c



 � 0, b+ c ≥ 0.

Hence, Problem (1) is a SDP because it has a linear objective function, n2+

n(2d+1) linear inequalities and at most 2nd log(r) linear matrix inequalities.

�

There is an interesting observation that follows from the above result. It
was already known that continuous convex ordered location problems with
ℓ1 norm were reducible to linear programming (see e.g. [41]). This paper
proves that most continuous convex ordered location problems with ℓp norms
are reducible to SDP programming showing the similarities existing between
all this class of problems and moreover that convex continuous single facility
location problems are among the “easy” optimization problems. Moreover,
Theorem 6 allows us to apply the general theory of SDP to derive a general
result of convergence for solving the family of continuous convex ordered
single facility location problems: Problem (1) is polynomially solvable in
dimension d ∈ N and for any set of nonincreasing lambda weights. Moreover,
we can be more precise and can state the following result:

Special Theorem 7. Let ε > 0 be a prespecified accuracy and (X0, S0)

be a feasible primal-dual pair of initial solutions of Problem (30-35). An
optimal primal-dual pair (X, S) satisfying X · S ≤ ε can be obtained in at

most O(α log X0·S0

ε
) iterations and the complexity of each iteration is bounded

above by O(αβ3, α2β2, α2) being α = 3n + 2nd(1 + log r) and β = p, the
dimension of the dual matrix variable Sp.

The reader may observe that this result is mainly of theoretical interest
because the bound is based on general results on primal-dual algorithms,
such as the modification of Kouleai and Terlaki [33] to the Mehrota type
algorithm [37] applied to SDP problems. Nevertheless, it is important to
realize that it states an important difference with respect to any other known
result in the area of continuous location where convergence results, when
available, are only proven limit of sequences and never in finite number
of steps nor accuracy ensured. In this case, one can ensure a prespecified
accuracy of the solution in a known number of iterations.

3 Constrained Ordered median problems

This section extends the above results to constrained location problems.
Therefore, we address now the restricted case of Problem (1). Let {g1, . . . , gl} ⊂
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R[x] be real polynomials and K := {x ∈ Rd : gj(x) ≥ 0, j = 1, . . . , l}

a basic closed, compact semialgebraic set with nonempty interior satis-
fying the Archimedean property. Recall that the Archimedean property
is equivalent to impose that for some M > 0 the quadratic polynomial
u(x) = M −

∑d
i=1 x

2
i has a representation on K as u = σ0 +

∑ℓ
j=1 σj gj,

for some {σ0, . . . , σl} ⊂ R[x] being each σj sum of squares [46]. We remark
that the assumption on the Archimedean property is not restrictive at all,
since any semialgebraic set K ⊆ Rd for which is known that

∑d
i=1 x

2
i ≤ M

holds for some M > 0 and for all x ∈ K, admits a new representation
K ′ = K ∪ {x ∈ Rd : gl+1(x) := M −

∑d
i=1 x

2
i ≥ 0} that trivially verifies

the Archimedean property. In our framework the compactness assumption
which is usually assumed in location analysis implies that this condition
always holds.

In this framework we assume that the domain K is compact and has
nonempty interior. We observe that we can extend the results in Section 2
to a broader class of convex constrained problems.

In order to do that we need to introduce some notation. Let κ =

(κα) be a real sequence indexed in the monomial basis (xβzγvδwζuηyθ) of
R[x, z, v,w, u, y] (with α = (β, γ, δ, ζ, η, θ) ∈ Nd × Nn × Nn × Nn × Nn×d ×
Nn×d). Let D = 3n + (2n + 1)d denote the dimension of the space of vari-
ables. Define Υ = (x, z, v,w, u, y) to be the vector of indeterminates so that
Υα = xβzγvδwζuηyθ. For any integer N consider the monomial vector

[ΥN] = [(x, z, v,w, u, y)N] = [1, x1, . . . xd, z1, . . . zn, . . . , ynd, x
2
1, x1x2, . . . , y

N
nd]

t.

Then, [ΥN][ΥN]t is a square matrix and we write

[ΥN][ΥN]t =
∑

0≤|α|≤2N

A0
αΥ

α

for some symmetric 0/1 matrices A0
α. Here, for a vector α, |α| stands for

the sum of its components.
For any sequence, κ = (κα)α∈ND ⊂ R, indexed in the canonical monomial

basis B, let Lκ : R[Υ] → R be the linear functional defined, for any f =∑
α∈Nd fαΥ

α ∈ R[Υ], as Lκ(f) :=
∑

α fα κα.
The moment matrix MN(κ) of order N associated with κ, has its rows

and columns indexed by (Υα) and MN(κ)(α,α
′) := Lκ(Υ

α+α ′

) = κα+α ′ , for
|α|, |α ′| ≤ N. Therefore,

MN(κ) =
∑

0≤|α|≤2N

A0
ακα

Note that the moment matrix of order N has dimension
(

D+N
D

)

×
(

D+N
D

)

and that there are
(

D+2N
D

)

κα variables.
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For g ∈ R[Υ] (=
∑

ν∈NM gνΥ
ν), the localizing matrix MN(gκ) of order

N associated with κ and g, has its rows and columns indexed by (Υα) and
MN(gκ)(α,α

′) := Lκ(Υ
α+α ′

g(Υ)) =
∑

ν gνκν+α+α ′ , for |α|, |α ′ | ≤ N. There-
fore,

MN(gκ) =
∑

0≤|α|≤2N

Ag
ακα,

for some symmetric 0/1 matrices Ag
α that depend on the polynomial g. Also

for convenience, we shall denote by A
g
ei the matrix associated with κei the

moment variable linked to the monomial xei = x1i . (The interested reader is
referred to [34] and [35] for further details on the moment approach applied
to global optimization.)

Special Theorem 8. Consider the restricted problem:

min
x∈K⊂Rd

n∑

i=1

λiωσ(i)‖x − aσ(i)‖τ. (36)

Assume that the hypothesis of Theorem 6 holds. In addition, any of the
following conditions hold:

1. gi(x) are concave for i = 1, . . . , ℓ and −
∑ℓ

i=1 µi∇2gi(x) ≻ 0 for each
dual pair (x, µ) of the problem of minimizing any linear functional ctx
on K (Positive Definite Lagrange Hessian (PDLH)).

2. gi(x) are sos-concave on K for i = 1, . . . , ℓ or gi(x) are concave on
K and strictly concave on the boundary of K where they vanish, i.e.
∂K ∩ ∂{x ∈ Rd : gi(x) = 0}, for all i = 1, . . . , ℓ.

3. gi(x) are strictly quasi-concave on K for i = 1, . . . , ℓ.

Then, there exists a constructive finite dimension embedding, which only
depends on τ and gi, i = 1, . . . , ℓ, such that (36) is a semidefinite problem.

Proof. The unconstrained version of Problem (36) can be equivalently writ-
ten as a SDP using the result in Theorem 6. Therefore, it remains to prove
that under the conditions 1, 2 or 3 the constraint set x ∈ K is also exactly
represented as a finite number of semidefinite constraints or equivalently
that it is semidefinite representable (SDr).

Let us begin with condition 1. Consider the system of linear matrix
inequalities:

A
(k)
0 +

ℓ∑

i=1

Agk
ei
xi +

∑

1≤α≤2N

Agk
α κα � 0, k = 0, . . . , ℓ. (37)

Under the hypothesis of condition 1, the set K satisfies the Putinar-Prestel’s
Bounded Degree Nonnegative Representation property (PP-BDNR), see [26,
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Theorem 6]. This condition ensures that there exists a finite N such that
the set

ŜN = {(x, κ) : satisfying inequalites (37)}

projects via the x coordinate onto the set K. Hence, an exact lifted rep-
resentation of Problem (36) is the one provided by Theorem 6 augmented
with the additional linear matrix inequalities in (37).

Let us assume now that condition 2 holds. Consider the set

ŜN = {(x, κ) : MN(κ) � 0, Lκ(gi) ≥ 0, i = 1 . . . , ℓ, Lκ(xj) = xj, j = 1, . . . , d, κ0 = 1}.

Under our hypothesis, Theorem 11.11 in [35] ensures that there exists a
finite N such that ŜN projects via the x variables onto the set K. Hence,
we obtain another lifted exact SDP formulation for Problem (36) using the
formulation induced by Theorem 6 augmented with the inequalities MN(κ) �
0, Lκ(gi) ≥ 0, i = 1 . . . , ℓ, Lκ(xj) = xj, j = 1, . . . , d, κ0 = 1.

Finally, let us consider the case in condition 3. If gi are strictly quasi-
concave on K, Proposition 10 in [26] implies that one can find some new
polynomials −pi that have positive definite Hessian in K. Let us denote
P := {x ∈ Rd : pi(x) ≥ 0, i = 1, . . . , ℓ}. Thus, in some open set U containing
K it holds P ∩U = K.

Next, define the set

ŜN = {(x, κ) : satisfying inequalites (38)-(41)}

where the set of linear matrix inequalities (38)-(41) are given by:

A
(k)
0 +

ℓ∑

i=1

A
(k)
ei xi +

∑

1≤α≤2N

Apk
α κα � 0, k = 0, . . . , ℓ (38)

Lκ(pk) ≥ 0, k = 0, . . . , ℓ (39)

Lκ(xj) = xj, j = 1, . . . , d (40)

κ0 = 1. (41)

Under the hypothesis of condition 3, Theorem 24 in [26] ensures that
there exists a finite N such that ŜN projects via the x variables onto K.
Hence, we obtain the third lifted exact SDP formulation for Problem (36)
using the formulation induced by Theorem 6 augmented with the inequalities
(38)-(41).

We observe that according to Theorem 29 in [26], since we assume the
Archimedean property holds in all these cases, N can be bounded above by
some finite constant that only depends on the polynomials gi, i = 1, . . . , ℓ.
�
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We shall finish this section with another convergence result applica-
ble to the case of non-convex constrained location problems. Again, let
{g1, . . . , gl} ⊂ R[x] and K := {x ∈ Rd : gk(x) ≥ 0, k = 1, . . . , ℓ} a ba-
sic, compact, closed semialgebraic set satisfying the Archimedean property,
with nonempty interior and such that K does not satisfies the hypothesis of
Theorem 8, in particular some of the gj may not be concave.

Now, we can prove a convergence result that allows us to approximate,
up to any degree of accuracy, the solution of the class of problems defined
in (36) when the hypothesis of Theorem 8 fails. Let ξk := ⌈(deg gk)/2⌉
where {g1, . . . , gℓ} are the polynomial constraints that define K. For N ≥
N0 := max{ max

k=1,...,ℓ
ξk, 1}, we introduce the following hierarchy of semidefinite

programs:

(QN) : min

n∑

k=1

vk +

n∑

i=1

wi (42)

s.t. vi +wk ≥ λkzi, ∀i, k = 1, ..., n, (43)

yij − xj + aij ≥ 0, ∀i = 1, ..., n, j = 1, ..., d. (44)

yij + xj − aij ≥ 0, ∀i = 1, ..., n, j = 1, ..., d.

yr
ij ≤ us

ijz
r−s
i , ∀i = 1, ..., n, j = 1, ..., d, (45)

ω
r
s

i

∑d
j=1 uij ≤ zi, ∀i = 1, ..., n, (46)

MN(κ) � 0, (47)

MN−ξk(gk, κ) � 0, k = 1, . . . , ℓ, (48)

Lκ(xj) = xj, j = 1, . . . , d,

Lκ(zi) = zi, i = 1, . . . , n,

Lκ(vi) = vi, i = 1, . . . , n,

Lκ(wi) = wi, i = 1, . . . , n,

Lκ(uij) = uij, i = 1, . . . , n, j = 1, . . . , d,

Lκ(yij) = yij, i = 1, . . . , n, j = 1, . . . , d,

κ0 = 1

uij ≥ 0, ∀ i = 1, ..., n, j = 1, . . . , d. (49)

with optimal value denoted minQN.

Special Theorem 9. Consider ρλ defined as the optimal value of the prob-
lem:

ρλ = min
x∈K⊂Rd

n∑

i=1

λiωσ(i)‖x − aσ(i)‖τ. (50)

Then, with the notation above:
(a) minQN ↑ ρλ as N → ∞.
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(b) Let κN be an optimal solution of Problem (QN). If

rankMN(κ
N) = rankMN−N0

(κr) = ϑ

then minQN = ρλ and one may extract ϑ points

(x∗(i), z∗(i), v∗(i),w∗(i), u∗(i), y∗(i))ϑi=1 ⊂ K,

all global minimizers of Problem (50).

Proof. First of all, we observe that an optimal solution of Problem (50) does
exist by the compactness assumption on K. Moreover, the convergence of
the semidefinite sequence of problems (QN) follows from a result by Lasserre
[35, Theorem 5.6] that it is applied here to the SDP problem (30-35) on the
closed semialgebraic set K. The second assertion on the rank condition,
for extracting optimal solutions, follows from applying [35, Theorem 5.7] to
Problem (QN).

�

4 Computational Experiments

A series of computational experiments have been performed in order to
evaluate the behavior of the proposed methodology. Programs have been
coded in MATLAB R2010b and executed in a PC with an Intel Core i7
processor at 2x 2.93 GHz and 16 GB of RAM. The semidefinite programs
have been solved by calling SDPT3 4.0[32].

We run the algorithm for several well-known continuous single facility
convex ordered location problems: Weber, center, k-center and general or-
dered median problem with random non-increasing monotone lambda. For
each of them, we obtain the CPU times for computing solutions as well as
the accuracy given by the solver SDPT3 4.0. In addition, to illustrate the
application of the result in Theorem 9, we also report results on a problem
which consists of minimizing the range of distances in R3 with two addi-
tional non-convex constraints. In this case, we include running times and
gap with respect to upper bounds obtained with the battery of functions
in optimset of MATLAB which only provide approximations on the exact
solutions (optimality cannot be certified).

In this last case, in order to compute the accuracy of an obtained solu-
tion, we use the following measure for the error (see [50]):

ǫobj =
|the optimal value of the SDP − fopt|

max{1, fopt}
, (51)
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Dim 2 3 10

τ n Time(Ave) Gap(Ave) Time(Ave) Gap(Ave) Time(Ave) Gap(Ave)

τ=1.5 10 0.20 0.00000001 0.28 0.00000001 0.86 0.00000000
100 1.71 0.00000001 3.16 0.00000001 10.89 0.00000001
500 10.78 0.00000001 15.84 0.00000001 51.23 0.00000000
1000 21.22 0.00000001 30.67 0.00000001 103.17 0.00000001
5000 103.50 0.00000001 178.50 0.00000001 566.64 0.00000001
10000 210.22 0.00000001 455.05 0.00000001 1330.36 0.00000001

τ=2 10 0.06 0.00000000 0.12 0.00000000 0.46 0.00000000
100 0.40 0.00000000 0.99 0.00000000 4.63 0.00000000
500 1.50 0.00000000 5.83 0.00000000 21.63 0.00000000
1000 3.27 0.00000000 11.08 0.00000000 44.04 0.00000000
5000 17.06 0.00000000 58.16 0.00000000 218.82 0.00000000
10000 33.19 0.00000000 118.91 0.00000000 455.30 0.00000000

τ=3 10 0.19 0.00000001 0.31 0.00000001 0.99 0.00000001
100 1.88 0.00000001 3.60 0.00000001 12.71 0.00000001
500 10.82 0.00000001 17.87 0.00000001 57.91 0.00000001
1000 21.73 0.00000001 33.99 0.00000001 118.11 0.00000001
5000 110.87 0.00000001 181.17 0.00000001 646.46 0.00000001
10000 245.66 0.00000001 477.38 0.00000001 1616.26 0.00000001

τ=3.5 10 0.33 0.00000001 0.47 0.00000001 1.75 0.00000001
100 3.87 0.00000001 5.44 0.00000001 19.71 0.00000001
500 18.62 0.00000001 26.99 0.00000001 92.64 0.00000001
1000 37.06 0.00000001 51.50 0.00000001 192.77 0.00000001
5000 280.27 0.00000001 304.94 0.00000001 1178.17 0.00000001
10000 964.18 0.00000001 872.29 0.00000001 2431.58 0.00000001

Table 1: Computational results for Weber problem with different norms and different dimensions.

where fopt is the approximated optimal value obtained with the functions
in optimset. The reader may note that we solve relaxed problems that give
lower bounds. Therefore, the gap of our lower bounds is computed with
respect to upper bounds which implies that actually may be even better
than the one reported. (See Table 5.)

We have organized our computational experiments in three different
problems types. Our test problems are set of points randomly generated
on the [0, 10000] hypercubes of the d-dimensional space, d = 2, 3, 10. For
Weber, center and k-centrum problems, we could solve instances with at
least 10000 points and for different ℓτ-norms, τ = 1.5, 2, 3, 3.5. The general
case with random lambda weights is harder and we only solved in all cases
instances up to 1000 points.
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Our goal is to present the results organized per problem type, frame-
work space (Rd, d = 2, 3, 10) and norm (ℓτ, τ = 1.5, 2, 3, 3.5). Tables 1, 2
and 3 report our results on the problems of minimizing the weighted sum of
distances (Weber), the maximum distance (center) and the sum of the n/2

largest distances (n/2-centrum). In all cases, the accuracy and resolutions
times needed for the solver are rather good, even for 10000 points in dimen-
sion 10 and rather complicated norms (e.g. ℓ3.5). The reader can see that
the hardest type is the k-centrum. In this problem type CPU times increase
one order of magnitude because the structure of the problem does not allow
to reduce the size of the formulation.

Dim 2 3 10

τ n Time(Ave) Gap(Ave) Time(Ave) Gap(Ave) Time(Ave) Gap(Ave)

τ=1.5 10 0.22 0.00000103 0.39 0.00000000 1.02 0.00010830
100 2.13 0.00000000 8.75 0.00000000 43.28 0.00002092
500 12.59 0.00000000 63.16 0.00000000 237.99 0.00000835
1000 27.11 0.00000000 115.35 0.00000000 327.04 0.00000615
5000 150.34 0.00000001 357.49 0.00000000 1231.78 0.00000539
10000 371.39 0.00000000 1297.23 0.00000000 2762.51 0.00000714

τ=2 10 0.11 0.00000005 0.17 0.00000001 0.44 0.00002446
100 1.34 0.00000012 2.09 0.00000001 7.68 0.00024196
500 8.80 0.00000008 13.69 0.00000001 50.25 0.00001027
1000 20.85 0.00000051 30.27 0.00000001 115.64 0.00001137
5000 119.90 0.00000133 212.21 0.00000001 912.44 0.00384177
10000 287.13 0.00000265 467.08 0.00000001 1510.41 0.00823965

τ=3 10 0.23 0.00000021 0.37 0.00000001 1.08 0.00010908
100 2.32 0.00000000 7.48 0.00000000 37.66 0.00001214
500 14.47 0.00000001 52.27 0.00000018 209.46 0.00000624
1000 28.93 0.00000001 119.96 0.00000056 293.48 0.00002443
5000 160.96 0.00000001 456.11 0.00010340 1223.41 0.00024982
10000 434.79 0.00000000 6829.70 0.00002703 2663.15 0.00026867

τ=3.5 10 0.33 0.00000000 0.56 0.00000570 1.80 0.00004732
100 4.47 0.00000013 13.72 0.00000036 68.91 0.00002253
500 21.93 0.00000002 90.65 0.00000020 373.21 0.00000236
1000 44.82 0.00000002 179.48 0.00001955 603.41 0.00001127
5000 244.04 0.00000002 551.16 0.00000219 2279.93 0.00020991
10000 510.25 0.00000002 2618.87 0.00001699 4814.26 0.00006055

Table 2: Computational results for the Center problem with different norms and different dimensions.

Table 4 reports our results on the general ordered median problem with
non-increasing monotone lambda weights. For this family of problems we
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Dim 2 3 10

τ n Time(Ave) Gap(Ave) Time(Ave) Gap(Ave) Time(Ave) Gap(Ave)

τ=1.5 10 0.29 0.00000001 0.42 0.00000000 1.01 0.00019138
100 4.67 0.00000000 8.01 0.00000000 30.45 0.00000003
500 39.92 0.00000001 49.26 0.00000000 205.37 0.00000002
1000 68.11 0.00000001 109.52 0.00000000 437.95 0.00000002
5000 476.95 0.00000000 668.08 0.00000000 4738.70 0.00000002
10000 1242.57 0.00000001 2016.01 0.00000000 15348.57 0.00000002

τ=2 10 0.13 0.00000000 0.18 0.00000000 0.45 0.00008221
100 1.36 0.00000000 2.03 0.00000000 7.56 0.00000001
500 8.40 0.00000000 15.63 0.00000000 53.87 0.00000000
1000 22.38 0.00000000 30.90 0.00000000 108.22 0.00000000
5000 128.18 0.00000000 195.56 0.00000000 815.34 0.00000000
10000 337.17 0.00000000 460.98 0.00000000 2373.23 0.00000000

τ=3 10 0.30 0.00000001 0.42 0.00000000 1.09 0.00003397
100 5.65 0.00000001 10.20 0.00000000 40.08 0.00000016
500 50.36 0.00000001 72.35 0.00000000 225.13 0.00000004
1000 100.17 0.00000001 145.24 0.00000000 463.74 0.00000004
5000 582.84 0.00000002 894.95 0.00000000 4067.13 0.00000002
10000 1715.00 0.00000001 2565.21 0.00000002 13649.88 0.00000005

τ=3.5 10 0.44 0.00000006 0.60 0.00000000 1.81 0.00018065
100 10.90 0.00000001 16.97 0.00000000 60.45 0.00000004
500 80.28 0.00000002 124.50 0.00000002 379.20 0.00000004
1000 171.62 0.00000002 252.79 0.00000002 852.59 0.00000004
5000 1033.28 0.00000002 1700.71 0.00000002 8510.86 0.00000006
10000 2345.25 0.00000002 4682.55 0.00000002 27723.99 0.00000004

Table 3: Computational results for the 0.5-centrum problem with different norms and different dimensions.

could solve with our general formulation, in all cases, problem sizes of 1000
points. Accuracy is rather good and the bottleneck here is the size of the
SDP object to be handle since the fact that all lambda are non-null makes
it impossible to simplify the representation.

Finally, we also report in Table 5, for the sake of illustration, an example
of application of the result in Theorem 9. This problem consists of the min-
imization of the difference between the maximum and minimum distances
of a number of demand points (n ranging between 10 and 1000) with re-
spect to a solution point that must belong to a non-convex feasible region
defined by the following two non-convex constraints x21 − 2x22 − 2x23 ≥ 0 and
−2x21+5x22+4x23 ≥ 0 within the unit cube. Clearly, this case is more difficult
to solve since this problem is non-convex and thus, we need to resort to the
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Dim 2 3 10

τ n Time(Ave) Gap(Ave) Time(Ave) Gap(Ave) Time(Ave) Gap(Ave)

τ=1.5 10 0.24 0.00000000 0.40 0.00000000 1.19 0.00000256
100 4.03 0.00000001 6.73 0.00000001 22.22 0.00000000
500 159.42 0.00000001 190.77 0.00000001 380.99 0.00000000
1000 1270.76 0.00000013 1730.61 0.00000002 2379.03 0.00000000

τ=2 10 0.14 0.00000003 0.18 0.00000001 0.62 0.00002783
100 5.11 0.00000255 6.94 0.00000002 17.07 0.00000003
500 427.54 0.00000314 443.47 0.00000266 1092.70 0.00000054
1000 2079.97 0.00000315 7702.03 0.00000241 9235.59 0.00000073

τ=3 10 0.51 0.00000005 0.72 0.00000010 1.89 0.00000405
100 64.14 0.00000483 58.10 0.00000119 152.45 0.00000148
500 1532.17 0.00018236 2269.39 0.00003466 7950.09 0.00000931
1000 4546.73 0.00025375 5678.17 0.00008893 18011.79 0.00003434

τ=3.5 10 0.63 0.00000130 1.48 0.00001077 7.05 0.00000197
100 33.32 0.00000097 302.76 0.00009247 596.20 0.00024303
500 1555.08 0.00000524 2774.06 0.00035570 8705.00 0.00014431
1000 7625.95 0.00001702 7681.10 0.00059695 18845.92 0.00020324

Table 4: Results for convex ordered median problem with general λ, different norms and dimensions.

hierarchy of relaxations introduced in Theorem 9. Nevertheless, we have
obtained good results in this case even with the first relaxation order.

Dim 3

τ n Time(Ave) Gap(Ave)

τ=2 10 0.46 0.00001623
100 9.45 0.00457982
500 80.56 0.00030263
1000 204.96 0.00094492

Table 5: Computational results for the Range problem with two nonconvex constraints.

5 Conclusions

We develop a unified tool for minimizing convex ordered median location
problems in finite dimension and with general ℓτ-norms. We report com-
putational results that show the powerfulness of this methodology to solve
medium size continuous location problems.
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This new approach solves a broad class of convex and non-convex con-
tinuous location problems that, up to date, were only partially solved in the
specialized literature. We have tested this methodology with some medium
size standard ordered median location problems in different dimensions and
with different norms.

It is important to emphasize that one of the contributions of our ap-
proach is that the same algorithm is used to solve all this family of location
problems. This is an interesting novelty as compared with previous ap-
proaches, of course at the price of loosing some speed in the computations
compared with some tailored algorithms for specific problems. Obviously,
our goal was not to compete with previous algorithms since most of them
are either designed for specific problems or only applicable for planar prob-
lems. However, in all cases we obtained reasonable CPU times and accurate
results. Furthermore, in many cases our running times for many problems
could not be even compared with others since nobody had solved them be-
fore.
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