4,903 research outputs found

    Study and Analysis of Power System Stability Based on FACT Controller System

    Get PDF
    Energy framework soundness is identified with standards rotational movement and the swing condition administering electromechanical unique conduct. In the exceptional instance of two limited machines, the basis of equivalent territory security can be utilized to ascertain the basic clearing point in the force framework, It is important to look after synchronization, in any case the degree of administration for customers won't be accomplished. This term steadiness signifies "looking after synchronization." This paper is an audit of three kinds of consistent state. The main sort of adjustment, consistent state steadiness clarifies the most extreme consistent state quality and force point chart. The transient solidness clarifies the wavering condition and the idleness steady while dynamic soundness manages the transient security time frame. There are a few different ways to improve framework soundness a portion of the techniques are clarified. Versatile AC Transmission Frameworks (FACTS) Flexible AC Transmission System (FACTS) regulators have been utilized frequently to comprehend the different issues of a non-variable force structure. Versatile AC Transmission Frames or FACTS are devices that permit versatile and dynamic control of intensity outlines. Improving casing respectability has been explored with FACTS regulators. This examination focuses to the upsides of utilizing FACTS apparatuses with the explanation behind improving electric force tire activity. There has been discussion of an execution check for different FACTS regulators

    Energy-aware MPC co-design for DC-DC converters

    Get PDF
    In this paper, we propose an integrated controller design methodology for the implementation of an energy-aware explicit model predictive control (MPC) algorithms, illustrat- ing the method on a DC-DC converter model. The power consumption of control algorithms is becoming increasingly important for low-power embedded systems, especially where complex digital control techniques, like MPC, are used. For DC-DC converters, digital control provides better regulation, but also higher energy consumption compared to standard analog methods. To overcome the limitation in energy efficiency, instead of addressing the problem by implementing sub-optimal MPC schemes, the closed-loop performance and the control algorithm power consumption are minimized in a joint cost function, allowing us to keep the controller power efficiency closer to an analog approach while maintaining closed-loop op- timality. A case study for an implementation in reconfigurable hardware shows how a designer can optimally trade closed-loop performance with hardware implementation performance

    A Novel Real-time Approach to Unified Power Flow Controller Validation

    Get PDF
    This paper presents the development of a real-time hardware/software laboratory to interface a soft real-time power system simulator with multiple unified power flow controllers (UPFC) via hardware-in-the-loop (HIL) to study their dynamic responses and validate control and placement approaches. This paper describes a unique laboratory facility that enables large-scale, soft real-time power system simulation coupled with the true physical behavior of a UPFC as opposed to the controller response captured by many other real-time simulators. The HIL line includes a synchronous machine, a UPFC, and a programmable load to reproduce the physical dynamics of the UPFC sub-network

    Innovative Approach to Enhance Stability: Neural Network Control and Aquila Optimization Integration in Single Machine Infinite Bus Systems

    Get PDF
    This paper highlights the need to improve the stability of single-machine infinite-bus (SMIB) systems, which is crucial for maintaining the dependability, efficiency, and safety of electrical power systems. The changing energy environment, characterized by a growing use of renewable sources and more intricate power networks, is challenging established stability measures. SMIB systems exhibit dynamic behavior, particularly during faults or unexpected load variations, requiring sophisticated real-time stabilization methods to avert power failures and provide a steady energy supply. This paper suggests a complex approach that combines power system stability analysis with a neural network controller enhanced by the Aquila optimization algorithm (AOA) to address the dynamic issues of SMIB systems. The study shows that the AOA-optimized neural network (AOA-NN) controller outperforms in avoiding disruptions and attaining speedy stabilization by exhaustively examining electrical, mechanical, and rotor dynamics. This method improves power system resilience and operational efficiency as demands and technology expand

    BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verification of Spatial Behavior of Distributed Software Component Systems

    Full text link
    In this report, we present work towards a framework for modeling and checking behavior of spatially distributed component systems. Design goals of our framework are the ability to model spatial behavior in a component oriented, simple and intuitive way, the possibility to automatically analyse and verify systems and integration possibilities with other modeling and verification tools. We present examples and the verification steps necessary to prove properties such as range coverage or the absence of collisions between components and technical details
    • …
    corecore