1,650 research outputs found

    Quantum Tetrahedra

    Full text link
    We discuss in details the role of Wigner 6j symbol as the basic building block unifying such different fields as state sum models for quantum geometry, topological quantum field theory, statistical lattice models and quantum computing. The apparent twofold nature of the 6j symbol displayed in quantum field theory and quantum computing -a quantum tetrahedron and a computational gate- is shown to merge together in a unified quantum-computational SU(2)-state sum framework

    Combinatorial problems of (quasi-)crystallography

    Full text link
    Several combinatorial problems of (quasi-)crystallography are reviewed with special emphasis on a unified approach, valid for both crystals and quasicrystals. In particular, we consider planar sublattices, similarity sublattices, coincidence sublattices, their module counterparts, and central and averaged shelling. The corresponding counting functions are encapsulated in Dirichlet series generating functions, with explicit results for the triangular lattice and the twelvefold symmetric shield tiling. Other combinatorial properties are briefly summarised.Comment: 12 pages, 2 PostScript figures, LaTeX using vch-book.cl

    The General O(n) Quartic Matrix Model and its application to Counting Tangles and Links

    Full text link
    The counting of alternating tangles in terms of their crossing number, number of external legs and connected components is presented here in a unified framework using quantum field-theoretic methods applied to a matrix model of colored links. The overcounting related to topological equivalence of diagrams is removed by means of a renormalization scheme of the matrix model; the corresponding ``renormalization equations'' are derived. Some particular cases are studied in detail and solved exactly.Comment: 21 page

    Topological Z2\mathbb{Z}_2 Resonating-Valence-Bond Spin Liquid on the Square Lattice

    Full text link
    A one-parameter family of long-range resonating valence bond (RVB) state on the square lattice was previously proposed to describe a critical spin liquid (SL) phase of the spin-1/21/2 frustrated Heisenberg model. We provide evidence that this RVB state in fact also realises a topological (long-range entangled) Z2\mathbb{Z}_2 SL, limited by two transitions to critical SL phases. The topological phase is naturally connected to the Z2\mathbb{Z}_2 gauge symmetry of the local tensor. This work shows that, on one hand, spin-1/21/2 topological SL with C4vC_{4v} point group symmetry and SU(2)SU(2) spin rotation symmetry exists on the square lattice and, on the other hand, criticality and nonbipartiteness are compatible. We also point out that, strong similarities between our phase diagram and the ones of classical interacting dimer models suggest both can be described by similar Kosterlitz-Thouless transitions. This scenario is further supported by the analysis of the one-dimensional boundary state.Comment: v2: improve presentation, present new evidence and add reference

    Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices

    Full text link
    Can high energy physics be simulated by low-energy, non-relativistic, many-body systems, such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective, low energy, symmetry, or as an "exact" symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to new type of (table-top) experiments, that shall be used to study various QCD phenomena, as the confinement of dynamical quarks, phase transitions, and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing quantum simulation of Abelian and non-Abelian lattice gauge theories in 1+1 and 2+1 dimensions using ultracold atoms in optical lattices.Comment: A review; 55 pages, 14 figure
    • …
    corecore