4 research outputs found

    A Method of Rendering CSG-Type Solids Using a Hybrid of Conventional Rendering Methods and Ray Tracing Techniques

    Get PDF
    This thesis describes a fast, efficient and innovative algorithm for producing shaded, still images of complex objects, built using constructive solid geometry ( CSG ) techniques. The algorithm uses a hybrid of conventional rendering methods and ray tracing techniques. A description of existing modelling and rendering methods is given in chapters 1, 2 and 3, with emphasis on the data structures and rendering techniques selected for incorporation in the hybrid method. Chapter 4 gives a general description of the hybrid method. This method processes data in the screen coordinate system and generates images in scan-line order. Scan lines are divided into spans (or segments) using the bounding rectangles of primitives calculated in screen coordinates. Conventional rendering methods and ray tracing techniques are used interchangeably along each scan-line. The method used is detennined by the number of primitives associated with a particular span. Conventional rendering methods are used when only one primitive is associated with a span, ray tracing techniques are used for hidden surface removal when two or more primitives are involved. In the latter case each pixel in the span is evaluated by accessing the polygon that is visible within each primitive associated with the span. The depth values (i. e. z-coordinates derived from the 3-dimensional definition) of the polygons involved are deduced for the pixel's position using linear interpolation. These values are used to determine the visible polygon. The CSG tree is accessed from the bottom upwards via an ordered index that enables the 'visible' primitives on any particular scan-line to be efficiently located. Within each primitive an ordered path through the data structure provides the polygons potentially visible on a particular scan-line. Lists of the active primitives and paths to potentially visible polygons are maintained throughout the rendering step and enable span coherence and scan-line coherence to be fully utilised. The results of tests with a range of typical objects and scenes are provided in chapter 5. These results show that the hybrid algorithm is significantly faster than full ray tracing algorithms

    Solid modelling and the representation of buildings

    Full text link

    A Unified Approach to Geometric Modelling

    No full text
    Whereas, historically, much of the effort on computer-aided geometric design has concentrated on the problems of representing so-called sculptured surfaces, there has recently been much interest in systems which can handle typical mechanical components by a volume modelling approach. The paper is concerned with the possibility of combining the two approaches and discusses the issues raised. A solution in terms of applying smoothing operators to a geometric coarse structure is proposed, with the added benefits of detecting and successfully handling anomalous regions in surfaces and leading to potential benefits in the analysis of geometric properties

    A Hierarchy of Geometric Forms

    No full text
    This article describes a unified approach to geometric modelling based on the mathematics of parametric polynomial functions. Such a unified scheme for geometric representation and computation provides a natural base for a geometric modeler of considerable versatility and robustnes
    corecore