48 research outputs found

    Compositionality of aspect weaving.

    Get PDF
    One approach towards adaptivity is aspect-orientation. As- pects enable the systematic addition of code into existing programs. In order to provide safe and at the same time flexible aspects for such adap- tive systems we address the verification of the aspect-oriented language paradigm. This paper first gives an overview of our aspect calculus and summarizes previous results. Then we present a new compositionality lemma prerequisite for so-called run-time weaving. The entire theory and proofs are carried out in the theorem prover Isabelle/HOL

    Composing safely: a type system for aspects

    Get PDF
    In this paper we present an approach towards safe software composition based on aspect-orientation. Aspects enable the systematic addition of code into existing programs but often they also introduce er- rors. In order to provide safe aspects for software composition we address the verification of the aspect-oriented language paradigm. We construct a basic calculus for aspects with types and prove formally type safety. More precisely, this paper presents the following contributions (a) a fully formalized type system for the Theory of Objects including the proof of type safety, (b) a theory of aspects based on the Theory of Objects including a type system for aspects, and (c) the definition of a notion of type safety for aspects including its proof. The entire theory and proofs are carried out in the theorem prover Isabelle/HOL

    Combining Aspect-Oriented and Strategic Programming

    Get PDF
    Properties such as logging, persistence, debugging, tracing, distribution, performance monitoring and exception handling occur in most programming paradigms and are normally very difficult or even impossible to modularizewith traditional modularization mechanisms because they are cross-cutting. Recently, aspect-oriented programming has enjoyed recognition as a practical solution for separating these concerns. In this paper we describe an extension to the Stratego term rewriting language for capturing such properties. We show our aspect language offers a concise, practical and adaptable solution for dealing with unanticipated algorithm extension for forward data-flow propagation and dynamic type checking of terms. We briefly discuss some of the challenges faced when designing and implementing an aspect extension for and in a rule-based term rewriting system.publishedVersio

    A case for explicit join point models for aspect-oriented intermediate languages

    Get PDF
    Aspect-oriented languages mostly employ implicit language-defined join point models, where well-defined points in the program are called join points and declarative predicates are used to quantify them. The primary motivation for using an implicit join point model is obliviousness and ease of quantification. A design choice for aspect-oriented intermediate languages is to mirror the source language model. In this position paper, I argue that an explicit join point model is better suited at the intermediate language level and sketch a preliminary solutio

    A Formalization of Typed Aspects for the Ï‚-calculus in Isabelle/HOL

    Get PDF
    In this paper we present an approach towards safe software composition based on aspect-orientation. Aspects enable the systematic addition of code into existing programs but often they also introduce errors. In order to provide safe aspects for software composition we address the verification of the aspect-oriented language paradigm. We construct a basic calculus for aspects with types and prove formally type safety. More precisely, this paper presents the following contributions (a) a fully formalized type system for the Theory of Objects including the proof of type safety, (b) a theory of aspects based on the Theory of Objects including a type system for aspects, and (c) the definition of a notion of type safety for aspects including its proof. The entire theory and proofs are carried out in the theorem prover Isabelle/HOL

    Modular Compilation Strategies for Aspect-Oriented Constructs

    Get PDF
    In our previous work, we presented an aspect-oriented intermediate language, named Nu, to preserve design modularity in object code. Nu is based on two primitives: bind and remove. We showed that maintaining modularity in object code significantly improved the incremental compilation time of aspect-oriented programs. The key contribution of this work is a set of compilation strategies to Nu for a number of AspectJ constructs such as control flow (cflow and cflowbelow), instantiation (perthis, pertarget, percflow, percflowbelow) and dynamic checks (if, this, target, args), as well as composition operators (&& and ||). The motivation was to determine if these high-level language constructs need to be supported in the intermediate language. Our compilation strategies are modular and textually local. To compile a construct in a module, only the information about that module\u27s implementation and the specification of other modules referenced in that module are needed. The generated intermediate code for a construct in a source module is confined to a single module in the object code. We show that our compilation strategies improve incremental compilation time of aspect-oriented programs. We also analyze our intermediate language with respect to constructs that are not directly supported

    Improving Reuse of Distributed Transaction Software with Transaction-Aware Aspects

    Get PDF
    Implementing crosscutting concerns for transactions is difficult, even using Aspect-Oriented Programming Languages (AOPLs) such as AspectJ. Many of these challenges arise because the context of a transaction-related crosscutting concern consists of loosely-coupled abstractions like dynamically-generated identifiers, timestamps, and tentative value sets of distributed resources. Current AOPLs do not provide joinpoints and pointcuts for weaving advice into high-level abstractions or contexts, like transaction contexts. Other challenges stem from the essential complexity in the nature of the data, operations on the data, or the volume of data, and accidental complexity comes from the way that the problem is being solved, even using common transaction frameworks. This dissertation describes an extension to AspectJ, called TransJ, with which developers can implement transaction-related crosscutting concerns in cohesive and loosely-coupled aspects. It also presents a preliminary experiment that provides evidence of improvement in reusability without sacrificing the performance of applications requiring essential transactions. This empirical study is conducted using the extended-quality model for transactional application to define measurements on the transaction software systems. This quality model defines three goals: the first relates to code quality (in terms of its reusability); the second to software performance; and the third concerns software development efficiency. Results from this study show that TransJ can improve the reusability while maintaining performance of TransJ applications requiring transaction for all eight areas addressed by the hypotheses: better encapsulation and separation of concern; loose Coupling, higher-cohesion and less tangling; improving obliviousness; preserving the software efficiency; improving extensibility; and hasten the development process

    Improving Reuse and Maintainability of Communication Software With Conversation-Aware Aspects

    Get PDF
    Inter-process communications (IPC) are ubiquitous in today’s software systems, yet they are rarely treated as first-class programming concepts. Implementing crosscutting concerns for message-based IPC are difficult, even using aspect-oriented programming languages (AOPL) such as AspectJ. Many of these challenges are because the context of a communication-related crosscutting concern is often a conversation consisting of message sends and receives. Hence, developers typically have to implement communication protocols manually using primitive operations, such as connect, send, receive, and close. This dissertation describes an extension to AspectJ, called CommJ, with which developers can implement communication-related concerns in cohesive and loosely coupled aspects. It then presents preliminary, but encouraging results from a subsequent study that begin by defining a reuse and maintenance quality model. Subsequently the results show seven different ways in which CommJ can improve the reusability and maintainability of applications requiring network communications

    Abstraction over non-local object information in aspect-oriented programming using path expression pointcuts

    Get PDF
    Aspect-oriented software development (AOSD) consists of a number of technologies that promise a better level of modularization of concerns that cannot be separated in individual modules by using conventional techniques. Aspect-oriented programming (AOP) is one of these technologies. It allows the modularization at the level of software application code. It provides programmers with means to quantify over specific points in the base application code, called join points, at which the crosscutting concern code must be triggered. The quantification is achieved by special selection constructs called pointcuts, while the triggered code that is responsible for adapting the selected join point is provided by special construct called advice. The selection and adaptation mechanisms in aspect-oriented programming depend heavily on the distinguishing properties of the join points. These properties can either be derived from the local execution context at the join point or they are considered to be non-local to the join point. Aspect-oriented systems provide a plenty of pointcut constructs that support accessing the local join point properties, while they rarely support the non-local properties. A large research effort has been achieved to extend current aspectoriented systems in order to solve the problem of non-locality. However, none of these proposals support the non-local object relationships. There are many situations where a good abstraction over nonlocal object information is needed, otherwise, the developers will be obliged to provide complex and error-prone workarounds inside advice body that conceptually do not reflect the semantics of join point selection and mix it with the semantics of join point daptation. Such recurrent situations occur when trying to modularize the object persistence concern. Object persistence, the process of storing and retrieving objects to and from the datastore, is a classical example of crosscutting concern. Orthogonal object persistence meets the obliviousness property of AOP: The base code should not be prepared upfront for persistence. This thesis addresses the shortcomings in current aspect-oriented persistence systems. It shows that the reason for such shortcomings is due to the lack of supporting non-local object information by the used aspect-oriented languages. To overcome this problem, this thesis proposes a new extension to the current pointcut languages called path expression pointcuts that operate on object graphs and make relevant object information available to the aspects. As an explicit and complete construct, a formal semantics and type system have provided. Moreover, an implementation of path expression pointcuts is discussed in the thesis along with its usage to show how the aforementioned problems are resolved
    corecore