
1

Context-aware Security:
Linguistic Mechanisms and Static Analysis 1

Chiara Bodei, Pierpaolo Degano, Letterio Galletta, Francesco Salvatori
Dipartimento di Informatica, Università di Pisa, Pisa, Italy

Abstract
Adaptive systems improve their efficiency by modifying their behaviour to respond to changes in their operational environment.
Also, security must adapt to these changes and policy enforcement becomes dependent on the dynamic contexts. We study
these issues within MLCoDa, (the core of) an adaptive declarative language proposed recently. A main characteristic of MLCoDa
is to have two components: a logical one for handling the context and a functional one for computing. We extend this language
with security policies that are expressed in logical terms. They are of two different kinds: context and application policies. The
first, unknown a priori to an application, protect the context from unwanted changes. The others protect the applications from
malicious actions of the context, can be nested and can be activated and deactivated according to their scope. An execution
step can only occur if all the policies in force hold, under the control of an execution monitor. Beneficial to this is a type and
effect system, which safely approximates the behaviour of an application, and a further static analysis, based on the computed
effect. The last analysis can only be carried on at load time, when the execution context is known, and it enables us to efficiently
enforce the security policies on the code execution, by instrumenting applications. The monitor is thus implemented within
MLCoDa, and it is only activated on those policies that may be infringed, and switched off otherwise.

Keywords: security policy, context-awareness, static analysis, type and effect system, control flow analysis, code instrumentation

1. Introduction

If you are in an airport for a little while and you want to have just a quick look at your mailbox, you
would like to connect without bothering with all the details of the wireless connection, yet you would
like to do that in a secure manner. A hosting environment and an application programmed in an adaptive
fashion will transparently connect you to the available server. So, you never need to change your settings
and capabilities, nor to worry about the new context and the resources it provides you. Instead you are
likely to be worried about malicious activities that the hosting environment may carry on, and vice versa.
Nevertheless, adaptivity amplifies the difficulties of security provisioning, because these two features
are tightly interwoven. Their combination requires addressing two aspects. First, security may reduce
adaptivity, because it adds further constraints on the possible actions of software. Second, new highly
dynamic security mechanisms are needed to scale up to adaptive software.

1Work partially supported by the MIUR-PRIN project Security Horizons and by Università di Pisa PRA_2016_64 Project
Through the fog.

The final publication is available at IOS Press through http://dx.doi.org/10.3233/JCS-160551

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80269745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

These are the problems we address here from a linguistic point of view, in particular within a static
analysis approach. To analyse such highly dynamic applications with a standard technique one has to
take care of all the contexts that will be visited. This is computationally expensive and may even be
unfeasible, because new contexts may appear later on, e.g. a new wireless network at the airport. We
propose a technique that addresses these difficulties by splitting the analysis in two parts. The first collects
at compile time information about the behaviour of the application regardless of the running context,
while the second specialises this information at load time when the context is fully known.

Context and Adaptivity. As intuitively anticipated above, today’s software systems are expected to op-
erate every time and everywhere. They have to cope with changing environments, and never compromise
their intended behaviour and their non-functional requirements, typically security or quality of service.
Therefore, languages need effective mechanisms to sense the changes in the operational environment in
which the application is plugged in, i.e. the context, and to properly adapt to changes, with little or no
user involvement. At the same time, these mechanisms must maintain the functional and non-functional
properties of applications after the adaptation steps.

The context is a key notion for adaptive software. Typically, a context includes different kinds of
computationally accessible information coming from both outside (e.g. sensor values, available devices,
code libraries offered by the environment), and from inside the application boundaries (e.g. its private
resources, user profiles, etc.). There have been many different proposals to support dynamic adjustments
and tuning of programs inside programming languages, e.g. [45,38,39,64,66,67,42]. However, they do
not neatly separate the working environment from the application as done, e.g. in Context Oriented
Programming (COP) [20]. The COP linguistic paradigm explicitly deals with contexts and provides
programming adaptation mechanisms to support dynamic changes of behaviour, in reaction to changes in
the context. In this paradigm software adaptation is programmed through behavioural variations, chunks
of code that can be automatically selected depending on the current context hosting the application, so
to dynamically modify its execution.

Security and Contexts. Security is a major concern in context-aware systems, as witnessed by the in-
terest risen in the business world [44], because an activity can be carried on safely in one operating en-
vironment and become weak in another. This implies that one has to determine which information in
the environment is relevant for the security of the application. Also, it is important to constantly tune
the security policies accordingly to the changes of the relevant part of the environment. New security
techniques are therefore in order, that have to both scale up and maintain the ability of software to adapt
as much as possible. These two interrelated aspects have already been studied in the literature [68,14]
that presents two ways of addressing it: securing context-aware systems and context-aware security.

Securing context-aware systems aims at rethinking the standard notions of confidentiality, integrity and
availability [58] and at developing techniques for guaranteeing them in adaptive applications [68]. The
main challenge is to understand how to get secure and trusted context information. Contexts may indeed
contain sensible data of the working environment (e.g. information about surrounding digital entities)
that should be protected from unauthorised access and modification, in order to grant confidentiality and
integrity. Also, one has to protect applications from portions of the context that may misbehave and forge
deceptive data.

Context-aware security is dually concerned with the use of context information (identity, location,
time and date, device type, reputation and so on) to dynamically improve and drive security decisions.
Contextual information helps to overcome the “one-size-fits-all” security solutions. These now become
more flexible because they can take into account the different situations in which a user is operating.

2

For example, consider the usual no flash photography policy in museums. While a standard security
policy never allows people to use flash, a context-aware security one does not allow flashing only inside
particular rooms — in other words, the last policy has a scope. Similarly, a company might allow a
user to access a database from the office, but deny access if the user attempts to from home, without an
explicit authorisation. Accordingly, controlling and enforcing security need not to be placed everywhere,
but only where needed, depending on the context that make specific actions risky.

Yet, there is no unifying concept of security, because the two aspects above are often tackled sepa-
rately. Indeed, mechanisms have been implemented at different levels of the infrastructure, in the mid-
dleware [60] or in the interaction protocols [29]. These mechanisms mostly address access control, often
from a software engineering viewpoint [56]. Also, particular attention is being paid on the ways contex-
tual policies are defined [48]. Ours is a first step towards developing a uniform and formal treatment of
security and adaptation.

Our proposal. We study security within a linguistic approach to adaptivity, and we propose techniques
for analysing and enforcing secure behaviour of adaptive applications since the early stages of software
development. To investigate these issues, we chose the COP paradigm because it provides us with a neat
framework, where contexts and applications are clearly defined and identified, even though strictly inter-
twined. Consequently, this separation reduces the complexity of the security analysis by first considering
the application in isolation, and then by tailoring the obtained results to the running context.

Here we extend MLCoDa, a core of ML with COP features, recently proposed in [21,22,23]. It has two
tightly integrated components: a declarative constituent for programming the context and a functional
one for computing. The bipartite structure of MLCoDa reflects the separation of concerns between the spe-
cific abstractions for describing a context and those used for programming applications [61]. The context
in MLCoDa is a knowledge base implemented as a (stratified, with negation) Datalog program [55,43].
Applications inspect the contents of a context by simply querying it, in spite of possibly complex de-
ductions required. Programming adaptation is specified through behavioural variations, a sort of pattern
matching with Datalog goals as selectors. The behavioural variation to be run is selected by the dispatch-
ing mechanism that inspects the actual context and makes the right choices. Note that the choice depends
on both the application code and the “open” context, unknown at development time. If no alternative is
viable, then a functional failure occurs as the application cannot adapt to the current context. We address
context-aware security issues, in particular for defining and enforcing access control policies, by exploit-
ing MLCoDa features. Our policies are expressed in Datalog, and are checked and enforced by just query-
ing goals. In this regard, our version of Datalog is an asset because many logical languages for defining
access control policies compile in it, e.g. [12,41,26]. In addition, it is powerful enough to express all
relational algebras, it is fully decidable, and it guarantees polynomial response time [27]. There are two
kinds of policies separately imposed by the context and by the applications. A single reference monitor
enforces both at run time, aborting the execution when a security violation is about to occur.

More in detail, the designer of the context can define a context policy to protect some sensible entities
hosted therein, e.g. specific devices or confidential data. The reference monitor prevents then an appli-
cation running in that context from altering the values of the protected entities. Context policies are en-
forced along the execution of the application within the current context. Actually, the reference monitor
is not required to stepwise supervise the execution of the controlled application, rather it only intervenes
when an assertion concerning a protected entity changes in the context.

Instead, application policies are defined by the designer of the application, to protect its own resources
and data. Following [9], we extend the original MLCoDa with the construct ψ[e], called policy framing,
where ψ is one of such policies and e is an expression within the application itself. The intuition is that

3

the policy ψ has to be enforced stepwise during the execution of e, which is therefore its scope; when e
is reduced to a value, the policy is no longer active. For example, suppose e is sending some confidential
data. Then a policy can check whether all the recording devices in the context are off, so this sort of
de-classification is not risky. When the transmission is completed, a recorder can be safely switched on,
if the rest of the application does not care about. Of course, application policies can be nested, and are to
be all obeyed by an expression occurring within the (nested) scope of their framing.

Observe that context and application policies have a different nature, mainly because they are defined
by separate designers, in a completely independent manner. Actually, context policies are most likely un-
known to the application developer at design and implementation time, and similarly for the application
policies that are unknown to the context manager.

The execution model underlying our proposal assumes that the context is the interface between an
application and the system running it. Applications interact with the system through a predefined set of
APIs that provide handles to resources and operations on them. The system and the application do not
trust each other, and may act maliciously. For instance, the first can alter some parts of the context insert-
ing specific assertions so forcing the application to select a particular behavioural variation. The system
can then falsify these assertions to drive the application in an unsafe state. The application developer can
design and enforce a policy to protect sensible data against these malicious changes. In turn, the appli-
cation can modify the context arbitrarily by driving the system in a vulnerable state, and context policies
prevent these attacks. As a matter of fact, our policies specify the acceptable runs with respect to access
control, so they are safety policies.

Here we do not address how code is protected against hostile modifications, and for that we assume our
execution model to rely on known techniques, e.g. obfuscation [16]. A key point of our proposal is the
instrumentation of the application code by inserting invocations to a reference monitor, and the resulting
machinery is assumed to be suitably protected.

We aim at detecting policy violations (non-functional failures) as early as possible, so we conserva-
tively extend the static approach of [28,22,23], briefly summarised below. It takes care of failures in
adaptation to the current context (functional failures), dealing with the fact that applications operate in
an “open” environment. Indeed, the actual value and even the presence of some elements in the current
context are only known when the application is linked with it at run time. The first phase of our static
analysis is based on a type and effect system that, at compile time, computes a safe over-approximation
of the application behaviour, namely the effect. Then the effect is used at load time to verify that the
resources required by the application are available in the actual context, and in its future modifications.
To do that, the effect of the application is suitably combined with the effect of the APIs provided by the
context that are computed by the same type and effect system. If an application passes this analysis, then
no functional failure can arise at run time.

Our extensions are as follows. First, we record in the approximations the operations that modify the
context, namely tell and retract, together with the scope of the policy framings in which they occur.
The collected information is then used by our extended load time analysis. It requires building a graph,
which safely approximates which contexts the application will pass through, while running. We also
label the edges of the graph with (pointers to) the tell/retract operations in the code, exploiting the
approximation. Before launching the execution, we detect the risky actions, i.e. those that might violate
a reachable context or an active application policy. Now, we can call our reference monitor to guard the
risky actions only, and leave it switched off for the remaining ones. Note that our two-phase analysis is
similar to enforcing invariants over global data [52], which are however completely known at compile
time. In our case instead the context is not available until run time, so an analysis at compile time

4

would require predicting all the possible contexts an application will interact with — this is clearly
overwhelming, or even unfeasible at all.

The detection of risky actions mentioned above drives code instrumentation, so to build applications
that are prevented from violating security policies at run time. In a sense, the reference monitor is incor-
porated within the instrumented application, only using constructs of MLCoDa itself. Actually, the mon-
itor is implemented by inserting in the source code of the application e a call to a suitable procedure
(essentially a behavioural variation) for each occurrence of a tell/retract occurring in e. This form of
instrumentation is not standard, as it does not operate on the object code, rather it is mechanically done
at implementation time. Given a specific action and a set of policies, this procedure will obviously check
whether the first obeys all the elements of its second argument. At load time, the information about which
actions are risky and which policies can be violated by them is then used to link the actual and the formal
parameters of the procedure. Indeed, the reference monitor is never called on those actions that the static
analysis has safely predicted not to affect security.

Structure of the paper. The next section introduces MLCoDa and our proposal, with the help of an
example, along with an intuitive presentation of the various components of our two-phase static analysis,
and the way security is dynamically imposed and enforced. The syntax and the operational semantics of
our extension of MLCoDa are in Section 3, and its type and effect system in Section 4. Section 5 presents
the load time analysis, the results of which are used in Section 6 to describe our way of instrumenting
applications. The conclusion summarises our results, discusses some future work, and briefly surveys
related approaches. The proofs of the theorems establishing the correctness of our proposal are in the
Appendix.

A preliminary version of some technical parts of this paper appeared in [11], that only considered con-
text policies, and consequently had simpler definitions of the dynamic semantics, of the static analysis,
and of the code instrumentation.

2. A guided tour of our proposal through an enterprise mobility scenario

We illustrate our proposal by considering a scenario of enterprise mobility, a typical example of ubiq-
uitous and flexible computing: a mobile application used for accessing to some databases of a company
through a tablet. For further details about the language and other applicative scenarios see [21,23].

We first intuitively introduce MLCoDa, focussing on its logical aspects, used to inquire and update the
context, and on our extensions to ML, used to program adaptation in a functional way. In particular,
we will emphasise on how an application installs itself in a context (sub-section 2.1) and how the main
adaptation feature, namely behavioural variation, is resolved through the dispatching mechanism (sub-
section 2.2). In sub-section 2.3 we will add to our example both a context and an application policy,
and discuss why at run time two different techniques are required for enforcing each of them. Then in
sub-section 2.4, we exemplify two different ways an application may fail, either because it cannot adapt
to the hosting context (functional failure) or because it or the context attempt to violate a policy (non
functional failure). We also describe the two-phase static analysis we are proposing for detecting both
kinds of failures and for efficiently controlling policies at run time. The first phase occurs at compile
time and determines a sound abstraction of the behaviour of applications. The second phase analyses
this abstraction at load time and provides us with the basis for instrumenting the code and for defining
an adaptive reference monitor, that is only called on need. We conclude this intuitive presentation of our
main contributions by briefly looking at some classical access control policies that show the expressivity
of MLCoDa.

5

2.1. Context Description and Updates.

As anticipated, the context in MLCoDa is a knowledge base implemented as a (stratified, with negation)
Datalog program [55,43]. To retrieve the state of a resource, programs simply query the context, in spite
of the possibly complex deductions required to solve the corresponding goal; the context is changed by
using the standard tell/retract constructs.

In our example, the usage of the tablet depends on the current location and on the profile of who is
using it. For simplicity, we suppose that the tablet is able to recognise three locations each providing
access to the network: (i) office, (ii) home, and (iii) public spots. Information on the current location
can be retrieved by querying the context, described by a set of Datalog clauses. In our case, the user’s
location is described by the following clauses (for clarity, Datalog variables will be capital letters, while
constants will be lower case identifiers):

location(office) ← wifi_connected(west_wing).
location(office) ← wifi_connected(east_wing).
location(home) ← wifi_connected(myplace).
location(others) ← wifi_connected(X).

Assuming a mechanism that connects the tablet to a specific network, the predicate wifi_connected

identifies the current operating environment by the network name. In particular, the tablet results to be in
the office (the predicate location(office) holds) when connected to the network in either the west or
east wing of the building.

The company employees can perform different actions depending on their profiles. We assume to have
three of them: (i) vendor, (ii) system administrator, (iii) admin staff. The profile of a user is represented
in the context by the binary fact profile (e.g. profile(Jane, vendor)). As expected, the user profile
enables different applications and features: for example, vendors can access a database of customers, but
not the company balance of payments; while a member of the staff can access both.

Furthermore, the context represents the resources currently available and manages the access to them
in a declarative manner. Below we discuss some examples of different kinds of resources.

In the code snippet below, the first case returns a handle for accessing the contents of a digital archive
that is stored in the office server, the second for the archive in a public server:

office_archive(db1) ← location(office),
available(office_server),
synchronised(office_server),
archive(office_server,db1).

office_archive(db2) ← location(others),
available(public_server),
synchronised(public_server),
archive(public_server,db2).

Of course, also physical or hybrid resources can be represented using Datalog, as the following typ-
ical situation arising in the Internet of Things [57]. Suppose that employees can remotely control the
thermostat of their office room R, through the handle S, e.g. for checking whether their own is on or off.

6

1 fun main () =
2 dlet db_name = dbh when ← office_archive(dbh) in
3 let records = (table){
4 ← location(office),current_usr(name), profile(name,vendor). // Goal G1
5 tell accessing(db1)1; // Fact F1
6 let c = open_db(db_name) in
7 query(c, select * from table)
8 retract accessing(db1)2;
9 ← location(others),current_usr(name),profile(name,vendor),

10 proxy(ip),crypto_key(k). // Goal G2
11 let chan = connect(ip) in
12 tell accessing(db2)3; // Fact F2
13 let (c, sec_protocol) = get_db(chan) in
14 psi4 [
15 let data = crypto_query(c, k, select * from table) in
16 decrypt(k, data)
17]
18 retract accessing(db2)5

19 } in let result = #(records, customers) in
20 display(result);

Figure 1. A simple MLCoDa application

thermostat(S) ← current_usr(U), usr_office(U,R), sensor(R,S).

In MLCoDa there are two manners for dynamically updating a context. The first exploits the API pro-
vided by the system, e.g. a function disconnect for closing the connection with a specific network. The
second one is more explicit: a programmer can use the Datalog primitive constructs tell and retract

that add and remove facts. In our example, a system administrator can change the profile of an employee,
e.g. moving Bob to the vending department, as follows:

retract profile(Bob,admin_staff)
tell profile(Bob,vendor)

2.2. Behavioural adaptation.

The MLCoDa code in Figure 1 implements a simple application which accesses a database and performs
a query to retrieve data about customers. The labels of the expressions tell, retract, and psi are not
part of the code, and will be mechanically added for supporting the static analysis; they will be discussed
later on and are to be ignored for the time being. The behaviour of the application depends on the location
and on the profile of the user: when inside the office, the user can directly connect to and query the
database. Otherwise, the communication exploits a proxy which allows getting the database handle.

A first example of specific MLCoDa construct, namely context-dependent binding, is at line 2 where
the name for the office archive is taken from the context and bound to the variable db_name. The idea is
to implement a simple form of adaptivity of data because the actual value is extracted from the current
context, only known at run time. As a matter of fact, the value of db_name depends on the location of the
user as prescribed by the definition of office_archive. The retrieved value is then used by open_db to
open a connection to the database.

7

location Fail

G1
office

tell F1

omega

open_db query retract F1

omega

G2 others
connect tell F2

omega

get_db crypto_query decrypt retract F2

omega

display

psi

otherwise

Figure 2. A flow chart intuitively describing the function main

The core of the snippet above is the behavioural variation (lines 3 - 18) bound to records that down-
loads the table of customers. Behavioural variations change the program flow in accordance to the cur-
rent context. Syntactically, they are similar to pattern matching, where Datalog goals replace patterns
and variables can additionally occur: a behavioural variation is a list G1.e1, . . . , Gn.en where the ex-
pressions ei are guarded by Datalog goals Gi. In the code above, there are two alternatives, starting at
lines 4 and 9 respectively. The selection between them depends on the location and on the capabilities
of the current employee. To be more precise, behavioural variations are a sort of functional abstractions
and their application triggers a specific dispatching mechanism that inspects the context and selects the
expression ei guarded by the first goal Gi satisfied. If no guards are satisfied, the computation gets stuck,
as the application behaviour is undefined in that specific context: the application cannot adapt to it and a
functional failure occurs.

In our example, the application behaves differently depending on the current location of the vendor,
as intuitively shown in Figure 2. If the vendor is inside the office, he can directly access customers data
connecting to db1; when outside, he has to first connect to the company proxy, then he can access db2

through a secure channel; otherwise the application raises an error because running in an unexpected
context. Note that every resource available to the application, is only accessible through a handle provided
by the context and only manipulated through system functions provided by the API.

If the second case is selected, the IP address of an available proxy is retrieved by the predicate proxy

that binds the corresponding handle to the variable ip. Then the application calls the API function
connect to establish a communication through chan. By exploiting this channel the application gets a
handle to the database (through the API function get_db at line 13) in order to obtain the required data.
Accessing and releasing the relevant database is notified by updating the context through the tell and
retract actions at lines 5, 12 and 8, 18, respectively. Note that the third argument of crypto_query at
line 15 is a lambda expression (in a sugared syntax) that invokes another API function select-from (as
common, we assume that the cryptographic primitives are supplied by the system). Other resources and
APIs occur in the snippet above: the database connection channel c at line 6, the cryptographic key k at
line 10, and open_db at line 6, query at line 7, decrypt at line 16.

The code lines 15 and 16 are within the scope of the application policy psi, discussed in the next
sub-section. It guards the execution of the calls to crypto_query and decrypt: intuitively the policy psi

guarantees the compatibility of the cryptographic key k and of the channel c.

8

2.3. Security policies.

We now discuss how the context protects itself against misuses by applications and symmetrically how
applications constrain the usage of their data and resources. For that, MLCoDa provides two kinds of se-
curity policies: context and application policies. As a matter of fact, policies predicate on the context, so
they are easily expressed in Datalog and enforced by the deductive machinery of MLCoDa. As anticipated,
the enforcement of a context policy ω is done by a reference monitor that checks the validity of ω right
before every context change, i.e. before executing each tell/retract. Checking whether an application
policy ψ is obeyed by a context has to be done continuously by the reference monitor, actually before
and after each reduction step. Below we describe some examples of both kinds of policies.

Since the boundaries between personal and business space and time are blurred, the company adopts
security policies to limit certain functionalities such as access to data from outside the office. In this
scenario, the employees have different access rights: the vendors, among which Jane and Bob, can access
the databases from both inside and outside the office, and the following facts specify which databases
Bob and Jane can access, whereas the predicate allows an administrator to grant permissions:

has_auth(Bob,db1).
has_auth(Jane,db1).
has_auth(Jane,db2).
has_auth(X,D) ← delegate(Z,X,D), is_admin(Z).

A context policy that controls how vendors access the database db2 from outside the office follows

omega ← current_usr(U), profile(U,vendor), has_auth(U,db2),
location(others), accessing(db2).

Pictorially, the dotted circles in Figure 2 (blue in the pdf) represent that every modification of the context
requires checking the policy omega.

As an example, if Jane is outside the office, no violation occurs. Instead, if Bob attempts to access
the database from outside and has no delegation from the administrator, the policy omega is infringed at
line 12. Of course policies can take into account any other kind of contextual information. One may e.g.
constrain less the accesses of a vendor if he is using a corporate tablet whose running operating system
is trusted. Also, a policy can prohibit vendors from accessing any databases during the week-ends.

As intuitively introduced above, the application policy psi regulates the usage of cryptographic keys
and communication channels. We assume that the application has its own private key k, stored in the ap-
plication context. The communication infrastructure offers channels supporting different cryptographic
protocols. The application is designed in such a way that the key used is compatible with the proto-
col sec_protocol associated with the channel c returned by the call get_db(chan). Context informa-
tion is therefore used for choosing the suitable cryptographic protocol for the communication [40]. For
simplicity, here compatibility means that the protocol can use keys of a certain length, following the
context-agile encryption technique of [59]. Formally

psi ← length_key(k,X), protocol_supports(sec_protocol,X).

Note that an application policy cannot be rendered by a behavioural variation, because its guards are
only checked when it is applied. Instead, the goal corresponding to the check of an application policy

9

is queried by the reference monitor at each execution step. Assume in our simple example above that
the protocol used to communicate and the channel c are compatible, but that the API crypto_query

selects another protocol which is not compatible. Consequently, psi holds when entering the policy
framing and a behavioural variation replacing line 14 will succeed at that execution point. However,
a security violation occurs thereafter, because the case of the behavioural variation has been already
selected. Instead our mechanism for application policy detects the violation: psi is indeed enforced step-
wise along the execution of the API functions crypto_query (and decrypt) as intuitively shown by the
dotted rectangle in Figure 2 (purple in the pdf).

2.4. Failures, Static Analysis and Instrumentation.

An application fails to adapt to a context (functional failure), when it has not been designed for the
actual hosting context, e.g. because a missing facility was assumed to be present. In our example, this
happens when a vendor attempts to access the database from home. A functional failure is reflected by
a failure of the dispatching mechanism that causes the computation to get stuck. As a matter of fact,
adaptive applications are prone to a new class of run time errors that are hard to catch, since the running
contexts are unpredictable.

Another kind of failure happens when an application does not manipulate resources as expected (non-
functional failure) and causes a violation of a policy. As said above, in our example Bob infringes the
context policy omega when attempting to access the database db2 if not delegated to. Another example
is the violation of the application psi occurring when the key k is too short for the protocol associated
with the channel c in lines 14-17.

To avoid functional failures and to optimise policy enforcement, we extend the two-phase static anal-
ysis of MLCoDa [22,23]. This analysis consists of (i) a type and effect system, and (ii) a control-flow
analysis. It checks whether an application will be able to adapt to its execution contexts, and detects
which contexts possibly violate the required policies.

In more detail, at compile time, we associate a type and an effect with an expression e. The type is
(almost) standard, and the effect is an over-approximation of the actual run time behaviour of e, called
history expression. The effect abstractly represents the changes and the queries performed on the context
during its evaluation. The second phase occurs at load time and exploits the history expression to build a
graph describing how the context may evolve during the execution.

For example, the history expression associated by the type system with the behavioural variation
records is the following:

Hrecords = ask G1. tell F
l1
1 ·Hopen_db ·Hquery · retract F l21 ⊗

ask G2. Hconnect · tell F l32 ·Hget_db · ψl4 [Hcrypto_query ·Hdecrypt] · retract F l52 ⊗

fail

In Hrecords the symbol · abstracts sequential composition; ψ represents the application policy psi;
ask G1. · · ·⊗ask G2. · · ·⊗fail is the abstract counterpart of the behavioural variation records, where⊗
sequentially composes the pair of effects associated with a guard and its expression; goalsG1 andG2 rep-
resent the goals at lines 4 and 9, respectively; facts F1 and F2 are accessing(db1) and accessing(db2).

History expressions are labelled (for the sake of readability, we just show the relevant ones in
Hrecords). These labels enable us to link the abstract actions in histories to the corresponding actions of

10

the code, that we assume labelled by the compiler. For instance, the tell F l11 in Hrecords corresponds to
the tell at line 5 in records, which is labelled by 1; the ψl4 is similarly linked to the policy framing with
label 4. All the correspondences are {l1 7→ 1, l2 7→ 2, l3 7→ 3, l4 7→ 4, l5 7→ 5} (the abstract labels that
do not annotate tell/retract actions or policies have no counterpart; also, the correspondence needs
not to be injective as it happens in this example).

At load time, the virtual machine of MLCoDa performs two steps: linking and verification. The first step
resolves the system names, and constructs the initial context C, by combining the one of the application
with the system context that includes information on the current state, e.g. available resources and their
usage constraints. The linking step also checks the logical consistency of the context C. The verification
first checks whether no functional failure occurs, i.e. whether the application adapts to all evolutions ofC
that may occur at run time. If this is the case, the application will not be run. Then, the analysis looks for
the points in the code where non-functional failures can occur, i.e. when the application may act against
the policies established by the system that loads the program, and vice versa. This information is used to
drive the activation of a run time monitor by need.

To perform our analysis conveniently and efficiently, we build a graph G describing the possible evo-
lutions of the initial context C, through a control flow analysis of the history expression H . The nodes of
G over-approximate the contexts arising at run time and its edges carry (the labels of) the actions which
change the context. A distinguished aspect of our analysis is that it depends on the initial context C, right
because our application may behave correctly in one context and fail in another, so this analysis can only
be done at load time.

Back to our example, we consider three cases depending on different initial contexts, depicted in Fig-
ure 3, where for the sake of brevity we collapsed parts of the graph as a single edge labelled by the
relevant history expression. The first initial context Chome records that the vendor is at home (predicate
wifi_connected(myplace) holds). Since no case of the behavioural variation records can be selected
because the application is not designed to work in that context. No guards are satisfied, and the dispatch-
ing mechanism fails. A pictorial representation of this functional failure is in Figure 3: the failure node
> (red in the pdf) is reachable from the initial one. Suppose now that in the context CBob the predi-
cate current_usr(Bob) holds. The tell Fl32 is risky because it may violate the context policy omega

(actually it does), therefore the corresponding action, labelled by 3 in the code, must be blocked. For
achieving this, it suffices switching on the run time monitor, right before executing this operation. An-
other potential non functional failure arises when the cryptographic key and the protocol are not com-
patible (the application policy psi is violated). This is shown in Figure 3 assuming as done above that
the crypto_query may cause the violation. Again the correspondence between the label l4 in the history
expression and the label 4 in the code indicates that the run time monitor has to be switched on when
entering the scope of the policy psi and switched off when leaving it. Of course, if in context C1 one
proves that the cryptographic key and the protocol agree, there is no potential non functional failure and
the application runs without any monitoring.

2.5. Other examples of security policies.

We conclude the intuitive presentation of our proposal with a few examples showing how Datalog
expresses other policies and how we manage them. In particular, we consider below delegation, dynamic
activation and deactivation of policies, and a way of controlling which data in a context a user is allowed
to access.

Imagine that the company allows a vendor to delegate another vendor to access the data of a particular
customer without resorting to the system administrator as done above. Such a delegation is represented

11

Chome >

a functional failure

CBob C′Bob

tell F2

a violation of omega

C1 C1 ∪ {F2} C3 C5

tell F2 Hget_db Hcrypto_query

a violation of psi

Figure 3. Three evolution graphs showing a functional failure (assuming that wifi_connected(myplace) holds inChome)
and two policy violations. The context policy omega is not obeyed because the user in CBob is Bob; the application policy psi
is violated because the key is not compatible with the protocol. The dotted edges will be cut off by the run time monitor.

in the context as the fact grant_permission(user1, user2) meaning that the employee user2 can
operate in place of the employee user1. So a tell of this fact suffices to activate the delegation. Of
course, the delegation is better constrained by the following policy that forbids a member of the staff to
delegate a vendor and vice versa:

omega1 ← grant_permission(U1, U2), profile(U1, vendor), profile(U2, vendor).

In order to dynamically activate or deactivate context policies, we require that their definition includes
a fact, that acts as an activation flag. If this fact holds in the current context, then the corresponding
policy is active, otherwise it is not. So the context manager can activate/deactivate a policy by simply
changing the value of the corresponding flag. For example, take the policy omega above regulating the
accesses to the database db2 from the outside. Its dynamic version is the following where policy_flag

is the activation flag:

omega2 ← policy_flag, current_usr(U), profile(U,vendor), has_auth(U,db2)
location(others), accessing(db2).

We can also express policies that control which parts of the context an application is allowed to modify,
by suitably guarding the facts to be protected by a context policy. For example, the following one bans
the users blacklisted from retracting a specific fact F . The first case of omega3 requires that the fact
F always holds in a context where the current user is blacklisted. Any attempt to remove F leads to a
violation of the policy, while this is not the case if the user is allowed to retract F .

omega3 ← current_usr(U), blacklist(U), F(X).
omega3 ← current_usr(U), ¬ blacklist(U).

Suppose that the cryptographic algorithm used by crypto_query and decrypt are energy consuming.
The following policy protects our application to run short of battery, when it wraps lines 15 and 16:

psi1 ← battery_level(X), X > threshold.

12

3. MLCoDa

Below, we survey the syntax and the semantics of MLCoDa, along with some small examples to illus-
trate its peculiar constructs; for more details see [23].

Syntax MLCoDa consists of two components: Datalog with negation to describe the context, and a core
ML extended with COP features. The Datalog part is standard: a program is a set of facts and clauses.

Let V ar (ranged over by x, y, ...), Const (ranged over by c, n, ...) and Predicate (ranged over by
P, ...) be a set of variables, of basic constants and of predicate symbols, respectively. The syntax is

x ∈ V ar c ∈ Const P ∈ Predicate ω, ψ ∈ Policies

u ::= x | c u ∈ Term
A ::= P (u1, . . . , un) A ∈ Atom
L ::= A | ¬A L ∈ Literal
cla ::= A← B. cla ∈ Clause
B ::= ε | L,B B ∈ ClauseBody
F ::= A← ε F ∈ Fact
G ::= ← L1, . . . , Ln. G ∈ Goals

As usual in Datalog, a term is a variable x or a constant c; an atom A is a predicate symbol P applied
to a list of terms; a literal is a positive or a negative atom; a clause is composed by a head, i.e. an atom,
and a body, i.e. a possibly empty sequence of literals; a fact is a clause with an empty body and a goal
is a clause with empty head. We let goals be ranged over by G, with the intuition that it occurs in a
behavioural variation. Context and application policies are ranged over by ω and ψ, respectively. As
expected, a policy is obeyed if and only if the corresponding goal holds. For simplicity, we assume that
there is a unique context policy Ω (referred in the code as Omega), resulting from the conjunction of all
the relevant policies.

In the following, we assume that each Datalog program is safe and stratified [18] (our world is closed,
so we can deal with negation). As anticipated in the introduction, our version of Datalog can express all
relational algebras, is fully decidable, and guarantees polynomial response time [27]. Also, many logical
languages for defining access control policies follow this stratified-negation-model, e.g. [12,41,26].

The functional part inherits most of the ML constructs. In addition to the usual ones, our values include
Datalog facts F and behavioural variations. Moreover, we introduce the set x̃ ∈ DynV ar of parameters,
i.e. variables that assume values depending on the properties of the running context, while x, f ∈ V ar
are identifiers for standard variables and functions, with the proviso that V ar∩DynV ar = ∅. The syntax
of MLCoDa is below.

Va ::=G.e | G.e,Va Variations
v ::= Values

c | λfx.e | ML-like Values
(x){Va} | Behavioural Variations
F Facts

13

e ::= Expressions
v | x | e1 e2 | letx = e1 in e2 | if e1 then e2 else e3 | ML-like Expressions
x̃ | Parameters
dlet x̃ = e1 whenG in e2 | Context-dependent Binding
tell(e1)l | retract(e1)l | Context update
e1 ∪ e2 | Append Operator
#(e1, e2) | Variation Application
ψl[e] Policy Framing

To facilitate our static analysis (see Section 5) we associate each tell/retract and each policy ψ with
a different label l ∈ LabC ; labels do not affect the dynamic semantics, which is defined below.

Standard expressions are evaluated in the usual way. Very briefly, a variable x evaluates to the value it
is bound. Both expressions in an application are to be evaluated to values v1 and v2, and if v1 = λfx.e,
the evaluation goes on by substituting v1 for all the (free) occurrences of f in e and v2 for those of x.
The evaluation of a let is that of e2 where all the (free) occurrences of x have been replaced by the value
of e1. Conditionals evaluate as expected.

The COP-oriented constructs of MLCoDa include behavioural variations (x){Va}, each consisting of
a variation Va , i.e. a list G1.e1, . . . , Gn.en of expressions ei guarded by Datalog goals Gi (x free in
ei). At run time, the first goal Gi satisfied by the context selects the expression ei to run (dispatching).
For instance, in Section 2, we declared the behavioural variation records, that returns information on
customers, by accessing to different databases depending on the vendor’s location.

Context-dependent binding is the mechanism to declare variables whose values depend on the con-
text. The dlet construct implements the context-dependent binding of a parameter x̃ to a variation Va .
Note that context-dependent binding is designed for expressing adaptability of data, while behavioural
variations express adaptability of control flow.

The tell and retract constructs assert and retract facts in the context, provided that no violation of
security occurs.

The append operator e1 ∪ e2 concatenates behavioural variations, so allowing dynamic composition.
A behavioural variation #(e1, e2) applies e1 to its argument e2. To do so, the dispatching mechanism

is triggered to query the context and to select from e1 the expression to run, if any.

Furthermore, we use the construct ψl[e], called policy framing, to guarantee that the context obeys the
policy expressed by ψ while running e. With this construct programmers can protect their application
from a possible misuse of the running context C. We require ψ to be true in C until e completes its
execution, and then the scope of the policy framing is left and the policy de-activated. Also, policy
framings can be nested, with the intuition that an expression enclosed in many of them is executed only
if the running context obeys them all. The (context) policies ω are instead imposed by the context, to
protect its sensible data and devices from a misuse of an application, during its entire evaluation. We
will formalise later on how both kinds of policies will be enforced. We presented some examples in the
previous section: omega is the (part of) context policy that only allows vendors with explicit authorisation
to access the database db2; omega3 controls which parts of the context an application is allowed to
modify.

Semantics The Datalog component has the standard top-down semantics [18]. Given a context C ∈
Context and a goal G, we let C � Gwith θ mean that the goal G, under a ground substitution θ, is
satisfied in the context C.

14

(IF1)

ρ ` C, e1 → C ′, e′1
ρ ` C, if e1 then e2 else e3 → C ′, if e′1 then e2 else e3

(IF2)

ρ ` C, if true then e2 else e3 → C, e2

(IF3)

ρ ` C, if false then e2 else e3 → C, e3

(LET1)

ρ ` C, e1 → C ′, e′1
ρ ` C, letx = e1 in e2 → C ′, letx = e′1 in e2

(LET2)

ρ ` C, letx = v in e2 → C, e2{v/x}

(APP1)

ρ ` C, e1 → C ′, e′1
ρ ` C, e1 e2 → C ′, e′1 e2

(APP2)

ρ ` C, e2 → C ′, e′2
ρ ` C, (λfx.e) e2 → C ′, (λfx.e) e

′
2

(APP3)

ρ ` C, (λfx.e) v → C, e{v/x, (λfx.e)/f}

Figure 4. The reduction rules for the ML-like constructs of MLCoDa.

The SOS semantics of MLCoDa is defined for expressions with no free variables, but possibly with free
parameters, thus allowing for openness. To this aim, we have an environment ρ, i.e. a function mapping
parameters to variations DynV ar → Va . A transition ρ ` C, e→ C ′, e′ represents a single evaluation
step. It says that under the environment ρ the expression e is evaluated in the context C and reduces to e′

changing C to C ′. The initial configuration is ρ0 ` C, ep, where ρ0 contains the bindings for all system
parameters, and C results from joining the predicates and facts of the system and of the application ep.

Figures 4 and 5 show the inductive definitions of the reduction rules for MLCoDa: we briefly comment
below on those for our new constructs.

The rules (DLET1) and (DLET2) for the construct dlet, and the rule (PAR) for parameters implement
our context-dependent binding. For brevity, we assume here that e1 contains no parameters. The rule
(DLET1) extends the environment ρ by appending G.e1 in front of the existent binding for x̃. Then, e2 is
evaluated under the updated environment. Note that the dlet does not evaluate e1, but only records it in
the environment in a sort of call-by-name style. The rule (DLET2) is standard: the whole dlet reduces to
the value to which e2 reduces.

The (PAR) rule looks for the variation Va bound to x̃ in ρ. Then, the dispatching mechanism selects
the expression to which x̃ reduces. The dispatching mechanism is implemented by the partial function
dsp, defined as follows

dsp(C, (G.e,Va)) =

{
(e, θ) if C � Gwith θ

dsp(C, Va) otherwise

It inspects a variation from left to right looking for the first goal G satisfied by C, under a substitution θ.
If this search succeeds, the dispatching mechanism returns the corresponding expression e and θ. Then,

15

(DLET1)

ρ[(G.e1, ρ(x̃)) /x̃] ` C, e2 → C ′, e′2
ρ ` C, dlet x̃ = e1 whenG in e2 → C ′, dlet x̃ = e1 whenG in e′2

(DLET2)

ρ ` C, dlet x̃ = e1 whenG in v → C, v

(PAR)

ρ(x̃) = Va dsp(C, Va) = (e, θ)

ρ ` C, x̃→ C, e θ

(VAAPP1)

ρ ` C, e1 → C ′, e′1
ρ ` C, #(e1, e2)→ C ′,#(e′1, e2)

(VAAPP2)

ρ ` C, e2 → C ′, e′2
ρ ` C, #((x){Va}, e2)→ C ′,#((x){Va}, e′2)

(VAAPP3)

dsp(C, Va) = (e, {−→c /−→y })
ρ ` C, #((x){Va}, v)→ C, e{v/x, −→c /−→y }

(TELL1)

ρ ` C, e→ C ′, e′

ρ ` C, tell(e)l → C ′, tell(e′)l

(TELL2)

dsp(C ∪ {F}, Ω.()) = ((), ∅)
ρ ` C, tell(F)l → C ∪ {F}, ()

(RETRACT1)

ρ ` C, e→ C ′, e′

ρ ` C, retract(e)l → C ′, retract(e′)l

(RETRACT2)

dsp(C r {F}, Ω.()) = ((), ∅)
ρ ` C, retract(F)l → C\{F}, ()

(APPEND1)

ρ ` C, e1 → C ′, e′1
ρ ` C, e1 ∪ e2 → C ′, e′1 ∪ e2

(APPEND2)

ρ ` C, e2 → C ′, e′2
ρ ` C, v ∪ e2 → C ′, v ∪ e′2

(APPEND3)

z fresh
ρ ` C, (x){Va1} ∪ (y){Va2} → C, (z){Va1{z/x}, Va2{z/y}}

(FRAME1)

C � ψ ρ ` C, e→ C ′, e′ C ′ � ψ

ρ ` C, ψl[e]→ C ′, ψl[e′]

(FRAME2)

ρ ` C, ψl[v]→ C, v

Figure 5. The reduction rules for the constructs of MLCoDa concerning adaptation and policies.

x̃ reduces to e θ, i.e. to e, whose variables are bound by θ. Instead, if the dispatching fails because no
goal holds, the computation gets stuck, because the program cannot adapt to the current context.

As an example of context-dependent binding, consider the simple conditional expression if x̃ =
F2 then 42 else 51, in an environment ρ that binds the parameter x̃ to e′ = G1.F5, G2. F2 and in a
context C that satisfies the goal G2, but not G1:

ρ ` C, if x̃ = F2 then 42 else 51→ C, ifF2 = F2 then 42 else 51→ C, 42

16

where we first retrieve the binding for x̃ (recall it is e′), with dsp(C, e′) = (F2, θ), for a suitable substitu-
tion θ. Since facts are values, we can bind them to parameters and test their equivalence by a conditional
expression.

The application of the behavioural variation #(e1, e2) evaluates the subexpressions until e1 reduces to
(x){Va} and e2 to a value v. Then, the rule (VAAPP3) invokes the dispatching mechanism to select the
relevant expression e from which the computation proceeds after v is substituted for x. Also in this case
the computation gets stuck, if the dispatching mechanism fails. As an a example, consider the behavioural
variation (x){G1.c1, G2.x} and apply it to the constant c2 in a context C that satisfies the goal G2, but
not the goal G1. Since dsp(C, (x){G1.c1, G2.x}) = (x, θ) for some substitution θ, we get:

ρ ` C, #((x){G1.c1, G2.x}, c2) → C, c2

The rules (TELL1, TELL2) update the context by asserting a fact, that is a value of MLCoDa; similarly
(RETRACT1, RETRACT2) retract a fact (note that labels are immaterial here, and will only be used in the
static analysis). The new context C ′, obtained from C by adding/removing F , is checked against the
security policy Ω (recall that we assume to join all the context policies in the single one Ω). In this
way we prevent the application from damaging the context, as exemplified below. We can easily reuse
our dispatching machinery above: we implement the check as a call to the function dsp where the first
argument is C ′ and the second one is Ω.(), the trivial variation with goal Ω. If this call produces a result,
then the evaluation yields the unit value and the new context C ′.

The following example shows the reduction of a retract in a context C = {F3, F4, F5}, under a
context policy Ω requiring that the fact F4 always holds. Let f = λx. if e1 thenF5 elseF4 and evaluate
retract f() `. If e1 evaluates to false (without changing the context), the context eventually produced
violates the policy in hand, dsp(C r {F4}, Ω.()) fails, and therefore the evaluation gets stuck:

ρ ` C, retract f ()` →∗ C, retract F4
` 9

where 9 means that no transition goes out from C, retract F `4 . If, instead, e1 reduces to true, there is
no policy violation and the evaluation reduces to unit:

ρ ` C, retract f ()` →∗ C, retractF `5 → {F3, F4}, ()

The rules for e1 ∪ e2 sequentially evaluate e1 and e2 until they reduce to behavioural variations (rules
(APPEND1, 2)). Then, they are concatenated together by renaming bound variables to avoid name captures
(rule (APPEND3)). The policy ψ of the application e is also enforced along its evaluation when asserting
or retracting a fact by rule (FRAME1). Before performing one of these actions, the ψ has to be shown true
in the context C, and the changes made on the context must preserve ψ true, i.e. C ′ � ψ. This check is
implemented at run time through a call to the dispatching mechanism, as suggested in the comment to
the rules for tell/retract. The rule (FRAME2) simply discards the framing, so it de-activates the policy
ψ as soon as a value is produced.

Back to the example of Section 2, assume that Jane wants to access the database from outside the
office, then we have the following computation (→+ indicates a non empty computation):

ρ ` C, #(records, customers)→+ C ′, psi4[e]→+ C ′′, psi4[decrypt(k,data)]

17

where e is the code at lines 15 and 16. From the first to the second configuration the dispatching mech-
anism queries the context C and selects the second case of records. From the third to the fourth con-
figuration the connection to the database is established and the data are retrieved. The framing construct
checks the policy psi at each step of this computation.

Note that imposing a context policy ω to an application e could be intuitively implemented by wrap-
ping its whole code within the framing ω[e], at load time. However, monitoring context and application
policies is done differently, and separation of concerns and efficiency reasons strongly suggest us keeping
them apart.

4. Type and Effect System

We now associate an MLCoDa expression with a type, an abstraction called history expression, and a
function called the labelling environment. During the verification phase, the virtual machine uses the his-
tory expression to ensure that the dispatching mechanism will always succeed at run time. The labelling
environment helps in selecting which portions of the code may lead to violations of the security policies,
and in instrumenting the code with suitable calls to a run time monitor. First, we briefly present History
Expressions and labelling environments, and then the rules of our type and effect system.

4.1. History Expressions

A history expression is a term of a simple process algebra that soundly abstracts program be-
haviour [63,10]. Here, they over-approximate the sequence of actions that an application may perform
over the context at run time, i.e. asserting/retracting facts and asking if a goal holds. History expres-
sions also record the application policies that are to be enforced. We assume that a history expression
is uniquely labelled on a given set of LabH . Labels will be used to link static actions in histories to the
corresponding dynamic actions inside the code; we feel free to omit them when immaterial. The syntax
of History Expressions is as follows:

H 3 H ::= � | εl | hl | (µh.H)l | tell F l | retract F l | (H1 +H2)l | (H1 ·H2)l | ψl[H] | ∆

∆ ::=(ask G.H ⊗ ∆)l | fail l

The empty history expression abstracts programs that do not interact with the context. For technical
reasons, we syntactically distinguish when the empty history expression comes from the syntax (εl), and
when it is instead obtained by reduction in the semantics (� that is unlabelled). With µh.H we represent
possibly recursive functions, where h is the recursion variable; the “atomic” history expressions tell F
and retract F are for the analogous constructs of MLCoDa; the non-deterministic sum H1 +H2 abstracts
if-then-else; the concatenation H1 · H2 is for sequences of actions that arise, e.g. while evaluating
applications; the history expression ψl[H] is the abstract version of the security framing; ∆ mimics our
dispatching mechanism, where ∆ is an abstract variation, defined as a list of history expressions, each
element Hi of which is guarded by an ask Gi. For instance, the history expression Hrecords intuitively
introduced in Section 2 abstracts the behavioural variation records in Figure 1.

Given a context C, the behaviour of a history expression H is formalised by the transition system
inductively defined in Figure 6. A transition C,H → C ′, H ′ means that H reduces to H ′ in the context
C and yields the context C ′. Most rules are similar to the ones of [10]: below we only comment on

18

C, εl → C, � C, tell F l → C ∪ {F}, � C, retract F l → C\{F}, �

C,H1 → C ′, H ′1

C, (H1 +H2)l → C ′, H ′1

C,H2 → C ′, H ′2

C, (H1 +H2)l → C ′, H ′2

C, (� ·H)l → C, H

C, H1 → C ′, H ′1

C, (H1 ·H2)l → C ′, (H ′1 ·H2)l C, (µh.H)l → C,H[(µh.H)l/h]

C � G

C, (ask G.H ⊗∆)l → C, H

C 2 G
C, (ask G.H ⊗∆)l → C, ∆

C � ψ C, H → C ′, H ′ C ′ � ψ

C, ψl[H]→ C ′, ψl[H ′] C, ψl[�]→ C, �

Figure 6. Semantics of History Expressions

those dealing with the context and with the policy framings. The rules for ∆ scan the abstract variation
and look for the first goal G satisfied in the current context; if this search succeeds, the whole history
expression reduces to the history expression H guarded by G; otherwise the search continues on the rest
of ∆. If no goal is satisfiable, the stuck configuration C, fail is reached, meaning that the dispatching
mechanism fails.

An action tell F reduces to � and yields a context C ′, where the fact F has just been added; similarly
for the action retract F . Differently from what we do in the semantic rules, here we do not consider the
possibility of a violation of a context policy ω: a history expression approximates how the application
would behave in the absence of any kind of check imposed by the context.

The rules for policy framings are much alike those of the dynamic semantics: a non-empty history
expression H can transform into H ′, provided that in both the starting context C and in the next one C ′

the policy ψ holds; when � is reached, the policy framing is left.

Labelling Environment We assume as given the function µ : LabH → H that recovers a construct in
a given history expression H ∈ H from a label l ∈ LabH . Using µ, we can link the occurrences of
tell, retract and ψ in a history expression to the corresponding operations in an expression e (labelled on
LabC , see Section 3), while type-checking e. This correspondence is recorded in the auxiliary labelling
environment introduced below. It will later on help in instrumenting the code.

Definition 4.1 (Labelling environment). A labelling environment is a (partial) function
Λ : LabH → LabC , defined only if µ(l) ∈ {tell(F), retract(F), ψ}.

We shall write ⊥ for the function undefined everywhere.

As anticipated in Section 2, the labelling environment {l1 7→ 1, l2 7→ 2, l3 7→ 3, l4 7→ 4, l5 7→ 5} puts
in correspondence the labels of the history expressionHrecords with those in the code snippet in Figure 1.
Note that labelling environments need not to be injective.

19

4.2. Typing rules

We assume that each Datalog predicate has a fixed arity and a type (see e.g. [51]). From here onwards,
we also assume that there exists a Datalog typing function γ that, given a goal G, returns a list of pairs
(x, type-of-x), for all variables x ∈ G.

The rules of our type and effect system have:

– the usual environment Γ ::= ∅ | Γ, x : τ , binding the variables of an expression; ∅ denotes the empty
environment, and Γ, x : τ denotes an environment having a binding for the variable x (x not in the
domain of Γ). A standard assumption is to have an initial environment containing the signatures of
the APIs.

– a further environment K ::= ∅ | K, (x̃, τ,∆,Λ), that maps a parameter x̃ to a triple consisting of a
(i) type, (ii) an abstract variation ∆, used to solve the binding for x̃ at run time, and (iii) a labelling
environment Λ that links the tell, retract and ψ occurring in ∆ to the corresponding operations in
an expression e; K, (x̃, τ,∆,Λ) denotes an environment with a binding for the parameter x̃ (x̃ not
in the domain of K).

Our typing judgements have the form

Γ; K ` e : τ . H; Λ

and express that in the environments Γ andK the expression e has type τ , effect H and yields a labelling
environment Λ.

Our types are either basic τc ∈ {int, bool, unit, . . .} for constants and variables, or functional types
for functions and behavioural variations, or types for facts:

τ ::=τc | τ1
K|H; Λ−−−−→ τ2 | τ1

K|∆; Λ
====⇒ τ2 | factφ φ ∈ ℘(Fact)

Some types are annotated for analysis reasons. In factφ, the set φ contains the facts that an expression
can be reduced to at run time (see the semantics rules (TELL2) and (RETRACT2)).

In the type τ1
K|H; Λ−−−−→ τ2 associated with a function f , the environment K stores the types and the

abstract variations of the parameters occurring inside the body of f , and represents a precondition needed
to apply it. The history expression H is the latent effect of f , i.e. the sequence of actions that may be
performed over the context during the function evaluation. The labelling environment Λ links (some of)
the labels of H to those occurring in the body of f .

Similarly, the behavioural variation bv = (x){Va} has type τ1
K|∆; Λ

====⇒ τ2, where K is a precondi-
tion for applying bv; ∆ is an abstract variation, that represents the information used at run time by the
dispatching mechanism to apply bv; and Λ is as above.

We now introduce four partial orderings vH ,v∆,vK ,vΛ on H , ∆, K and Λ, respectively, and we
often omit the indexes when no ambiguity may arise. Below the symbol] stands for disjoint union, the
type ordering ≤ is defined in Figure 7, and we assume that fail ⊗∆ = ∆, so ∆′ ⊗∆ will have a single
trailing fail .

H1 vH H2 ⇐⇒ ∃H3 such that H2 = H1 +H3

20

(STCONST)

τc ≤ τc

(SFACT)

φ ⊆ φ′

factφ ≤ factφ′

(SFUN)

τ ′1 ≤ τ1 τ2 ≤ τ ′2 K vK K ′ H vH H ′

τ1
K|H−−−→ τ2 ≤ τ ′1

K′|H′−−−−→ τ ′2

(SVA)

τ ′1 ≤ τ1 τ2 ≤ τ ′2 K vK K ′ ∆ v∆ ∆′

τ1
K|∆

===⇒ τ2 ≤ τ ′1
K′|∆′

====⇒ τ ′2

Figure 7. The subtyping relation

(TCONST)

Γ; K ` c : τc . ε; ⊥

(TVAR)

Γ(x) = τ

Γ; K ` x : τ . ε; ⊥

(TIF)

Γ; K ` e1 : bool . H1; Λ1 Γ; K ` e2 : τ . H2; Λ2 Γ; K ` e3 : τ . H3; Λ3

Γ; K ` if e1 then e2 else e3 : τ . H1 · (H2 +H3); Λ1] Λ2] Λ3

(TABS)

Γ, x : τ1, f : τ1
K′|H; Λ−−−−−→ τ2;K ′ ` e : τ2 . H; Λ

Γ; K ` λfx.e : τ1
K′|H; Λ−−−−−→ τ2 . ε; ⊥

(TLET)

Γ; K ` e1 : τ1 . H1; Λ1

Γ, x : τ1; K ` e2 : τ2 . H2; Λ2

Γ; K ` letx = e1 in e2 : τ2 . H1 ·H2; Λ1] Λ2

(TAPP)

Γ; K ` e1 : τ1
K′|H3; Λ3−−−−−−→ τ2 . H1; Λ1

Γ; K ` e2 : τ1 . H2; Λ2 K ′ v K
Γ; K ` e1 e2 : τ2 . H1 ·H2 ·H3; Λ1] Λ2] Λ3

Figure 8. Typing rules for ML-like constructs of MLCoDa.

∆1 v∆ ∆2 ⇐⇒ ∃∆3 such that ∆2 = ∆1 ⊗∆3

K1 vK K2 ⇐⇒ ((x̃, τ1, ∆1, Λ1) ∈ K1 =⇒

(x̃, τ2, ∆2, Λ2) ∈ K2 and τ1 ≤ τ2 and ∆1 v∆ ∆2 and Λ1 vΛ Λ2)

Λ1 vΛ Λ2 ⇐⇒ ∃Λ3 such that dom(Λ3) ∩ dom(Λ1) = ∅ and Λ2 = Λ1] Λ3

The rules of our type and effect system inherited from ML are displayed in Figure 8, while the others
are introduced in Figures 9 and 10.

ML-inherited rules We briefly comment on the most relevant rules in Figure 8. In the rules (TCONST),
(TVAR) and (TABS) the labelling environment is empty. The rule (TIF) is standard, apart from the resulting
labelling environment that is the (disjoint) union of those of the components ei. Same for (TLET) and for

21

(TFACT)

Γ; K ` F : fact{F} . ε; ⊥

(TTELL)

Γ; K ` e : factφ . H; Λ

Γ; K ` tell(e)l : unit .

H ·
∑
Fi∈φ

tell F lii

l′

; Λ
⊎
Fi∈φ

[li 7→ l]

(TRETRACT)

Γ; K ` e : factφ . H; Λ

Γ; K ` retract(e)l : unit .

H ·
∑
Fi∈φ

retract F lii

l′

; Λ
⊎
Fi∈φ

[li 7→ l]

(TVARIATION)

∀i ∈ {1, . . . , n} γ(Gi) = −→yi : −→τi
Γ, x : τ1,

−→yi : −→τi ;K ′ ` ei : τ2 . Hi; Λi ∆ = ask G1.H1 ⊗ · · · ⊗ ask Gn.Hn ⊗ fail

Γ; K ` (x){G1.e1, . . . , Gn.en} : τ1

K′|∆;
⊎

i∈{1,...,n} Λi

=============⇒ τ2 . ε; ⊥

Figure 9. Typing rules for context updates

(TAPP) where the labelling environment of the latent effect is also considered. Note that in the conclusion
of (TAPP), the precondition of the latent effect of e must be included in the environment K to guarantee
that all parameters will be duly bounded. The rule (TABS) is standard, except for the way the environments
K and Λ are handled. As usual, the actual effect guessed in the premise becomes latent in the conclusion
of the rule, while the effect and the labelling environment become empty; note that in the premise the
guessed parameter environment is the one used for typing e, while the guessed effect H and the guessed
labelling environment Λ are those of e.

Context rules The rules for the constructs that handle the context are in Figure 9. A few comments
follow. The rule (TFACT) gives a fact F type fact annotated with {F} and the empty effect. The rule
(TTELL) asserts that the expression tell(e) has type unit, provided that the type of e is factφ. The overall
effect is obtained by combining the effect of e with the non deterministic summation of tellF , where
F is any of the facts in the type of e. The current labelling environment is extended with links from the
elements of φ to the label of tell(e). Similarly for (TRETRACT). In rule (TVARIATION) we determine
the type for each subexpression ei under K ′, and the environment Γ, extended by the type of x and
of the variables −→yi occurring in the goal Gi (recall that the Datalog typing function γ returns a list of
pairs (z, type-of-z) for all variables z of Gi). Note that all subexpressions ei have the same type τ2,
but of course they have different effects and labelling environments. We also require that the abstract
variation ∆ results from concatenating ask Gi with the effect computed for ei. The arrow in the type
of the behavioural variation is annotated by K ′,∆ and by the union of all the labelling environments
Λi. Consider e.g. the behavioural variation bv1 = (x){G1.e1, G2.e2}. Assume that the two cases of this
behavioural variation have type τ and effects H1 and H2, respectively, under the environment Γ, x : int

22

(goals have no variables) and the guessed environment K ′. Hence, the type of bv1 will be int
K′|∆

===⇒ τ
with ∆ = ask G1.H1 ⊗ ask G2.H2 ⊗ fail , while the effect will be empty.

Rules for adaptation and security In Figure 10 we list the rules dealing with adaptation and security.
The rule (TSUB) allows us to freely enlarge types and effects by applying the subtyping and subeffecting
rules (and the orderings on them). Also the labelling environment can be enlarged, and it is required to be
defined on all the labels of the (larger) history expressionH . The rule (TDVAR) associates x̃with the triple
stored in the environmentK. The rule (TDLET) requires that e1 has type τ1 in the environment Γ extended
with the types for the variables −→y of the goal G. Also, e2 has to type-check in an environment K,
extended with the information for parameter x̃. The type and the effect for the overall dlet expression are
the same as e2, while the labelling environment is the union of those of e1, e2 and of the one coming from
x̃. The rule (TAPPEND) asserts that two expressions e1,e2 with the same type τ , except for the abstract
variations ∆1,∆2 in their annotations, and effectsH1 andH2, are combined into e1∪e2 with type τ , and
concatenated annotations and effects. The rule (TVAPP) type-checks behavioural variation applications
and reveals the role of preconditions. As expected, e1 is a behavioural variation with parameter of type
τ1 and e2 with type τ1. We get a type if the environment K ′, which acts as a precondition, is included
in K according to v. The type of the behavioural variation application is that of the result of e1, and
the effect is obtained by concatenating the ones of e1 and e2 with the history expression ∆, occurring
in the annotation of the type of e1. The overall labelling environment results from joining those of the
subexpressions and of the latent effect.

(TSUB)

Γ; K ` e : τ ′ . H ′; Λ′

τ ′ ≤ τ H ′ v H Λ′ v Λ

Γ; K ` e : τ . H; Λ
lab(H) ⊆ dom(Λ)

(TDVAR)

K(x̃) = (τ, ∆, Λ)

Γ; K ` x̃ : τ .∆; Λ

(TDLET)

Γ,−→y :
−→̃
τ ; K ` e1 : τ1 . H1; Λ1

Γ; K, (x̃, τ1, ∆′, Λ′) ` e2 : τ . H2; Λ2

Γ; K ` dlet x̃ = e1 whenG in e2 : τ . H2; Λ2

where γ(G) = −→y :
−→̃
τ

(∆′,Λ′) =

{
(G.H1 ⊗∆,Λ] Λ1) if K(x̃) = (τ1, ∆, Λ)
(G.H1 ⊗ fail , Λ1) if x̃ /∈ K

(TAPPEND)

Γ; K ` e1 : τ1
K′|∆1; Λ3

======⇒ τ2 . H1; Λ1

Γ; K ` e2 : τ1
K′|∆2; Λ4

======⇒ τ2 . H2; Λ2

Γ; K ` e1 ∪ e2 : τ1
K′|∆1⊗∆2;Λ3]Λ4

============⇒ τ2 . H1 ·H2; Λ1] Λ2

(TVAPP)

Γ; K ` e1 : τ1
K′|∆; Λ3

======⇒ τ2 . H1; Λ1

Γ; K ` e2 : τ1 . H2; Λ2 K ′ v K
Γ; K ` #(e1, e2) : τ2 . H1 ·H2 ·∆; Λ1] Λ2] Λ3

(TFRAME)

Γ; K ` e : τ . H; Λ

Γ; K ` ψl[e] : τ . ψl
′
[H]; Λ] [l′ 7→ l]

Figure 10. Typing rules for adaptation and security

23

Finally, in the single rule for the security framing (TFRAME), the effect computed for e is wrapped with
the policy ψ, and the labelling environment is the union of that of e with a link from the occurrence of ψ
in the history expression to the corresponding one in the code.

4.3. Soundness

Our type and effect system is sound with respect to the operational semantics of MLCoDa. To prove this
result, we first introduce a notion for typing a dynamic environment ρ in a way consistent with the type
environments Γ and K.

Definition 4.2 (Typing dynamic environment). Given the type environments Γ and K, we say that the
dynamic environment ρ has type K under Γ (in symbols Γ ` ρ : K) if and only if

– dom(ρ) ⊆ dom(K); and
– ∀x̃ ∈ dom(ρ) . ρ(x̃) = G1.e1, . . . , Gn.en, K(x̃) = (τ, ∆, Λ); ∀i ∈ {1, . . . , n} . γ(Gi) = −→yi : −→τi

it is Γ,−→yi : −→τi ;K ` ei : τ ′ . Hi; Λi with Λi ⊆ Λ; and τ ′ ≤ τ and
⊗

i∈{1,...,n}Gi.Hi v ∆.

Now, the soundness of our type and effect system easily derives from the following standard results.

Theorem 4.1 (Preservation).
Let e be a closed expression; and let ρ be a dynamic environment such that dom(ρ) includes the set of
parameters of e and Γ ` ρ : K.
If Γ; K ` es : τ . Hs; Λs and ρ ` C, es → C ′, e′s, then Γ; K ` e′s : τ . H ′s; Λ′s, C,Hs →∗ C ′, H ′′
for some H ′′ v H ′s and Λ′s v Λs.

The next corollary ensures that the effect computed for e soundly approximates the actions that may
be performed over the context during the evaluation of e. Also, the type of the expression obtained
after some evaluation steps is the same of e, because of Theorem 4.1, and of course the obtained label
environment is included in Λs.

Corollary 1 (Over-approximation). Let e be a closed expression; and let ρ be a dynamic environment
such that dom(ρ) includes the set of parameters of e and Γ ` ρ : K.
If Γ;K ` e : τ .H; Λ and ρ ` C, e→∗ C ′, e′, then Γ;K ` e′ : τ .H ′; Λ′ and there exists a sequence
of transitions C, H →∗ C ′, H ′′, for some H ′′ v H ′ and Λ′ v Λ.

The Progress Theorem stated below assumes that the effect H never evaluates to fail, namely it is
viable. We will see that this implies that while executing the expression e that has effect H , the dis-
patching mechanism will always succeed. The control flow analysis of Section 5 will check viability of
history expressions. To establish our result, we also require that no policy is violated along evaluation.
We shall guarantee that this is the case through the analysis presented in Section 5, possibly resorting to
a reference monitor; see also Property 6.1.

From now onwards, we shall use the following abbreviations. Given an environment ρ, a context C
and a closed expression e, we write

– ρ ` C, e9 if and only if there exists no C ′, e′ such that ρ ` C, e→ C ′, e′;
– e violates no policies if and only if the rule (FRAME1) successfully applies to all its derivatives e′.

Theorem 4.2 (Progress).
Let e be a closed expression such that Γ;K ` e : τ . H; Λ; and let ρ be a dynamic environment such
that dom(ρ) includes the set of parameters of e, and Γ ` ρ : K.
If ρ ` C, e9; e violates no policies; and H is viable for C (i.e. C, H 9+ C ′, fail), then e is a value.

24

We are now ready to state the theorem that ensures the semantic correctness of our approach.

Theorem 4.3 (Correctness).
Let es be a closed expression such that Γ;K ` es : τ .Hs; Λs; let ρ be a dynamic environment such that
dom(ρ) includes the set of parameters of es, and that Γ ` ρ : K; finally let C be a context such that
C,Hs 9+ C ′, fail . Then either the computation of es terminates yielding a value (ρ ` C, es →∗ C ′′, v)
or it diverges, but it never gets stuck.

5. Load time Analysis

Our execution model for MLCoDa extends the one in [23]: the compiler 1 produces a quadruple
(C, e, H, Λ) given by (i) the application context C; (ii) the object code e; (iii) the history expression
H over-approximating the behaviour of e; and (iv) the labelling environment Λ associating labels of H
with those in the code. Given this quadruple, the virtual machine performs the following two steps at
load time:

– linking: to resolve system variables and constructs the initial contextC (combiningC and the system
context); and

– verification: to build, from H , a graph G that describes the possible evolutions of C. This graph will
be used to support a further analysis, and code instrumentation. Instrumenting the code will allow
us to call on need a reference monitor that prevents actions violating the security policies in force.

Technically, we compute G through a static analysis, specified in terms of Flow Logic [54]. To ease
the formal development, we assume below that all the bound variables occurring in a history expression
are distinct. So it is straightforward to define, by structural induction, a function K mapping a variable
hl to the history expression (µh.H l1

1)l2 that introduces it.
The static approximation is represented by a quadruple (Σ◦,Σ•,Ψ◦,Ψ•), called estimate for H , with

Σ◦,Σ• : LabH → ℘(Context ∪ {>}) and Ψ◦,Ψ• : LabH → ℘(Policies)

where > is the distinguished “failure” context representing a dispatching failure. For each label l we
define the following four sets:

– the pre-ctx Σ◦(l) and the post-ctx Σ•(l), containing the contexts possibly arising before and after
evaluating H l, respectively;

– the pre-pol Ψ◦(l) and the post-pol Ψ•(l), containing the application policies possibly active before
and after evaluating H l, respectively.

The analysis is specified by a set of clauses upon judgements of the following form

(Σ◦,Σ•,Ψ◦,Ψ•) � H
l

with the intended meaning that the four functions Σ◦,Σ•,Ψ◦ and Ψ• form an acceptable analysis esti-
mate for the history expression H l. This is the first step for proving an estimate to soundly approximate
the behaviour of H as it will be formalised below through the notion of validity.

1Our prototype [15] does not fully integrate the F# type system with ours; presently we only have an early implementation
of our analyses.

25

(AEPS)

Σ◦(l) ⊆ Σ•(l)
Ψ◦(l) ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � ε
l

(ASEQ1)

(Σ◦,Σ•,Ψ◦,Ψ•) � H
l1
1 (Σ◦,Σ•,Ψ◦,Ψ•) � H

l2
2

Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)
Ψ◦(l) ⊆ Ψ◦(l1) Ψ•(l1) ⊆ Ψ◦(l2) Ψ•(l2) ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � (H l1
1 ·H

l2
2)l

(ASEQ2)

(Σ◦,Σ•,Ψ◦,Ψ•) � H
l2
2

Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l) Ψ◦(l) ⊆ Ψ◦(l2) Ψ•(l2) ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � (� ·H l2
2)l

(ASUM)

(Σ◦,Σ•,Ψ◦,Ψ•) � H
l1
1 (Σ◦,Σ•,Ψ◦,Ψ•) � H

l2
2

Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l) Ψ◦(l) ⊆ Ψ◦(l1) Ψ•(l1) ⊆ Ψ•(l)
Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l) Ψ◦(l) ⊆ Ψ◦(l2) Ψ•(l2) ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � (H l1
1 +H l2

2)l

(AREC)

(Σ◦,Σ•,Ψ◦,Ψ•) � H
l1

Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l) Ψ◦(l) ⊆ Ψ◦(l1) Ψ•(l1) ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � (µh.H l1)l

(AVAR)

K(h) = (µh.H)l
′

Σ◦(l) ⊆ Σ◦(l
′) Σ•(l

′) ⊆ Σ•(l) Ψ◦(l) ⊆ Ψ◦(l
′) Ψ•(l

′) ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � h
l

Figure 11. Specification of the analysis for History Expressions associated with standard ML expressions.

The notion of acceptability has been used in [22,23] to check whether the history expression H , hence
the expression e it is an abstraction of, will never fail in a given initial context C (made of the system
and the application contexts) because the dispatching mechanism does not succeed. Here, we also detect
which actions, if any, may violate the security policies in force.

In the following we introduce into two parts (shown in Figures 11 and 12, respectively) the set of
inference rules that validate the correctness of a given estimate E = (Σ◦,Σ•,Ψ◦,Ψ•). As expected,
the checks in the clauses mimic the semantic evolution of the history expression in a given context, by
modelling the semantic preconditions and the consequences of the possible reductions.

Rules for the standard construct The rules for the history expressions that abstract standard ML ex-
pressions are in Figure 11. The rule (AEPS) says that the estimate E is acceptable for the “syntactic” εl if
the pre-sets are included in the corresponding post-sets.

The rules (ASEQ1) and (ASEQ2) handle the sequential composition of history expressions. The first
rule states that (Σ◦,Σ•,Ψ◦,Ψ•) is acceptable for H = (H l1

1 · H
l2
2)l if it is valid for both H1 and H2.

Moreover, the pre-ctx of H1 must include the pre-ctx of H and the pre-ctx of H2 includes the post-ctx
of H1; finally the post-ctx of H includes that of H2. Just the same condition is required for the pre- and

26

(ANIL)

(Σ◦,Σ•,Ψ◦,Ψ•) ��

(ATELL)

∀C ∈ Σ◦(l)
C ∪ {F} ∈ Σ•(l) Ψ◦(l) ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � tell F
l

(ARETRACT)

∀C ∈ Σ◦(l)
C\{F} ∈ Σ•(l) Ψ◦(l) ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � retract F
l

(AASK1)

∀C ∈ Σ◦(l)

(C � G =⇒ (Σ◦,Σ•,Ψ◦,Ψ•) � H
l1

Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l) Ψ◦(l) ⊆ Ψ◦(l1) Ψ•(l1) ⊆ Ψ•(l))

(C 2 G =⇒ (Σ◦,Σ•,Ψ◦,Ψ•) � ∆l2

Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l) Ψ◦(l) ⊆ Ψ◦(l2) Ψ•(l2) ⊆ Ψ•(l))

(Σ◦,Σ•,Ψ◦,Ψ•) � (askG.H l1 ⊗∆l2)l

(AASK2)

> ∈ Σ•(l) Ψ◦(l) ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � fail
l

(AFRAME)

(Σ◦,Σ•,Ψ◦,Ψ•) � H
l′

Σ◦(l) ⊆ Σ◦(l
′) Σ•(l

′) ⊆ Σ•(l) Ψ◦(l) ⊆ Ψ◦(l
′) {ψ} ⊆ Ψ◦(l) Ψ•(l

′) \ {ψ} ⊆ Ψ•(l)

(Σ◦,Σ•,Ψ◦,Ψ•) � ψ
l[H l′]

Figure 12. Specification of the analysis for History Expressions for adaptation and security.

post-pol. The second rule states that E is acceptable for H = (� ·H l2
1)l if it is acceptable for H1 and

the pre-ctx (pre-pol, respectively) of H1 includes that of H , while the post-ctx (post-pol, resp.) of H
includes that of H1.

By the rule (ASUM), E is acceptable forH = (H l1
1 +H l2

2)l if it is valid for eachH1 andH2; the pre-ctx
of H is included in the pre-sets of H1 and H2; the post-ctx of H includes those of H1 and H2; and the
same inclusions hold between the pre- and the post-pol.

By the rule (AREC), E is acceptable forH = (µh.H l1
1)l if it is valid forH l1

1 , the pre-ctx (pre-pol, resp.)
of H1 includes that of H; and the post-ctx (post-pol, resp.) of H includes that of H1.

Finally, the rule (AVAR) says that (Σ◦,Σ•,Ψ◦,Ψ•) is an acceptable estimate for a variable hl if the
pre-ctx (pre-pol, resp.) of the history expression introducing h, namely K(h), is included in that of hl,
and the post-ctx (post-pol, resp.) of hl includes that of K(h).

Rules for adaptation and security We now introduce and discuss the rules for adaptation and security,
displayed in Figure 12.

The rule (ANIL) says that every pair of functions is an acceptable estimate for the “semantic” empty
history expression � (the empty history expression reached after a successful execution).

27

In the rule (ATELL), we check whether the context C is in the pre-ctx, and C ∪ {F} is in the post-set,
while the pre-pol have to be included in the post-pol; similarly for(ARETRACT), where C\{F} should be
in the post-set.

The rules (AASK1) and (AASK2) handle the abstract dispatching mechanism. The first states that E
is acceptable for H = (askG.H l1

1 ⊗ ∆l2)l, provided that, for all C in the pre-ctx of H , if the goal G
succeeds in C then the pre-ctx of H1 includes that of H and the post-ctx of H includes that of H1.
Otherwise, the pre-ctx of ∆l2 must include the pre-ctx of H and the post-ctx of ∆l2 is included in that of
H . The rule (AASK2) requires > to be in the post-ctx of faill. Note that this implies that the dispatching
mechanism may fail at run time. Needless to say, in both rules the same inclusions must hold between
the pre- and the post-pol.

Finally, through the rule (AFRAME) we say that E is acceptable for H ′ = ψl[H l′] if it is such for H l′ ;
if the pre-ctx (pre-pol, resp.) of H ′ is included in the pre-ctx (pre-pol, resp.) of H l′ ; if the post-ctx of
H ′ includes that of H l′ ; if additionally the policy ψ belongs to the pre-pol of H ′ and the post-pol of H ′

without ψ (recall that the framing is left) is included in the post-pol ofH l′ . In other words, all the policies
that have to be enforced before entering the policy framing for ψ are still active when the framing is left,
and furthermore ψ is in force entering the framing and is de-activated when leaving it.

Semantic properties We now formalise the notion of valid estimate for a history expression, plugged in
a context; we prove that there always exists a minimal valid analysis estimate; and that a valid estimate
is correct with respect to the operational semantics of history expressions. Valid estimates then soundly
approximate the behaviour of history expressions.

Definition 5.1 (Valid analysis estimate). Given H l and an initial context C, we say that the quadruple
(Σ◦,Σ•,Ψ◦,Ψ•) is a valid analysis estimate for H and C iff C ∈ Σ◦(l) and (Σ◦,Σ•,Ψ◦,Ψ•) � H l.

It is easy to partially order the set of analysis estimates by set inclusion, component-wise, and to prove
that they are a Moore family. Since such families contain a least element (as well as a greatest one), there
always exists a least choice of (Σ◦,Σ•,Ψ◦,Ψ•) that is acceptable. The existence of a least estimate is
stated below.

Theorem 5.1 (Existence of estimates).
Given H l and an initial context C, the set {E = (Σ◦,Σ•,Ψ◦,Ψ•) | E � H l} of the acceptable estimates
of the analysis for H l and C is a Moore family; hence, there exists a minimal valid estimate.

The next theorem guarantees that the analysis estimates are preserved under execution steps.

Theorem 5.2 (Subject Reduction).
Let H l

1 be a closed history expression and let (Σ◦,Σ•,Ψ◦,Ψ•) � H l
1. If for all C ∈ Σ◦(l) we have that

C,H l
1 → C ′, H l′

2 then (Σ◦,Σ•,Ψ◦,Ψ•) � H l′
2 ; Σ◦(l) ⊆ Σ◦(l

′); Σ•(l
′) ⊆ Σ•(l); Ψ◦(l) ⊆ Ψ◦(l

′); and
Ψ•(l

′) ⊆ Ψ•(l).

Viability of history expressions We now define when a history expression H is viable for an initial
context C, i.e. when it passes the verification phase at load time, following [22,23]. Actually, a viable
H never evaluates to fail, and the expression the behaviour of which it abstracts will never get stuck,
because the dispatching mechanism fails.

Definition 5.2 (Viability). Let H be a history expression; let lfail(H) be the set of labels of the fail sub-
terms in H; and let C be an initial context. We say that H is viable for C if the minimal valid analysis
estimate (Σ◦,Σ•,Ψ◦,Ψ•) is such that > ∈ Σ•(l) for no l ∈ dom(Σ•)\lfail(H).

28

Σ1
◦ Σ1

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {{F2, F5}}
5 {{F2, F5, F8}} {{F2, F5}}
6 ∅ ∅
7 ∅ ∅
8 ∅ ∅
9 {{F2, F5, F8}} {{F1, F5, F8},{F2, F5}}

{F2, F5, F8}

{}

{F1, F2, F5, F8}{} {F2, F5} {}

{F1, F5, F8}{}

{1} {5}

{2}

Figure 13. The analysis estimate (Ψ◦(l) and Ψ•(l) are always ∅ and are omitted) and the evolution graph Gp for the history
expression Hp = ((tell F 1

1 · retract F 2
2)3 + (ask F5.retract F

5
8 ⊗ask F3.retract F

6
4 ⊗ fail7)4)8 and for the initial context

C = {F2, F5, F8}.

Note that if the minimal valid estimate satisfies the requirement above, then no other valid estimate
will violate it, because of the Moore family property.

Property 5.3. Let H be a history expression associated with an application e. If H be viable for a
context C, then it is never the case that C, H →∗ fail .

Example 5.1. To illustrate how viability is checked, consider the following history expression and the
initial context C = {F2, F5, F8}, only consisting of facts:

Hp = ((tell F 1
1 · retract F 2

2)3 + (ask F5.retract F
5
8 ⊗ (ask F3.retract F

6
4 ⊗ fail7)8)4)9

The left part of Figure 13 shows the values of Σ1
◦(l) and Σ1

•(l) forHp, while those for Ψ◦(l) and for Ψ•(l)
are omitted being the emptyset everywhere. Note that the pre-ctx of tell F 1

1 includes {F2, F5, F8}, and
the post-ctx also includes a set containing F1. Also, the pre-ctx of retract F 5

8 includes {F2, F5, F8},
while the post-ctx includes {F2, F5}. The column for Σ• contains > nowhere, so Hp is viable for C.

Instead, an example of a history expression that fails to pass the verification phase when put in the
same initial context C = {F2, F5, F8} is

H ′p = (ψ8
0[ψ9

1[tell F 1
1] · retract F 2

2)3] + (ask F3.retract F
5
4 ⊗ fail6)4)7

where there are two trivial policies: ψ0 respected if and only if F2 holds, and ψ1 if and only if F5.
A functional failure occurs because the fact F3 holds in no reachable context. This is reflected by the
occurrences of > in Σ2

•(4) and Σ2
•(6), and in Σ2

•(7), as shown in the upper part of Figure 14. The
functional failure may occur because the goal F3 does not hold in C, and indeed H ′p is not viable. This
phase also detects that a policy violation may occur, and if the program had passed the verification phase,
at run time the reference monitor would have forbidden the action corresponding to retract F 2

2 to occur,
because it violates ψ0.

We now exploit the valid estimates computed by the above analysis to build up the evolution graph G
for a history expression H in an initial context C. It describes how C may be updated at run time, paving
the way to security enforcement. In the following definition we use the function µ introduced right before
in Definition 4.1 that recovers a construct in H from a label l.

29

Σ2
◦ Σ2

• Ψ2
◦ Ψ2

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}} {ψ0, ψ1} {ψ0, ψ1}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}} {ψ0} {ψ0}
3 {{F2, F5, F8}} {{F1, F5, F8}} {ψ0} {ψ0}
4 {{F2, F5, F8}} {>} ∅ ∅
5 ∅ ∅ ∅ ∅
6 {{F2, F5, F8}} {>} ∅ ∅
7 {{F2, F5, F8}} {{F1, F5, F8},>} ∅ ∅
8 {{F2, F5, F8}} {{F1, F5, F8}} {ψ0} ∅
9 {{F2, F5, F8}} {{F1, F2, F5, F8}} {ψ0, ψ1} {ψ0}

{F2, F5, F8}

{ψ0, ψ1}

{F1, F2, F5, F8}{ψ0, ψ1} >

{F1, F5, F8}{ψ0}

{1} {}

{2}

Figure 14. The analysis estimate and the evolution graph G′p for the initial context C = {F2, F5, F8}, and for the history
expression (ψ8

0 [ψ9
1 [tell F 1

1] · retract F 2
2)3] + (ask F3.retract F

5
4 ⊗ fail6)4)7.

Definition 5.3 (Evolution Graph). Let C be a context and H l be a history expression; let Fact∗ and
Lab∗H be the sets of facts and of labels occurring in H , respectively; and let (Σ◦,Σ•,Ψ◦,Ψ•) be a valid
analysis estimate for H and C.
The evolution graph of C under H is G = (N,E,LΨ, LE), with nodes in N labelled by LΨ and edges
in E labelled by LE , where

N =
⋃
l∈Lab∗H

(Σ◦(l) ∪ Σ•(l))

E = {(C1, C2) | ∃F ∈ Fact∗, l ∈ Lab∗H such that µ(l) ∈ {tell(F), retract(F)}∧
C1 ∈ Σ◦(l) ∧ (C2 ∈ Σ•(l) ∨ C2 = >)}

LΨ : N → P(Policies)
Ψ◦(l) ∪Ψ•(l) ⊆ LΨ(n) iff n ∈ Σ◦(l) ∪ Σ•(l)

LE : E → P(Labels)
l ∈ LE(t) iff t = (C1, C2) ∈ E, ∧ C1 ∈ Σ◦(l) ∧ µ(l) 6= fail

Intuitively, the nodes of G are sets of contexts reachable from C by runningH , and we label them with
the policies of the application that are to be enforced. An edge between two nodesC1 andC2 says thatC2

is obtained from C1, through an action tell or retract, a reference to which is recorded in the edge label.
Note in passing that the graph is a compact and easy way to manipulate representation of the information
computed by the analysis, and that it paves the ways for more involved verification mechanisms. For
example, one could check CTL formulas on it, where the atomic propositions are Datalog goals. Consider
again the history expressions Hp and H ′p and their evolution graphs Gp and G′p in Figures 13 and 14. In

30

Gp, from the initial context C there is an edge labelled {1} to C ∪ {F1}, because of tell F 1
1 , and there

is an edge labelled {5} to the C \ F8, because of retract F 5
8 . Of course, all the nodes are labelled by ∅,

since no policy occurs in Hp. A simple reachability algorithm suffices in showing Hp viable for C (even
less, as > does no occur in Gp). Instead, > is a reachable node of G′p showing H ′p not viable. In addition,
in H ′p there are two application policies, and so the nodes of the graph G′p are labelled with those that
must be checked there, in particular {F1, F2, F5, F8} is labelled by {ψ0, ψ1}. It is now equally simple
showing that the action retract F 2

2 has to be blocked, since {F1, F5, F8} 2 ψ0.
Note that the labels on the edges of a graph G indicate a super-set of actions tell or retract that may

lead to a context violating the required policies, while those on the nodes are a super-set of the application
policies in force. As a consequence, their correspondence with the labels in the code can be exploited at
load time to compute which security checks are necessary. In the next section, we will present a run time
reference monitor, defined within MLCoDa, that is only switched on need.

6. Code instrumentation

We use the information stored in the labels of the evolution graph G for a history expression H of an
application e and a context C, to anticipate at load time (a super-set of) the security checks needed when
e will run in C. We suggest instrumenting the original code before deploying it with checks that will only
be activated if the policy actually needs to be enforced, be it a context or an application policy. At load
time, we use the labels of the arcs of G to locate the abstract tell or retract actions in H that may lead
to a context violating a given context policy ω. Similarly, we check every application of a policy ψ in the
label of a node n against each context included in n to single out those that may violate ψ. As we are
statically analysing the behaviour of the approximation H , we need to recover in the code e the actual
actions that may lead to these violations, and for that we will resort to the component Λ of the provided
valid estimate for H and C.

Assume then that {ωi} are the context policies and that {ψi} are the application policies occurring
within e, the application in hand. Also, let H be the history expression and Λ be labelling environment
resulting from having type checked e. As seen in the previous section, a node n of a graph G represents
a set of contexts {Ci} reachable while executing e.

We first statically verify whether each context in n satisfies ω. If this is not the case, we consider
as risky all the edges with target n and the set RΩ of their labels — clearly over-approximating bad
behaviours. We then consider the application policies active in n, i.e. LΨ(n), and we check whether they
are obeyed by the contexts represented by n. The set of the application policies violated is called RΨ.
Now, the labelling environment Λ determines those actions in the code that require monitoring during
the execution. Formally, given the graph G = (N,E,LΨ, LE) for H and C, we let

RΩ(n) = {(l, ω) | (n, n′) ∈ E ∧ l = Λ(LE(n, n′)) ∧ n′ 2 ω}

RΨ(n) = {(l, ψ) | (n, n′) ∈ E ∧ l = Λ(LE(n, n′)) ∧ ψ ∈ LΨ(n)) ∧ (n 2 ψ ∨ n′ 2 ψ)}

The property below directly follows from Property 5.3 and provides us with the conditions for an ap-
plication to never fail because of unresolved behavioural variations and to never violate the required
policies.
Property 6.1. Given an expression e with associated history expression H , let G = (N,E,LΨ, LE) be
the evolution graph of H and C.
If H is viable and for all nodes n the set RΩ(n) ∪RΨ(n) = ∅, then the evaluation of e never gets stuck.

31

Consider again the history expressions of Example 5.1 and assume that there is a context policy ω that
holds if and only if F1∨F2. For all n ∈ G, we have thatRΩ(n) = ∅, signalling that the reference monitor
for ω can safely be switched off, while running the actual code of which both history expressions are an
abstraction.

Now consider H ′p. We have RΨ({F1, F2, F5, F8}) = RΨ({F1, F5, F8}) = (2, ψ1), while for all other
nodes the value is ∅. Also here we see that the application policy ψ0 will always be obeyed, so the
reference monitor for it can be kept off. Instead, the execution of the action identified through Λ(2)
requires checking the policy ψ1 that is actually violated.

We now explain our lightweight form of code instrumentation, which is not standard, because it does
not operate on the object code. As said in Section 2, the compiler labels the source code e and generates
specific calls to monitoring procedures, so implementing the reference monitor. We remark that MLCoDa
requires no further mechanism to do that, as it will be clear shortly.

We define a procedure, called check_violation(e,l), for verifying if a policy is satisfied. It takes an
expression tell/retract and its label l as parameters (and returns the type unit, and empty effect and
labelling environment). At load time, we assign two global masks riskyΩ[l] and riskyΨ[l] to each label
l of a tell/retract action occurring in the source code. The values of these masks contain the set of the
context and the application policies, respectively, that are worth checking. Their definition is as follows:

riskyΩ[l] = {ω | (l, ω) ∈
⋃
n∈N

RΩ(n)} riskyΨ[l] = {ψ | (l, ψ) ∈
⋃
n∈N

RΨ(n)}

Note that
⋃
n∈N (RΩ(n)∪RΨ(n)) represents the set of the labels corresponding to all the risky actions,

i.e. the tell or retract actions that may lead to a policy violation. Conversely, if a policy does not
appear in this set, there is no point in checking it, because it will always be obeyed at run time.

The procedure code follows that switches on the reference monitor on need (for clarity, we use a
sugared version of MLCoDa):

fun check_violation(e,l) =
forall psi ∈ riskyΨ[l] do ask psi.();
e();
forall xi ∈ riskyΩ[l] ∪ riskyΨ[l] do ask xi.()

If there is a application policy associated with the label l we trigger the dispatching mechanism through
the call ask psi.(). If the call fails then a policy violation is about to occur. In this case the computation
is aborted or a recovery mechanism is invoked, if any. Otherwise the tell or retract is performed and
every active policy, be it a context or an application one, is checked on the resulting context.

Our compilation schema needs to replace every tell(e)l in the source code with the following:

check_violation(λ().tell(e)l, l)

As expected, the same has to be done for every retract(e)l. This is indeed what happens in the
example above with the action corresponding to the retract F2

2 that violates the policy ψ1 (say that
Λ(2) = l2). After the instrumentation, that occurrence in the code will be check_violation(λ().tell
(e)l2 , l2), and the execution will go stuck — unless there is a recovery mechanism, which we do not
discuss here.

Note that, if the set of the risky actions is empty, then there is no need for checking, when calling either
tell or retract.

32

7. Conclusions

Contributions We have addressed security issues in an adaptive framework, by extending and instru-
menting MLCoDa, a functional language introduced in [21,23] for adaptive programming. We also ex-
tended its two-step static analysis to deal with security. To the best of our knowledge, this is the first
contribution to security within a linguistic approach to adaptivity, although its importance in this field is
growing hot [56]. In summary, we have

– expressed and enforced context-dependent security policies using Datalog, originally employed by
MLCoDa to deal with contexts. Policies are of two kinds: (i) context policies, a priori unknown to
the applications, that protect the context from unwanted changes or accesses, and (ii) application
policies, a priori unknown to the context manager, that protect the running code, and that can be
nested and have a scope;

– extended the MLCoDa type and effect system of [22,23] for computing a type and a labelled abstract
representation of the overall behaviour of an application, including the security policies it imposes
and those it has to obey. Actually, an effect over-approximates the sequences of the possible dynamic
actions over the context. The security-critical operations of the abstraction are labelled, so to link
them with those in the code of the application, keeping track of the scope of the application policies;

– considerably enhanced the static analysis of [22,23] that guarantees an application to adapt to all
the possible contexts arising at run time; now, our analysis also identifies the operations that may
violate the context and the application policies in force. Recall that this step can only be done at
load time, because the execution context is only known when the application is about to run, and
thus our static analysis cannot be completed at compile time;

– defined a way to instrument at implementation time the code of an application, so as to incorporate
in it an adaptive reference monitor, ready to stop executions when about to violate a policy to be
enforced. When an application enters a new context, the results of the static analysis mentioned
above are used to suitably drive the invocation of the monitor that is switched on and off if needed.

It is worth noting that MLCoDa itself required little extensions to be equipped with security policies
and with mechanisms for checking and enforcing them. Indeed, policies are just Datalog clauses en-
forced by asking goals, and code is instrumented by using available constructs, namely behavioural vari-
ations and functions. Even though our proposal of a two-step static analysis is still a proof-of-concept,
the underlying idea of complementing type-checking with the load time analysis, and the consequent
instrumentation procedure appear to be well applicable to other adaptive programming paradigms.

Future work We are currently experimenting on our language, in particular on the usage of the static
analysis on more realistic examples. We are using a prototypical implementation of MLCoDa that extends
F# [15] and that is available together with some case studies.2 To do that, we exploit the well-established
metaprogramming mechanisms of F#, so to both minimise the learning cost for users and to avoid the
need of any modification to the compiler and to the underlying .NET runtime. We also have a two-
step type inference algorithm, and a naive construction of the evolution graph and of the reachability
algorithm.

Besides a full implementation of MLCoDa, and of an efficient tool for the static analysis and for the
instrumentation, we plan to investigate recovery mechanisms appropriate for behavioural variations, to
allow the user to undo some actions considered risky or sensible, and force the dispatching mechanism

2https://github.com/vslab/fscoda

33

https://github.com/vslab/fscoda

to make different, alternative choices. Recovery mechanisms are obviously needed also to adapt appli-
cations that raise security failures. If the violated policy comes from the context, the easiest solution
is abandoning that context, and possibly undoing the computation done so far. Nevertheless, this is not
completely satisfying and makes it quite challenging to look for suitable and smarter recovery mecha-
nisms. A long-term goal is extending these policies with quantitative information, e.g. statistical infor-
mation about the usage of contexts, reliability of resources therein, so to rank contexts and to possibly
suggest the user the ones guaranteeing more performance.

Related work Starting from the initial proposal of the COP paradigm by Costanza [20], several au-
thors [31,1,37,5] mainly addressed the design and the implementation of concrete programming lan-
guages (see [6,62] for an overview). All these approaches describe the context as a stack of layers, which
are elementary properties of the context. Layers can be activated/deactivated at run time, and those hold-
ing in the running context are determined by only considering the code of the application. Since be-
havioural variations are bound to layers, activating/deactivating a layer corresponds to activating/deac-
tivating the corresponding behavioural variation. Some papers [19,30,34,3,4,35] just to cite a few, are
also concerned with foundational aspects of various COP languages, often based on Java. They propose
static (and dynamic) techniques for guaranteeing applications to perform well, e.g. that methods within
behavioural variations are correctly invoked.

The usage of Datalog and of its rich predicates for representing the context is perhaps the main dif-
ference with the approaches mentioned above. Also, in MLCoDa behavioural variations are a first class,
higher-order construct, that can then be referred to by identifiers, and used as parameters in functions.
This fosters dynamic, compositional adaptation patterns, as well as reusable, modular code. Another
difference with other COP languages is that the dispatching mechanism inspects the actual context that
depends on both the application code and the“open” context unknown at development time.

As already remarked, we approached context-aware security from a formal linguistic viewpoint. To the
best of our knowledge, in the literature there are few papers aiming at providing a uniform treatment of
security and adaptivity. In the pure, foundational formalism of the Ambient Calculus [17] some papers,
among which [53,24,13], studied properties concerning the way processes move within different envi-
ronments, representing the topology of a network. However, in these proposals the context is a sub-set of
ours, because it essentially consists of the locations where processes can be hosted.

The proposal in [56] is still along this line, but from a perspective more oriented towards software
engineering. This paper can be seen as the starting point for the development of Ariadne [65], a tool for
security in adaptive cyber-physical systems. Also in this case, the context is only focused on the topology
of a cyber-physical scenario. Ariadne allows defining and maintaining a model of the running system,
based on Bigraphical Reactive System [47]. When the system topology changes, an analysis at run time
detects possible security risks, so to plan countermeasures.

A conceptual model of security contexts has been recently proposed in [36], that also takes into account
social aspects. It is specifically designed for the specification, management and analysis of security issues
in ubiquitous social systems.

Other approaches implement security mechanisms at different levels of the infrastructure, in the mid-
dleware [60] or in the interaction protocols [29]. Most of them address access control for resources,
e.g. [68,33,69], and for smart things, e.g. [2,25]. In this strain, there are many papers on the ways of ex-
pressing context-aware access control. As an example, Role-Description Language (RDL) is a program-
ming language for defining context-aware role-based access control policy [46]. The key idea is to acti-
vate or deactivate a role and the permissions granted by it depending on the context information. A RDL
program receives as input context changes and outputs the members of each role. The proposal of [48] is

34

similar to ours in that the rules are expressed in a logical fashion. The context information is represented
through facts and logical rules, but the context itself is distributed among different principals, so that
granting access to a resource requires a distributed deduction. Each principal is equipped with policies
declaring which participants of the distributed system are considered trusted when resolving a particular
query. An alternative approach to rule-based policies for context-aware access control is in [49], that
proposes the notion of contextual graph to control the access to resources in a distributed environment.
Along this line, Aspect-Oriented Programming and contexts are discussed in [50], as a pragmatic way to
decoupling security concerns and business logic in Web Services.

The problem of context-aware security has often been faced in many specific domains of application.
Below, we just mention a few papers, because they address issues that are orthogonal to our proposal.
The work of [8,32] study authorisation in context-aware systems and propose mechanisms for granting
authorisation transparently to a user operating in a smart environment. Access control for Android smart-
phones is addressed in [7], using a descriptive logic. There are some papers, among which the already
cited [59,40], that study how protocols can be adapted to different operating environments in order to
guarantee different levels of security.

References

[1] Achermann, F., Lumpe, M., Schneider, J., Nierstrasz, O.: PICCOLA-a small composition language. In: Formal methods
for distributed processing. Cambridge University Press (2001)

[2] Al-Neyadi, F., Abawajy, J.: Context-based e-health system access control mechanism. Advances in information security
and its application pp. 68–77 (2009)

[3] Aotani, T., Kamina, T., Masuhara, H.: Featherweight eventcj: a core calculus for a context-oriented language with event-
based per-instance layer transition. In: Proc. of the 3rd International Workshop on Context-Oriented Programming (COP
’11). pp. 1:1–1:7. ACM, New York, NY, USA (2011)

[4] Aotani, T., Kamina, T., Masuhara, H.: Unifying multiple layer activation mechanisms using one event sequence. In:
Proceedings of 6th International Workshop on Context-Oriented Programming. pp. 2:1–2:6. COP’14, ACM, New York,
NY, USA (2014)

[5] Appeltauer, M., Hirschfeld, R., Haupt, M., Masuhara, H.: ContextJ: Context-oriented programming with Java. Computer
Software 28(1) (2011)

[6] Appeltauer, M., Hirschfeld, R., Haupt, M., Lincke, J., Perscheid, M.: A comparison of context-oriented programming
languages. In: International Workshop on Context-Oriented Programming (COP ’09). pp. 6:1–6:6. ACM, New York, NY,
USA (2009)

[7] Bai, G., Gu, L., Feng, T., Guo, Y., Chen, X.: Context-aware usage control for android. In: Security and Privacy in Commu-
nication Networks - 6th Iternational ICST Conference, SecureComm 2010, Singapore, September 7-9, 2010. Proceedings.
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 50,
pp. 326–343. Springer (2010)

[8] Bardram, J., Kjær, R.E., Pedersen, M.Ø.: Context-aware user authentication - supporting proximity-based login in per-
vasive computing. In: UbiComp 2003, Seattle, USA, Proceedings. Lecture Notes in Computer Science, vol. 2864, pp.
107–123. Springer (2003)

[9] Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composition. Journal of Computer Security 17(5),
799–837 (2009), abridged version in Proc. of CSFW 2005, IEEE Press, 211-223

[10] Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource usage analysis. ACM Trans. Program.
Lang. Syst. 31(6) (2009)

[11] Bodei, C., Degano, P., Galletta, L., Salvatori, F.: Linguistic mechanisms for context-aware security. In: Proc. of 11th
International Colloquium on Theoretical Aspects of Computing. pp. 61–79. LNCS 8687, Springer (2014)

[12] Bonatti, P., De Capitani Di Vimercati, S., Samarati, P.: An algebra for composing access control policies. ACM Transac-
tions on Information and System Security 5(1), 1–35 (2002)

[13] Bucur, D., Nielsen, M.: Secure data flow in a calculus for context awareness. In: Concurrency, Graphs and Models. Lecture
Notes in Computer Science, vol. 5065, pp. 439–456. Springer (2008)

[14] Campbell, R., Al-Muhtadi, J., Naldurg, P., Sampemane, G., Mickunas, M.D.: Towards security and privacy for pervasive
computing. In: Proc. of the 2002 Mext-NSF-JSPS international conference on Software security: (ISSS’02). pp. 1–15.
LNCS 2609, Springer (2003)

35

[15] Canciani, A., Degano, P., Ferrari, G.L., Galletta, L.: A context-oriented extension of F#. In: FOCLASA 2015. EPTCS,
vol. 201, pp. 18–32 (2015)

[16] Cappaert, J.: Code Obfuscation Techniques for Software Protection. Ph.D. thesis, Katholieke Universität Loewen (2012),
https://www.cosic.esat.kuleuven.be/publications/thesis-199.pdf

[17] Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)
[18] Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. on

Knowl. and Data Eng. 1(1), 146–166 (1989)
[19] Clarke, D., Sergey, I.: A semantics for context-oriented programming with layers. In: International Workshop on Context-

Oriented Programming (COP ’09). pp. 10:1–10:6. ACM, New York, NY, USA (2009)
[20] Costanza, P.: Language constructs for context-oriented programming. In: Proc. of the Dynamic Languages Symposium.

pp. 1–10. ACM Press (2005)
[21] Degano, P., Ferrari, G.L., Galletta, L.: A two-component language for COP. In: Proc. 6th International Workshop on

Context-Oriented Programming. ACM Digital Library, doi: 10.1145/2637066.2637072 (2014)
[22] Degano, P., Ferrari, G.L., Galletta, L.: A two-phase static analysis for reliable adaptation. In: Proc. of 12th International

Conference on Software Engineering and Formal Methods. pp. 347–362. LNCS 8702, Springer (2014)
[23] Degano, P., Ferrari, G.L., Galletta, L.: A two-component language for adaptation: design, semantics and program analysis.

IEEE Transactions on Software Engineering, 10.1109/TSE.2015.2496941. (2016)
[24] Degano, P., Levi, F., Bodei, C.: Safe ambients: Control flow analysis and security. In: 6th Asian Computing Science

Conference, Malaysia, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1961, pp. 199–214. Springer (2000)
[25] Deng, M., Cock, D.D., Preneel, B.: Towards a cross-context identity management framework in e-health. Online Informa-

tion Review 33(3), 422–442 (2009)
[26] DeTreville, J.: Binder, a Logic-Based Security Language. In: Proc. of the 2002 IEEE Symposium on Security and Privacy.

pp. 105–113. SP ’02, IEEE Computer Society (2002)
[27] Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on Database Systems 5(1), 1–35 (1997)
[28] Galletta, L.: Adaptivity: linguistic mechanisms and static analysis techniques. Ph.D. thesis, University of Pisa (2014),

http://www.di.unipi.it/~galletta/phdThesis.pdf
[29] Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S., Kumar, S., Wehrle, K.: Security challenges in the IP-based internet

of things. Wireless Personal Communications pp. 1–16 (2011)
[30] Hirschfeld, R., Igarashi, A., Masuhara, H.: ContextFJ: a minimal core calculus for context-oriented programming. In:

Proc. of the 10th international workshop on Foundations of aspect-oriented languages. pp. 19–23. ACM (2011)
[31] Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Journal of Object Technology, March-April

2008 7(3), 125–151 (2008)
[32] Hulsebosch, R.J., Bargh, M.S., Lenzini, G., Ebben, P.W.G., Iacob, S.M.: Context sensitive adaptive authentication. In:

EuroSSC 2007, Kendal, England, Proceedings. Lecture Notes in Computer Science, vol. 4793, pp. 93–109. Springer
(2007)

[33] Hulsebosch, R., Salden, A., Bargh, M., Ebben, P., Reitsma, J.: Context sensitive access control. In: Proc. of the ACM
symposium on Access control models and technologies. pp. 111–119 (2005)

[34] Igarashi, A., Hirschfeld, R., Masuhara, H.: A type system for dynamic layer composition. In: FOOL 2012. p. 13 (2012)
[35] Inoue, H., Igarashi, A., Appeltauer, M., Hirschfeld, R.: Towards type-safe JCop: A type system for layer inheritance and

first-class layers. pp. 7:1–7:6. COP’14, ACM, New York, NY, USA (2014)
[36] Jovanovikj, V., Gabrijelcic, D., Klobucar, T.: A conceptual model of security context. Int. J. Inf. Sec. 13(6), 571–581

(2014)
[37] Kamina, T., Aotani, T., Masuhara, H.: EventCJ: a context-oriented programming language with declarative event-based

context transition. In: Proc. of the 10 international conference on Aspect-oriented software development (AOSD ’11). pp.
253–264. ACM (2011)

[38] Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 36(1), 41–50 (2003)
[39] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An Overview of AspectJ. In: Knudsen, J. (ed.)

ECOOP 2001 — Object-Oriented Programming, Lecture Notes in Computer Science, vol. 2072, pp. 327–354. Springer
Berlin Heidelberg (2001)

[40] Ksiezopolski, B., Kotulski, Z.: Adaptable security mechanism for dynamic environments. Computers & Security 26(3),
246–255 (2007)

[41] Li, N., Mitchell, J.C.: DATALOG with Constraints: A Foundation for Trust Management Languages. In: Proc. of the 5th
International Symposium on Practical Aspects of Declarative Languages (PADL ’03). pp. 58–73. LNCS 2562, Springer
(2003)

[42] Ligatti, J., Walker, D., Zdancewic, S.: A type-theoretic interpretation of pointcuts and advice. Science of Computer Pro-
gramming 63(3), 240 – 266 (2006)

[43] Loke, S.W.: Representing and reasoning with situations for context-aware pervasive computing: a logic programming
perspective. Knowl. Eng. Rev. 19(3), 213–233 (2004)

36

https://www.cosic.esat.kuleuven.be/publications/thesis-199.pdf
http://www.di.unipi.it/~galletta/phdThesis.pdf

[44] MacDonal, N.: The future of information security is context awere and adaptive. Tech. rep., Gartner RAS (2010)
[45] Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT Softw. Eng. Notes 21(6), 3–14 (Oct 1996)
[46] Masone, C., Kotz, A.D.: Role definition language (rdl): A language to describe context-aware roles. Tech. rep. (2002)
[47] Milner, R.: Bigraphical reactive systems. In: CONCUR 2001, Aalborg, Denmark, Proceedings. Lecture Notes in Computer

Science, vol. 2154, pp. 16–35. Springer (2001)
[48] Minami, K., Kotz, D.: Secure context-sensitive authorization. Pervasive and Mobile Computing 1(1), 123–156 (2005)
[49] Mostéfaoui, G.K., Brézillon, P.: Context-based constraints in security: Motivations and first approach. Electr. Notes Theor.

Comput. Sci. 146(1), 85–100 (2006)
[50] Mostéfaoui, G.K., Maamar, Z., Narendra, N.C.: SC-WS: A context-based, aspect-oriented approach for handling security

concerns in web services. IJOCI 4(2), 31–44 (2014)
[51] Mycroft, A., O’Keefe, R.A.: A polymorphic type system for prolog. Artificial Intelligence 23(3), 295 – 307 (1984)
[52] Nanevski, A., Banerjee, A., Garg, D.: Dependent type theory for verification of information flow and access control

policies. ACM Trans. Program. Lang. Syst. 35(2), 6 (2013)
[53] Nielson, F., Riis Nielson, H., Hansen, R.R., Jensen, J.G.: Validating firewalls in mobile ambients. In: CONCUR ’99,

Eindhoven, The Netherlands, Proceedings. Lecture Notes in Computer Science, vol. 1664, pp. 463–477. Springer (1999)
[54] Nielson, H.R., Nielson, F.: Flow logic: a multi-paradigmatic approach to static analysis. In: Mogensen, T.A., Schmidt,

D.A., Sudborough, I.H. (eds.) The essence of computation. pp. 223–244. LNCS 2566, Springer (2002)
[55] Orsi, G., Tanca, L.: Context modelling and context-aware querying. In: Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.)

Datalog Reloaded, pp. 225–244. LNCS 6702, Springer (2011)
[56] Pasquale, L., Ghezzi, C., Menghi, C., Tsigkanos, C., Nuseibeh, B.: Topology aware adaptive security. In: Proceedings of

the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. pp. 43–48. SEAMS
2014, ACM, New York, NY, USA (2014)

[57] Perera, C., Zaslavsky, A.B., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: A
survey. IEEE Communications Surveys and Tutorials 16(1), 414–454 (2014)

[58] Pfleeger, C., Pfleeger, S.: Security in computing. Prentice Hall (2003)
[59] Pierson, L.G., Witzke, E.L., Bean, M.O., Trombley, G.J.: Context-agile encryption for high speed communication net-

works. Computer Communication Review 29(1), 35–49 (1999)
[60] Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R., Nahrstedt, K.: Gaia: a middleware platform for active

spaces. ACM SIGMOBILE Mobile Computing and Communications Review 6(4), 65–67 (2002)
[61] Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM Trans. Auton. Adapt. Syst.

4(2), 14:1–14:42 (2009)
[62] Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A software engineering perspective. Journal of

Systems and Software 85(8), 1801–1817 (2012)
[63] Skalka, C., Smith, S., Horn, D.V.: Types and trace effects of higher order programs. Journal of Functional Programming

18(2), 179–249 (2008)
[64] Spinczyk, O., Gal, A., Schröder-Preikschat, W.: Aspectc++: An aspect-oriented extension to the c++ programming lan-

guage. pp. 53–60. CRPIT ’02, Australian Computer Society, Inc., Darlinghurst, Australia, Australia (2002)
[65] Tsigkanos, C., Pasquale, L., Ghezzi, C., Nuseibeh, B.: Ariadne: Topology aware adaptive security for cyber-physical

systems. In: 37th IEEE/ACM International Conference on Software Engineering, Florence, Italy, Volume 2. pp. 729–732.
IEEE (2015)

[66] Walker, D., Zdancewic, S., Ligatti, J.: A Theory of Aspects. SIGPLAN Not. 38(9), 127–139 (Aug 2003)
[67] Wand, M., Kiczales, G., Dutchyn, C.: A Semantics for Advice and Dynamic Join Points in Aspect-oriented Programming.

ACM Trans. Program. Lang. Syst. 26(5), 890–910 (Sep 2004)
[68] Wrona, K., Gomez, L.: Context-aware security and secure context-awareness in ubiquitous computing environments. In:

XXI Autumn Meeting of Polish Information Processing Society (2005)
[69] Zhang, G., Parashar, M.: Dynamic context-aware access control for grid applications. In: Proc. of Fourth International

Workshop on Grid Computing, 2003. pp. 101–108. IEEE (2003)

37

Appendix

Below, we present the proofs of the theorems establishing the correctness of our proposal, where we
feel free to omit the labels whenever immaterial.

A. Properties of the Type and Effect System

Below we prove Theorem 4.1, Theorem 4.2 and Corollary 1. We start giving some lemmas and defini-
tions useful for the formal development.

Definition A.1 (Capture avoiding substitutions). Given the expressions e, e′ and the variable x we define
e{e′/x} as follows

c{e′/x} = c

F{e′/x} = F

(λfx
′.e){e′/x} = λfx

′.e{e′/x}

if f 6= x ∧ x′ 6= x ∧ f, x′ /∈ FV (e′)

(x′){G1.e1, . . . , Gn.en}{e′/x} = (x′){G1.e1{e′/x}, . . . , Gn.en{e′/x}}

if x 6= x′ ∧ x ∈
⋃

i∈{1,...,n}

FV (Gi) ∧

{x′} ∪ ⋃
i∈{1,...,n}

FV (Gi)

 ∩ FV (e′) = ∅

x{e′/x} = e′

x′{e′/x} = x′ if x 6= x′

(e1 e2){e′/x} = e1{e′/x} e2{e′/x}

(e1 op e2){e′/x} = e1{e′/x} op e2{e′/x}

(if e1 then e2 else e3){e′/x} = if e1{e′/x} then e2{e′/x} else e3{e′/x}

(telll(e)){e′/x} = telll(e{e′/x})

(retractl(e)){e′/x} = retractl(e{e′/x})

(e1 ∪ e2){e′/x} = e1{e′/x} ∪ e2{e′/x}

#(e1, e2){e′/x} = #(e1{e′/x}, e2{e′/x})

(letx′ = e1 in e2){e′/x} = letx′ = e1{e′/x} in e2{e′/x} if x 6= x′ ∧ x′ ∈ FV (e′)

(dlet x̃ = e1 whenG in e2){e′/x} = dlet x̃ = e1{e′/x} whenG in e2{e′/x}

if x /∈ FV (G) ∧ FV (G) ∩ FV (e′) = ∅

(ψl[e]){e′/x} = ψl[e{e′/x}].

38

Lemma A.1. If Γ ` ρ : K and K v K ′ then Γ ` ρ : K ′.

Proof. The thesis follows from Definition 4.2 and that of K v K ′.

In the following we denote with Kx̃ = K\(x̃, τ,∆,Λ)

Lemma A.2. Given K and a parameter x̃

1. if x̃ /∈ K then K v Kx̃, (x̃, τ, ∆, Λ) for all τ , ∆, and Λ
2. if K(x̃) = (τ, ∆, Λ) then K v Kx̃, (x̃, τ1, ∆1 ⊗∆, Λ1) for all τ ≤ τ1, ∆1 and Λ v Λ1

Proof. The thesis follows by using the definition of K v K ′.

Lemma A.3. If Γ ` ρ : K and G and e are such that γ(G) = −→y : −→τ and Γ,−→y : −→τ ;K ` e : τ .H; Λ

1. for all x̃ /∈ dom(ρ) then Γ ` ρ[G.e/x̃] : Kx̃, (x̃, τ, askG.H,Λ)
2. if ρ(x̃) = G′1.e

′
1, . . . G

′
n.e
′
n andK(x̃) = (τ, ∆,Λ′) then Γ ` ρ[G.e, ρ(x̃)/x̃] : Kx̃, (x̃, τ, askG.H⊗

∆,Λ] Λ′).

Proof. The thesis follows by using the definition 4.2 and that of K v K ′.

Lemma A.4. If Γ;K ` e : τ . H; Λ and Γ′ and K ′ are permutation of Γ and K respectively, then
Γ′;K ′ ` e : τ . H; Λ.

Proof. Straightforward induction on typing derivations.

Lemma A.5 (Weakening).

1. if Γ;K ` e : τ . H; Λ and x is a variable x /∈ dom(Γ) then Γ, x : τ ′;K ` e : τ . H; Λ for some
τ ′.

2. if Γ;K ` e : τ .H; Λ and x̃ is a parameter x̃ /∈ dom(K) then Γ;K, (x̃, τ ′,∆′, Λ′) ` e : τ .H; Λ
for some τ ′, ∆′ and Λ′.

Proof. By a standard induction on the depth of the derivations.

Lemma A.6 (Inclusion).

1. If Γ;K ` e : τ . H; Λ and Γ ⊆ Γ′ then Γ′;K ` e : τ . H; Λ.
2. If Γ;K ` e : τ . H; Λ and K v K ′ then Γ;K ′ ` e : τ . H; Λ.

Proof.

1. Since Γ ⊆ Γ′ there exists a set of binding {x1 : τ1, . . . , xn : τn} ⊆ Γ′ such that Γ, x1 :
τ1, . . . , xn : τn = Γ′, so by applying n times Lemma A.5 the thesis holds.

2. Similar to previous case.

Lemma A.7 (Canonical form). If v is a value such that

39

1. Γ;K ` v : τc . H; Λ then v = c

2. Γ;K ` v : τ1
K′|H′−−−−→ τ2 . H; Λ then v = λfx.e

3. Γ;K ` v : τ1
K′|∆

===⇒ τ2 . H; Λ then v = (x){V a}
4. Γ;K ` v : fact{F1,...,Fm} . H; Λ then v ∈ {F1, . . . , Fm}

Proof.

1. Values can only have four forms: c, (x){V a}, λfx.e and F . If v has type τc the only rule which we
can apply is (TCONST) hence v = c.

2. It follow from a reasoning similar to (1).
3. It follow from a reasoning similar to (1).
4. The fact type with annotations {F1, . . . , Fn} can be only deduced by applying the (TSUB) rule,

starting from a type annotated with a singleton set {F} for some F ∈ {F1, . . . , Fn}. So this type
can be obtained by (TFACT) rule only, hence v = F .

Lemma A.8 (Decomposition Lemma).

1. If Γ;K ` λfx.e : τ1
K′|H;Λ−−−−→ τ2 . H

′; Λ′ and K ′ v K then Γ, x : τ1, f : τ1
K′|H−−−→ τ2;K ` e :

τ2 . H; Λ

2. If Γ;K ` (x){G1.e1, . . . , Gn.en} : τ1
K′|∆;Λ

=====⇒ τ2 . H
′; Λ′ and K ′ v K and ∆ =⊗

i∈{1,...,n} ask Gi.Hi then ∀i ∈ {1, . . . , n} Γ, x : τ1,
−→yi : −→τi ;K ` ei : τ2 . Hi; Λ where

−→yi : −→τi = γ(Gi)

Proof.

1. By the premise of the rule (TABS) we know that Γ, x : τ1, f : τ1
K′|H;Λ−−−−→ τ2;K ′ ` e : τ2 . H; Λ.

Since, K ′ v K, the thesis follows by Lemma A.6.
2. By the premise of the rule (TVARIATION) we know that ∀i ∈ {1, . . . , n} Γ,−→yi : −→τi ;K ′ ` ei :
τ2 .Hi; Λ and−→yi : −→τi = γ(Gi) and ∆ =

⊗
i∈{1,...,n} ask Gi.Hi. Since K ′ v K the thesis follows

by Lemma A.6(2).

Lemma A.9 (Substitution). If Γ, x : τ ′;K ` e : τ . H; Λ and Γ;K ` v : τ ′ . ε;⊥ then Γ;K `
e{v/x} : τ . H; Λ.

Proof. By induction on the depth of the typing derivation, and then by cases on the last rule applied.

– rule (TTELL)
By the premise of the rule, we know that Γ, x : τ ′;K ` e : factφ . H; Λ holds. By using the
induction hypothesis, we can claim that Γ;K ` tell(e{v/x}) : τ . H; Λ and by Definition A.1
we can conclude that Γ;K ` (tell(e)){v/x} : τ . H; Λ.

– rule (TRETRACT)
Similar to the case (TTELL)

40

– rule (TAPPEND)

By the premise of the rule we know that Γ, x : τ ′;K ` ei : τ1
K′|∆i

====⇒ τ2 . Hi; Λi for i ∈ {1, 2}
holds. By the inductive hypothesis we can claim that Γ;K ` e1{v/x} ∪ e2{v/x} : τ .H; Λ holds.
By Definition A.1 we conclude Γ;K ` (e1 ∪ e2){v/x} : τ . H; Λ.

– rule (TVAPP)

By the premise of the rule we know that Γ, x : τ ′;K ` e1 : τ1
K′|∆

===⇒ τ2 . H1; Λ1 and Γ, x :
τ ′;K ` e2 : τ1 . H2; Λ2 and K ′ v K. By using the induction hypothesis we can claim that
Γ;K ` #(e1{v/x}, e2{v/x}) : τ .H; Λ holds and by Definition 4.2 we can conclude that Γ;K `
#(e1, e2){v/x} : τ . H; Λ.

– rule (TVARIATION)
By the premise of the rule (TVARIATION) we know that ∀i ∈ {1, . . . , n} Γ, x : τ ′, x′ : τ1,

−→yi :
−→τi ;K ′ ` ei : τ2 .Hi; Λi where −→yi : −→τi = γ(Gi), ∆ =

⊗
i∈{1,...,n} ask Gi.Hi. By Lemma A.4 ∀i ∈

{1, . . . , n} Γ, x′ : τ1,
−→yi : −→τi , x : τ ′;K ′ ` ei : τ2 . Hi; Λi. By using the induction hypothesis and

the rule (TVARIATION) we can claim that Γ;K ` (x′){G1.e1{v/x}, . . . , Gn.en{v/x}} : τ . H; Λ
and by Definition A.1 we conclude Γ;K ` (x′){G1.e1, . . . , Gn.en}{v/x} : τ . H; Λ.

– rule (TDLET)
By the precondition of the rule (TDLET) we know that Γ, x : τ ′,−→y : −→τ ;K ` e1 : τ1 . H1; Λ1

and Γ, x : τ ′;K, (x̃, τ1, ∆, Λ3) ` e2 : τ . H2; Λ2 with −→y : −→τ = γ(G). By Lemma A.4 Γ,−→y :
−→τ , x : τ ′;K ` e1 : τ1 . H1; Λ1. By using the induction hypothesis we can claim that Γ;K `
dlet x̃ = e1{v/x} whenG in e2{v/x} : τ . H2; Λ2 and by Definition A.1 Γ;K ` (dlet x̃ =
e1 whenG in e2){v/x} : τ . H2; Λ2.

– rule (TCONST), (TFACT), (TDVAR) Since e{v/x} = e by Definition A.1 the result Γ;K ` e :
τ . H; Λ is immediate, when e = c, e = F and e = x̃.

– The other cases are standard.

Lemma A.10. If Γ, x : τ ′;K ` e : τ . H; Λ and z is a variable such that z /∈ FV (e) and z does not
occur in Γ then Γ, z : τ ′;K ` e{z/x} : τ . H; Λ.

Proof. Similar to that of Lemma A.9.

Lemma A.11. If Γ;K ` v : τ . H; Λ then Γ;K ` v : τ . ε;⊥

Proof. Any derivation for the judgement Γ;K ` v : τ .H; Λ starts from the axiom Γ;K ` v : τ ′ . ε;⊥
for some τ ′, and only contains suitable applications of rule (TSUB) for enlarging the type, the effect and
the labelling environment.

Lemma A.12. If Γ;K ` v : τ . H; Λ then there exist H1, . . . ,Hn such that H = ε+ Σn
i=1Hi

Proof. Any derivation for the judgement Γ;K ` v : τ .H; Λ starts from the axiom Γ;K ` v : τ ′ . ε;⊥
for some τ ′. Then suitable applications of rule (TSUB) for enlarging the type, the effect and the labelling
environment, since H v ε+ Σn

i=1Hi by definition.

41

Lemma A.13. If Γ;K ` v : τ . H; Λ then for all K ′ we have that Γ;K ′ ` v : τ . H; Λ.

Proof. By induction on the depth of the typing derivation.

Lemma A.14. If C,H →∗ C ′, H ′ then

1. C,H ·H ′′ →∗ C ′, H ′ ·H ′′ for all H ′′,
2. for all C such that C 6� Gj for j ∈ {1, . . . , i − 1} and C � Gi and Hi = H , it is
C,

⊗
k∈{1,...,n} askGk.Hk →∗ C ′, H ′.

Proof. Item (1) is immediate by applying the rule for summation. Item (ii) follows by induction on the
length of the computation C,H →∗ C ′, H ′, applying the rule for ·. For proving item (iii), we just apply
i times the rule C 6� Gj for abstract variation.

The proof of the following three properties follows immediately by definition v and by the semantics
of history expressions.

Property A.15. Let H be a history expression then ε ·H = H .

Property A.16. LetH1,H2,H3 be history expressions, then it holds (H1+H2)·H3 = H1 ·H3+H2 ·H3.

Property A.17. If H v H ′ then H ·H ′′ v H ′ ·H ′′ and ψl[H] v ψl[H ′].

Theorem 4.1 (Preservation).
Let e be a closed expression; and let ρ be a dynamic environment such that dom(ρ) includes the set of
parameters of e and Γ ` ρ : K.
If Γ; K ` es : τ . Hs; Λs and ρ ` C, es → C ′, e′s, then Γ; K ` e′s : τ . H ′s; Λ′s, C,Hs →∗ C ′, H ′′
for some H ′′ v H ′s and Λ′s v Λs.

Proof. By induction on the depth of the typing derivation and then by cases on the last rule applied.
In the proof we implicitly use the fact that H v H for each H (except for the case TSUB).

– rule (TVARIATION) or (TCONST) or (TFACT) or (TABS) or (TVAR)
In this case we know that es is a value (or a variable in the case (TVAR)), then for no e′s it holds
ρ ` C, es → C ′, e′s, so the theorem holds vacuously.

– rule (TTELL)
We know that es = tell(e′)l for some e′ and also by the (TTELL) premise that Γ;K ` e′ : factφ .
H; Λ holds and Hs = (H ·

∑
F∈φ tell F

li)l. We have only two rules by which ρ ` C, es → C ′, e′s
can be derived.

∗ rule (TELL1)
We know that e′ is an expression and e′s = tell(e′′)l and ρ ` C, e′ → C ′, e′′ and there is in our
derivation a subderivation with conclusion Γ;K ` e′ : factφ.H; Λ. By the induction hypothesis
Γ;K ` e′′ : factφ . H

′′; Λ′′, C, H →? C ′, H for some H v H ′′ and Λ′′ v Λ. By using the
rule (TTELL) we can conclude that Γ;K ` e′s : unit . H ′s; Λ′s, H

′
s = (H ′′ ·

∑
F∈φ tell F

li)l and
Λ′s = Λ′′]Fi∈φ [li 7→ l]. Lemma A.14 now suffices for establishing that C,H ·

∑
F∈φ tell F

li →?

C ′, H ·
∑

F∈φ tell F
li and by Property A.17 H ·

∑
F∈φ tell F

li v H ′′ ·
∑

F∈φ tell F
li . Since

Λ′s = Λ′′]Fi∈φ [li 7→ l] v Λ]Fi∈φ [li 7→ l] = Λs the thesis follows.

42

∗ rule (TELL2)
We now that e′ = F , e′s = () and C ′ = C ∪ {F}. We have to prove that Γ;K ` e′s : unit .
H ′s; Λ′s, but from the rule (TCONST) we know that this holds with H ′s = ε and Λ′s = ⊥ v Λs.
It remains to show that C,Hs →∗ C ′, H ′s. From Lemma A.12 we know Hs = ε + Σn

i=1Hi.
Then, C, (ε+ Σn

i=1Hi) · ΣF∈φ tell F
li → C, ε · ΣF∈φ tell F

li → ΣF∈φ tell F
li → C, tell F l →

C ∪ {F}, ε = C ′, H ′s.

– rule (TRETRACT)
Similar to (TTELL) rule (retract substitutes tell)

– rule (TAPPEND)

We know es = e1 ∪ e2 and τ = τ1
K′|∆1⊗∆2;Λ3⊗Λ4

============⇒ τ2 and Hs = H1 ·H2 and Λs = Λ1] Λ2,

and also by the premise of (TAPPEND) that Γ;K ` e1 : τ1
K′|∆1;Λ3

======⇒ τ2 . H1; Λ1 and Γ;K ` e2 :

τ1
K′|∆2;Λ4

======⇒ τ2 . H2; Λ2 hold. There are three rules only by which ρ ` C, es → C ′, e′s can be
derived.

∗ rule (APPEND1)
We know that e1 and e2 are not values and e′s = e′1 ∪ e2. By applying the induction hypothesis

Γ;K ` e′1 : τ1
K′|∆1

====⇒ τ2 . H
′
1; Λ′1 with C,H1 →∗ C ′, H for some H v H ′1 and Λ′1 v Λ1.

By applying the (TAPPEND) rule we can conclude that Γ;K ` e′1 ∪ e2 : τ1
K′|∆1⊗∆2

=======⇒ τ2 . H
′
1 ·

H2; Λ′1] Λ2. The thesis follows by applying Lemma A.14 and Property A.17.
∗ rule (APPEND2)

We know that e′s = (x){V a1} ∪ e′2. By applying the induction hypothesis Γ;K ` e′2 :

τ1
K′|∆2;Λ4

======⇒ τ2 . H
′
2; Λ′2 with C, H2 →∗ C ′, H for some H v H ′2 and Λ′2 v Λ2. By the rule

(TVARIATION) we know that Γ;K ` (x){V a1} : τ1
K′|∆1

====⇒ τ2 . ε;⊥ and by applying the rule

(TAPPEND) we can claim that Γ;K ` (x){V a1} ∪ e′2 : τ1
K′|∆1⊗∆2

=======⇒ τ2 . ε · H ′2;⊥] Λ′2.
Then ⊥] Λ′2 v Λ1] Λ2 and ε ·H ′2 = H ′2 = H ′s by Property A.15. By Lemma A.12 we know
H1 = (ε + Σn

i=1Hi), then C,Hs = C,H1 · H2 → C, ε · H2 → C,H2 →∗ C ′, H , proving the
thesis since H v H ′s.
∗ rule (APPEND3)

We know that es is

(x){G1.e1, . . . , Gn.en} ∪ (y){G′1.e′1, . . . , G′m.e′m}

and that e′s is

(z){G1.e1{z/x}, . . . , Gn.en{z/y},

G′1.e
′
1{z/y}, . . . , G′m.e′m{z/x}}.

By the premise of the rule (TVARIATION), we also know that ∀i ∈ {1, . . . , n} we have Γ, x :
τ1,
−→yi : −→τi ;K ′ ` ei : τ2 . Hi; Λi (recall that Λ3 =]iΛi) and ∀j ∈ {1, . . . ,m} we have

Γ, y : τ1,
−→yj : −→τj ;K ′ ` e′j : τ2 . Hj ; Λj (recall that Λ4 =]jΛj). By Lemma A.10 it holds that

∀i ∈ {1, . . . , n} Γ, z : τ1,
−→yi : −→τi ;K ′ ` ei{z/x} : τ2 . Hi; Λi and ∀j ∈ {1, . . . ,m} Γ, z :

τ1,
−→yj : −→τj ;K ′ ` e′j{z/x} : τ2.Hj ; Λj . So by applying the rule (TVARIATION) for all judgements

43

indexed by i and j we can conclude that Γ;K ` e′s : τ1
K′|∆1⊗∆2;Λ3]Λ4

============⇒ τ2 . ε;⊥ = H ′s; Λ′s.
By applying twice Lemma A.12 we have Hj = (ε + Σn

i=1Hi) for j ∈ {1, 2}. Then, the thesis
follows because C,Hs = C,H1 ·H2 →∗ C,H2 → C, ε.

– rule (TVAPP)

We know that Γ;K ` e1 : τ1
K′|∆;Λ3

=====⇒ τ2 .H1; Λ1, Γ;K ` e2 : τ1 .H2; Λ2 and K ′ v K hold by
(TVAPP) premises. There are three rules only by which ρ ` C, es → C ′, e′s can be derived.

∗ rule (VAPP1)

We know that e′s = #(e′1, e2). By the induction hypothesis Γ;K ` e′1 : τ1
K′|∆;Λ3

=====⇒ τ2 .H
′
1; Λ′1

with C,H1 →∗ C ′, H for some H v H ′1. By (TVAPP) rule we have Γ;K ` e′s : τ2 . H
′
1 ·H2 ·

∆; Λ′1] Λ2] Λ3. By Lemma A.14 we can conclude C,H1 ·H2 ·∆ →∗ C ′, H ·H2 ·∆ and the
thesis follows by Property A.17 and because Λ′1] Λ2] Λ3 v Λ1] Λ2] Λ3.
∗ rule (VAPP2)

We know that e′s = #((x){V a}, e′2). By using Lemma A.11 we have Γ;K ` (x){V a} :

τ1
K′|∆;Λ3

=====⇒ τ2 . ε;⊥ and by the induction hypothesis Γ;K ` e′2 : τ1 . H
′
2; Λ′2 with

C, H2 →∗ C ′, H for some H v H ′2 and Λ′2 v Λ2. By (TVAPP) and Property A.15 Γ;K ` e′s :
τ2.ε·H ′2 ·∆;⊥]Λ′2]Λ3 = H ′2 ·∆; Λ′s holds. By Lemma A.12 we haveH1 = (ε+Σn

i=1Hi), then
C,H1 ·H2 ·∆→ C, ε ·H2 ·∆→ C,H2 ·∆. By Lemma A.14 we have C,H2 ·∆→∗ C ′, H ·∆
and Property A.17 and Λ′s = ⊥] Λ′2] Λ3 v Λ1] Λ2] Λ3 = Λs prove the thesis.
∗ rule (VAPP3)

We know that es = #((x){V a}, v) where V a = G1.e1, . . . , Gn.en, e′s = ej{v/x, −→c /−→y } for
j ∈ {1, . . . , n} and ρ ` C, es → C, e′s. From our hypothesis and from Lemma A.8(2) we have
that for all i ∈ {1, . . . , n} it holds Γ, x : τ1,

−→yi :
−→
ti ;K ` ei : τ2 . Hi; Λ3. By Lemma A.11

we also know that Γ;K ` v : τ1 . ε;⊥. So by Lemma A.9 we have that for i ∈ {1, . . . , n}
Γ;K ` ei{v/x,−→τ /−→y } : τ . Hi; Λ3. By Lemma A.12 we have Hj = ε for j ∈ {1, 2}, then
C,H1 ·H2 ·∆ → C, ε ·H2 ·∆ → C,H2 ·∆ → C, ε ·∆ → C,∆. The thesis follows by using
Lemma A.14.

– rule (TDLET)
If the last rule in the derivation is (TDLET) we know that there is a subderivation with conclusions
γ(G) = −→y : −→τ and Γ,−→y : −→τ ;K ` e1 : τ1 .H1; Λ1 and Γ;Kx̃, (x̃, τ1, ∆′, Λ′) ` e2 : τ .H2; Λ2

with ∆′ = askG.H1 ⊗ fail Λ′ = Λ1 when x̃ /∈ dom(K) or ∆′ = askG.H1 ⊗∆ and Λ′ = Λ1]Λ
when K(x̃) = (τ1, ∆, Λ). There are two rules by which ρ ` C, es → C ′, e′s can be derived.

∗ rule (DLET1)
We know that e′s = dlet x̃ = e1 whenG in e′2 and ρ′ ` C, e2 → C ′, e′2 with ρ′ =
ρ[G.e1, ρ(x̃)/x̃]. By Lemma A.1 Γ ` ρ : K ′ with K ′ = Kx̃, (x̃, τ, ∆′) and by Lemma A.2 we
know that Γ ` ρ′ : K ′. So by induction hypothesis Γ;K ′ ` e′2 : τ .H ′2; Λ′2 with C,H →∗ C ′, H
for some H v H ′. The judgement Γ;K ` e′s : τ . H ′2; Λ′2 follows by applying the rule (TDLET)
and since Λ′s = Λ′2 v Λ2 = Λs.
∗ rule (DLET2)

We know that e′s = v and ρ ` C, es → C, e′s. By hypothesis we know that Γ;Kx̃, (x̃, τ1, ∆′, Λ′) `
v : τ . H2;⊥ and by the Lemma A.13 we have Γ;K ` v : τ . H2;⊥ and the thesis follows by
choosing vacuously.

44

– rule (TDVAR)
By the premise of rule (TDVAR) K(x̃) = (τ, ∆, Λ), where ∆ =

⊗
i∈{1,...,n} ask Gi.Hi ⊗ fail ,

where each Hi abstracts the corresponding expression ei stored in ρ(x̃) = G1.e1, . . . , Gn.en . We
have to prove that Γ;K ` e : τ . H ′; Λ, if ρ ` C, x̃ → C, e, that implies that there exists a
j ∈ {1, . . . , n} such that e = ej . Since Γ ` ρ : K we have that for all i ∈ {1, . . . , n} it holds
Γ,−→yi : −→τi ` ei : τ . Hi; Λ where γ(Gi) = −→yi : −→τi and by Lemma A.9 we conclude that
∀i ∈ {1, . . . , n} it is Γ;K ` ei{

−→
ti /
−→yi} : τ .Hi; Λ. The thesis holds from Lemma A.14 and Λ v Λ.

– rule (TAPP)

By the premise of rule (TAPP) we know that Γ;K ` e1 : τ1
K′|H3;Λ3−−−−−−→ τ2 . H1; Λ1, Γ;K ` e2 :

τ1 . H2; Λ2 and K ′ v K hold. Three rules only may drive ρ ` C, es → C ′, e′s.

∗ rule (APP1)
We know that e′s = e′1 e2. By using the induction hypothesis we have that Γ;K ` e′1 :

τ1
K′|H3;Λ3−−−−−−→ τ2 . H

′
1; Λ′1 with C,H1 →∗ C ′, H for some H v H ′1 and Λ′1 v Λ1. By the (TAPP)

rule we have Γ;K ` e′s : τ2 .H
′
1 ·H2 ·H3; Λ′1]Λ2]Λ3 and by Lemma A.14 and Property A.17

we can establish the thesis.
∗ rule (APP2)

We know that e′s = (λfx.e) e2. By using Lemma A.11 we have Γ;K ` λfx.e : τ1
K′|H3;Λ3−−−−−−→

τ2 . ε;⊥ and by the induction hypothesis Γ;K ` e′2 : τ1 . H
′
2; Λ′2 with C, H2 →∗ C ′, H for

some H v H ′2 and Λ′2 v Λ2. By (TAPP) Γ;K ` e′s : τ2 . ε · H ′2 · H3;⊥] Λ′2] Λ3 holds.
By Property A.15 ε ·H ′2 ·H3 = H ′2 ·H3 holds, and we also have that H1 = (ε +

∑1
i=1Hi) by

Lemma A.12. So C,H1 · H2 · H3 → C, ε · H2 · H3 → C,H2 · H3 →∗ H · H3 and the thesis
follows by Property A.17 and because ⊥] Λ′2] Λ3 v Λ1] Λ2] Λ3.
∗ rule (APP3)

We know that e′s = e{v/x, (λfx.e)/f} and ρ ` C, es → C, e′s. We prove that Γ;K `

e{v/x, (λfx.e)/f} : τ2 . H3; Λ3. By Lemma A.11 we know that Γ;K ` e1 : τ1
K′|H3;Λ3−−−−−−→

τ2 . ε;⊥ and Γ;K ` e2 : τ1 . ε;⊥. By hypothesis and Lemma A.8 we conclude that Γ, x : τ1, f :

τ1
K′|H3;Λ3−−−−−−→ τ2;K ` e : τ2 . H3; Λ3. By Lemma A.9 we have that Γ;K ` e{v/x, (λfx.e)/f} :

τ2 . H3; Λ3. The thesis follows because it holds Hj = (ε +
∑n

i=1Hi) for j ∈ {1, 2} by
Lemma A.12 and because C,H1 ·H2 ·H3 → C, ε ·H2 ·H3 → C,H2 ·H3 → C, ε ·H3 → C,H3.

– rule (TLET)
By the premise of rule (TLET) we know that Γ;K ` e1 : τ1 . H1; Λ1 and Γ, x : τ1;K ` e2 :
τ2 . H2; Λ2 hold. There are only two rules by which ρ ` C, es → C ′, e′s can be derived.

∗ rule (LET1)
We know that e′s = letx = e′1 in e2. By the induction hypothesis we have that Γ;K ` e′1 : τ1 .
H ′1; Λ′1 and C,H1 →∗ C ′, H for someH v H ′1, Λ′1 v Λ1 and Γ;K ` e′s : τ2 .H

′
1 ·H2; Λ′1]Λ2.

The thesis follows by Lemma A.14 and Property A.17.
∗ rule (LET2)

We know that e′s = e2{v/x}, ρ ` C, es → C, e′s, Γ;K ` v : τ1 . H1; Λ1 and Γ, x : τ1;K `
e2 : τ2 . H2; Λ2. By Lemma A.11 Γ;K ` v : τ1 . ε;⊥ and by Lemma A.9 Γ;K ` e2{v/x} :
τ2 .H2; Λ2. By Lemma A.12 we have H1 = (ε+

∑n
i=1Hi), so C,H1 ·H2 → C, ε ·H2 → C,H2

proving the thesis.

45

– rule (TIF)
By the premise of rule (TIF) we know that Γ;K ` e1 : bool . H1; Λ1, Γ;K ` e2 : τ . H2; Λ2

and Γ;K ` e3 : τ . H3; Λ3 hold. There are three rules only by which ρ ` C, es → C ′, e′s can be
derived.

∗ rule (IF1)
We know that e′s = if e′1 then e2 else e3. By using the induction hypothesis we have that Γ;K `
e′1 : bool . H ′1; Λ′1 with C, H1 →∗ C ′, H for some H v H ′1 and Λ′1 v Λ1. So by rule (TIF)
we conclude that Γ;K ` e′s : τ . H ′1 · (H2 + H3); Λ′1] Λ2] Λ3 and the thesis follows by
Lemma A.14 and Property A.17.
∗ rule (IF2)

We know that e′s = e2, ρ ` C, es → C, e′s and Γ;K ` e2 : τ .H2; Λ2. By Lemma A.12 we know
H1 = (ε+

∑n
i=1Hi), so the thesis is immediate becauseC,H1 ·(H2+H3)→ C, ε·(H2+H3)→

C,H2.
∗ rule (IF3)

Similar to rule (IF2)

– rule (TSUB)
By the premise of rule (TSUB) we know Γ;K ` es : τ ′ . H ′; Λ′, τ ′ ≤ τ and Hs = H ′ + H and
Λ′ v Λs. Then by the induction hypothesis Γ;K ` e′s : τ ′ . H ′1; Λ′1, and C, H ′ →∗ C ′, H ′2 for
some H ′2 v H ′1 and Λ′1 v Λ′. By applying the (TSUB) rule with H ′s = H ′1 + H and Λ′s = Λ′ we
have Γ;K ` e′s : τ ′ . H ′s; Λ′s for some Λ′s. The thesis follows because C,Hs = C,H ′ + H →
C,H ′ →∗ C ′, H ′2 and because H ′2 v H ′1 v H ′s.

– rule (TFRAME)
By the premise of the rule TFRAME we know that Γ;K ` e : τ . H; Λ holds. There are two rules
only by which ρ ` C, es → C ′, e′s can be derived:

∗ rule (FRAME1)
We know that e′s = ψl[e′], ρ ` C, es → C ′, e′s. By the induction hypothesis we have that Γ;K `
e′ : τ . H ′; Λ′ and C,H → C ′, H ′′ for some H ′′ v H ′ and Λ′ v Λ. By applying the rule
(TFRAME) we have Γ;K ` e′s : τ . ψl

′
[H ′]; Λ′] [l′ 7→ l] and C,ψl

′
[H] → C ′, ψl

′
[H ′′] (by

Property A.17) and Λ′] [l′ 7→ l] v Λ] [l′ 7→ l].
∗ rule (FRAME2)

We know that e′s = v and ρ ` C, es → C, e′s. By hypothesis we know that Γ;K ` v : τ . H; Λ
and by Lemma A.11 we have Γ;K ` v : τ . ε;⊥ so the thesis follows immediately.

Corollary 1 (Over-approximation). Let e be a closed expression; and let ρ be a dynamic environment
such that dom(ρ) includes the set of parameters of e and Γ ` ρ : K.
If Γ;K ` e : τ .H; Λ and ρ ` C, e→∗ C ′, e′, then Γ;K ` e′ : τ .H ′; Λ′ and there exists a sequence
of transitions C, H →∗ C ′, H ′′, for some H ′′ v H ′ and Λ′ v Λ.

Proof. An easy inductive reasoning on the length of the computation suffices to prove the statement by
using Theorem 4.1.

Theorem 4.2 (Progress).
Let e be a closed expression such that Γ;K ` e : τ . H; Λ; and let ρ be a dynamic environment such

46

that dom(ρ) includes the set of parameters of e, and Γ ` ρ : K.
If ρ ` C, e9; e violates no policies; and H is viable for C (i.e. C, H 9+ C ′, fail), then e is a value.

Proof. Let below DFV (e) be the set of the free dynamic variables occurring in e. By induction on the
depth of the typing derivations and then by cases on the last rule applied. The cases (TCONST), (TFACT),
(TABS), (TVARIATION) are immediate since es is a value. The case (TVAR) cannot occur because es is
closed with respect to identifiers. So we assume that es is not a value and it is stuck in C.

– rule (TIF) es = if e1 then e2 else e3

If es is stuck, then it is only the case that e1 is stuck. By induction hypothesis this can occur only
when e1 is a value. Since Γ;K ` e1 : bool . H1; Λ1 by our hypothesis and v = true or v = false
by Lemma A.7(1), either rule (IF2) or (IF3) applies, contradiction.

– rule (TLET) es = letx = e1 in e2

If es is stuck, then it is only the case that e1 is stuck. By induction hypothesis this can occur only
when e1 is a value, hence (LET2) rule applies, contradiction.

– rule (TTELL) es = tell(e)
If es is stuck, then it is only the case that e is stuck. By induction hypothesis this can occur only
when e is a value v and by Lemma A.7(4) v = F , so the rule (TELL2) applies, contradiction.

– rule (TRETRACT) es = retract(e)
Similar to the (TTELL) case.

– rule (TAPPEND) es = e1 ∪ e2

If es is stuck then there are only two cases: (1) e1 is stuck; (2) e1 is a value and e2 is stuck. If e1

is stuck by induction hypothesis e1 is a value and by Lemma A.7(3) e1 = (x){V a}. If e2 reduces,
rule (VAPPEND2) applies, contradiction. If e2 is stuck we are in case (2). By induction hypothesis e2

is a value and Lemma A.7(3) e2 = (y){V a}, hence, rule (VAPPEND3) applies, contradiction.
– rule (TSUB)

Straightforward by induction hypothesis
– rule (TAPP) es = e1 e2

If es is stuck then there are only two cases: (1) e1 is stuck; (2) e1 is a value and e2 is stuck. If e1 is
stuck by induction hypothesis e1 is a value and by Lemma A.7(2) e1 = λfx.e. If e2 reduces, rule
(APP2) applies, contradiction. If e2 is stuck we are in case (2). By induction hypothesis e2 is a value,
hence, rule (APP3) applies, contradiction.

– rule (TDVAR) es = x̃
If es is stuck we can have two cases only. The first case is that x̃ /∈ dom(ρ). But this is not pos-
sible because DFV (es) ⊆ dom(ρ) by our hypothesis. The second case is that ρ(x̃) = V a and
dsp(C, V a) is not defined. But this is not possible because C, Hs 9? C ′, fail by our hypothesis,
so the dsp(C, V a) is defined and (DVAR) rule applies, contradiction.

– rule (TVAPP) es = #(e1, e2)
If es is stuck then there are only two cases: (1) e1 is stuck; (2) e1 is a value and e2 is stuck. If e1

is stuck by induction hypothesis e1 is a value and by Lemma A.7(3) e1 = (x){V a}. If e2 reduces,
rule (VAAPP2) applies, contradiction. If e2 is stuck we are in case (2). By induction hypothesis e2 is
a value, hence, rule (VAAPP3) applies, contradiction.

– rule (TDLET) es = dlet x̃ = e1 whenG in e2

If es is stuck, then it is only the case that e2 is stuck. By the premise of (TDLET) rule and by
Lemma 4.2 Γ ` ρ′ : K ′ with ρ′ = ρ[G.e, ρ(x̃)/x̃] and K ′ = Kx̃, (x̃, τ,∆

′,Λ′). Since DFV (e2) ⊆

47

DFV (es) ⊆ dom(ρ) ⊆ dom(ρ′) we can apply the induction hypothesis so e2 is a value. In this
case the (DLET2) rule applies, contradiction.

– rule (TFRAME) es = ψ[e] If es is stuck, then it is only the case that e is stuck because we
assumed that es violates no policies. But the induction hypothesis says that e is a value, thus the rule
(FRAME2) can be applied (contradiction).

Theorem 4.3 (Correctness).
Let es be a closed expression such that Γ;K ` es : τ .Hs; Λs; let ρ be a dynamic environment such that
dom(ρ) includes the set of parameters of es, and that Γ ` ρ : K; finally let C be a context such that
C,Hs 9+ C ′, fail . Then either the computation of es terminates yielding a value (ρ ` C, es →∗ C ′′, v)
or it diverges, but it never gets stuck.

(By contradiction). Assume that for some i it is ρ ` C, es →i C ′′, eis 9 where eis is a non-value
stuck expression. By Proposition 1 we have Γ;K ` eis : τ . H i

s; Λ and C,Hs →? C ′′, H i
s, and since

C,Hs 9 C ′, fail we have also C,H i
s 9 C ′, fail . Then, Theorem 4.2 suffices to show that eis is a value

(contradiction).

B. Properties of the Load Time Analysis

In this subsection we prove some properties about the load time analysis in Section 5, in particular
we prove Theorems 5.1, 5.2. Firstly, we define the complete lattice of the analysis estimate by order-
ing ℘(Context) and ℘(Policies) by inclusion and by exploiting the standard construction of cartesian
product and functional space. More in detail, we write (Σ1

◦,Σ
1
•,Ψ

1
◦,Ψ

1
•) v (Σ2

◦,Σ
2
•,Ψ

2
◦,Ψ

2
•), whenever

their components are ordered by pointwise set inclusion. Furthermore, their meet (Σ1
◦,Σ

1
•,Ψ

1
◦,Ψ

1
•) u

(Σ2
◦,Σ

2
•,Ψ

2
◦,Ψ

2
•) = (Σ1

◦ u Σ2
◦,Σ

1
• u Σ2

•,Ψ
1
◦ uΨ2

◦,Ψ
1
• uΨ2

•), where u is pointwise set intersection.
By exploiting standard lattice theory it is straightforward to prove that analysis estimates are a complete

lattice. In the following we denote the top of this lattice with (Σ>,Σ>,Ψ>,Ψ>).

Lemma B.1.

1. For all H l (Σ>,Σ>,Ψ>,Ψ>) � H l

2. Let E1 and E2 be such that E1 � H l and E2 � H l then E1 u E2 � H l

Proof. The thesis is proved by induction on the structure of H l and by using the analysis rules. The
proof is quite standard and below we only discuss the case H l = (H l1

1 ·H
l2
2)l.

1. By induction hypothesis (Σ>,Σ>,Ψ>,Ψ>) � H li
i for i ∈ {1, 2}. By definition ∀l′ ∈ Lab

Σ>(l′) = Context and Ψ>(l′) = Policies. Then, it holds Σ>(l) ⊆ Σ>(l1), Σ>(l1) ⊆ Σ>(l2) and
Σ>(l2) ⊆ Σ>(l). Also, it holds Ψ>(l) ⊆ Ψ>(l1), Ψ>(l1) ⊆ Ψ>(l2) and Ψ>(l2) ⊆ Ψ>(l). These
inclusions satisfy the premises of the rule (ASEQ1), then we conclude (Σ>,Σ>,Ψ>,Ψ>) � H l.

2. From hypothesis for i = 1, 2 Ei = (Σi
◦,Σ

i
•,Ψ

i
◦,Ψ

i
•) � H

l and from the premises of rule (ASEQ1),
we know that Σi

◦(l) ⊆ Σi
◦(l1), Σi

•(l1) ⊆ Σi
◦(l2), Σi

•(l2) ⊆ Σi
•(l) and that Ψi

◦(l) ⊆ Ψi
◦(l1),

Ψi
•(l1) ⊆ Ψi

◦(l2), Ψi
•(l2) ⊆ Ψi

•(l). Since ∩ is monotonic with respect to⊆ it holds Σ1
◦(l)∩Σ2

◦(l) ⊆
Σ1
◦(l1) ∩ Σ2

◦(l1), Σ1
•(l1) ∩ Σ2

•(l1) ⊆ Σ1
◦(l2) ∩ Σ2

◦(l2), Σ1
•(l2) ∩ Σ2

•(l2) ⊆ Σ1
•(l)∩ ⊆ Σ2

•(l). The
same holds for the policies, Ψ1

◦(l)∩Ψ2
◦(l) ⊆ Ψ1

◦(l1)∩Ψ2
◦(l1), Ψ1

•(l1)∩Ψ2
•(l1) ⊆ Ψ1

◦(l2)∩Ψ2
◦(l2),

Ψ1
•(l2) ∩Ψ2

•(l2) ⊆ Ψ1
•(l)∩ ⊆ Ψ2

•(l). Then the induction hypothesis and the above inclusions fulfil
the premises of rule (ASEQ1) and we conclude (Σ1

◦ u Σ2
◦,Σ

1
• u Σ2

•) � H
l.

48

By exploiting the above two lemmata we can prove

Theorem 5.1 (Existence of estimates).
Given H l and an initial context C, the set {E = (Σ◦,Σ•,Ψ◦,Ψ•) | E � H l} of the acceptable estimates
of the analysis for H l and C is a Moore family; hence, there exists a minimal valid estimate.

Proof. We need to show that given a set of solutions Y = {(Σi
◦,Σ

i
•,Ψ

i
◦,Ψ

i
•) | i ∈ {1, . . . , n}} ⊆

X = {(Σ◦,Σ•,Ψ◦,Ψ•) � H l}, it is uY ∈ X . By applying n + 1 times Lemma B.1 we have that
(Σ>,Σ>,Ψ>,Ψ>) u (Σ1

◦,Σ
1
•,Ψ

1
◦,Ψ

1
•) u · · · u (Σn

◦ ,Σ
n
• ,Ψ

n
◦ ,Ψ

n
•) � H

l holds.

Two prove the subject reduction we need the following definition and two lemmata.

Definition B.1 (Immediate subterm). Let H and H1 be history expressions (for simplicity we omit
labels). Call H1 immediate subterm of H if H is of either form H1 + H2 or H2 + H1 or H1 · H2 or
H2 ·H1 or µh.H1 or askG.H1 ⊗∆ or ψ[H].

Lemma B.2 (Pre-substitution). Let H l, H l1
1 and H l2

2 be history expressions such that H l1
1 is an immedi-

ate subterm of H l; let E = (Σ◦,Σ•,Ψ◦,Ψ•) be such that E � H l, E � H l1
1 and E � H l2

2 .
If Σ◦(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆ Σ•(l1), Ψ◦(l1) ⊆ Ψ◦(l2), Ψ•(l2) ⊆ Ψ•(l1) then E � H l[H l2

2 /H
l1
1].

Proof. The proof is by cases on the structure of H l.

– case �, εl, tell F l, fail l, retract F l, hl

straightforward.
– case H l = (H l1

1 +H l3
3)l

From the hypothesis and from the premises of rule (ASUM) it holds Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l2),
Σ•(l2) ⊆ Σ•(l1) ⊆ Σ•(l), Ψ◦(l) ⊆ Ψ◦(l1) ⊆ Ψ◦(l2), Ψ•(l2) ⊆ Ψ•(l1) ⊆ Ψ•(l). So by applying
the rule (ASUM) with the new inclusions we conclude (Σ◦,Σ•,Ψ◦,Ψ•) � (H l2

2 +H l3
3)l.

– case H l = (H l3
3 +H l1

1)l

Similar to the previous case.
– case H l = (H l1

1 ·H
l3
3)l

From the hypothesis and the premises of rule (ASEQ1) we have Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆
Σ•(l1) ⊆ Σ•(l3), Ψ◦(l) ⊆ Ψ◦(l1) ⊆ Ψ◦(l2) and Ψ•(l2) ⊆ Ψ•(l1) ⊆ Ψ•(l3). So by applying the
rule (ASEQ1) with the new inclusions we conclude (Σ◦,Σ•,Ψ◦,Ψ•) � (H l2

2 ·H
l3
3)l.

– case H l = (H l3
3 ·H

l1
1)l

From the hypothesis and the premises of rule (ASEQ1) we have Σ•(l3) ⊆ Σ◦(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆
Σ•(l1) ⊆ Σ•(l), Ψ•(l3) ⊆ Ψ◦(l1) ⊆ Ψ◦(l2) and Ψ•(l2) ⊆ Ψ•(l1) ⊆ Ψ•(l). So by applying the rule
(ASEQ1) with the new inclusions we conclude (Σ◦,Σ•,Ψ◦,Ψ•) � (H l3

3 ·H
l1
1)l.

– case H l = (µh.H l1
1)l

From the hypothesis and the premises of rule (AREC) we have Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆
Σ•(l1) ⊆ Σ•(l), Ψ◦(l) ⊆ Ψ◦(l1) ⊆ Ψ◦(l2) and Ψ•(l2) ⊆ Ψ•(l1) ⊆ Ψ•(l). So by applying the rule
(AREC) with the new inclusions we have (Σ◦,Σ•,Ψ◦,Ψ•) � (µh.H l2

2)l.
– case H l = (askG.H l1

1 ⊗∆l3)l

From the hypothesis and the premises of rule (AASK1) we have Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆
Σ•(l1) ⊆ Σ•(l), Ψ◦(l) ⊆ Ψ◦(l1) ⊆ Ψ◦(l2), Ψ•(l2) ⊆ Ψ•(l1) ⊆ Ψ•(l). So by the rule (AASK1)
with the new inclusions we conclude (Σ◦,Σ•,Ψ◦,Ψ•) � (askG.H l2

2 ⊗∆l3)l.

49

– case H l = ψl[H l1
1]

From the hypothesis and the premises of rule (AASK1) we have Σ◦(l) ⊆ Σ◦(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆
Σ•(l1) ⊆ Σ•(l), {ψ} ⊆ Ψ◦(l) ⊆ Ψ◦(l1) ⊆ Ψ◦(l2), Ψ•(l2) ⊆ Ψ•(l1)\{ψ} ⊆ Ψ•(l). So by the rule
(AFRAME) with the new inclusions we conclude (Σ◦,Σ•,Ψ◦,Ψ•) � ψl[H

l2
2].

Lemma B.3 (Substitution). Let H l, H l1
1 and H l2

2 be history expressions such that H l1
1 is a subterm of

H l; let E = (Σ◦,Σ•,Ψ◦,Ψ•) be such that E � H l, E � H l1
1 and E � H l2

2 .
If Σ◦(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆ Σ•(l1), Ψ◦(l1) ⊆ Ψ◦(l2), Ψ•(l2) ⊆ Ψ•(l1) then E � H l[H l2

2 /H
l1
1].

Proof. Since H l1
1 is subterm of H l, there exists then another subterm of H l, say H l3

3 , such that H l1
1

is an immediate subterm of H l3
3 . Since (Σ◦,Σ•,Ψ◦,Ψ•) � H l, there exists then a subderivation

with conclusion (Σ◦,Σ•,Ψ◦,Ψ•) � H l3
3 . Since H l1

1 is an immediate subterm of H l3
3 there exists an-

other subderivation with conclusion (Σ◦,Σ•,Ψ◦,Ψ•) � H l1
1 . So by applying Lemma B.2, we have

(Σ◦,Σ•,Ψ◦,Ψ•) � H l3
3 [H l2

2 /H
l1
1]. Since our analysis is defined on the syntax of history expressions

and since Σ◦(l3), Σ•(l3), Ψ◦(l3) and Ψ•(l3) have not changed, we can reuse the same steps used for
(Σ◦,Σ•,Ψ◦,Ψ•) � H l to prove (Σ◦,Σ•,Ψ◦,Ψ•) � H l[H l2

2 /H
l1
1].

Theorem 5.2 (Subject Reduction).
Let H l

1 be a closed history expression and let (Σ◦,Σ•,Ψ◦,Ψ•) � H l
1. If for all C ∈ Σ◦(l) we have that

C,H l
1 → C ′, H l′

2 then (Σ◦,Σ•,Ψ◦,Ψ•) � H l′
2 ; Σ◦(l) ⊆ Σ◦(l

′); Σ•(l
′) ⊆ Σ•(l); Ψ◦(l) ⊆ Ψ◦(l

′); and
Ψ•(l

′) ⊆ Ψ•(l).

Proof. By induction on the depth of the analysis derivation and then by cases on the last rule applied.

– rule (ANIL)
The statement holds vacuously.

– rule (AASK2)
The statement holds vacuously.

– rule (AEPS)
We know that in this case C, εl → C, �, then the statement holds vacuously.

– rule (ATELL)
We know that in this case C, tell F l → C ∪ {F}, �, then the statement holds vacuously.

– rule (ARETRACT)
Similar to (ATELL) rule

– rule (ASEQ1)
In this case we have H = (H l1

1 ·H
l2
2)l and H ′ = (H l3

3 ·H
l2
2)l. We have to prove (Σ◦,Σ•,Ψ◦,Ψ•) �

(H l3
3 ·H

l2
2)l, Σ◦(l) ⊆ Σ◦(l) (trivial), Σ•(l) ⊆ Σ•(l) (trivial), Ψ◦(l) ⊆ Ψ◦(l) (trivial) and Ψ•(l) ⊆

Ψ•(l) (trivial). The premises of (ASEQ1) guarantee that (Σ◦,Σ•,Ψ◦,Ψ•) � H l1
1 , (Σ◦,Σ•) � H l2

2 ,
Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆ Σ◦(l), Ψ◦(l) ⊆ Ψ◦(l1), Ψ•(l1) ⊆ Ψ◦(l2) and
Ψ•(l2) ⊆ Ψ◦(l). By the premises of the semantic rule it holds C,H l1

1 → C ′, H l3
3 . The induction

hypothesis says that (Σ◦,Σ•,Ψ◦,Ψ•) � H
l3
3 , Σ◦(l1) ⊆ Σ◦(l3), Σ•(l3) ⊆ Σ•(l1), Ψ◦(l1) ⊆ Ψ◦(l3)

and Ψ•(l3) ⊆ Ψ•(l1). So transitivity of set inclusion suffices to fulfill the premises of (ASEQ1) and
to conclude that (Σ◦,Σ•,Ψ◦,Ψ•) � (H l3

3 ·H
l2
2)l holds.

50

– rule (ASEQ2)
In this case we know H l = (� ·H l2

2)l and H ′l
′

= H l2
2 . The thesis is straightforward by the premises

of (ASEQ2) rule.
– rule (ASUM)

In this case we have H l = (H l1
1 +H l2

2)l and two cases for H ′l
′
:

1. case H ′l
′

= H
′l′1
1 . By the semantic rule we know C,H l1

1 → C ′, H
′l′1
1 , and by the induction

hypothesis (Σ◦,Σ•,Ψ◦,Ψ•) � H
′l′1
1 , Σ◦(l1) ⊆ Σ◦(l

′
1) and Σ•(l

′
1) ⊆ Σ•(l1), Ψ◦(l1) ⊆ Ψ◦(l

′
1),

Ψ•(l
′
1) ⊆ Ψ•(l1). The thesis follows then by transitivity of set inclusion.

2. case H ′l
′

= H
′l′2
2 . Similar to case (1).

– rule (AASK1)
In this case we have H l = (askG.H l1

1 ⊗∆l2)l and two cases for H ′l
′
:

1. case H ′l
′

= H l1
1 . In this case we know C � G and the thesis follow immediately from the

premises of (AASK1).
2. case H ′l

′
= ∆l2 . Similar to case (1) with the only difference that C 2 G.

– rule (AREC)
In this case we know H l = (µ.H l1

1)l and H ′l
′

= H l1
1 [(µ.H l1

1)l/h]. The premises of the rule
guarantee that (Σ◦,Σ•,Ψ◦,Ψ•) � H l1

1 , Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ•(l), Ψ◦(l) ⊆ Ψ◦(l1) and
Ψ•(l1) ⊆ Ψ•(l). We have two cases

1. h does not occur in H1. In this case the thesis trivially follows since H l1
1 [(µ.H l1

1)l/h] = H1.
2. h occurs n times with labels l1, . . . , ln. Since our analysis is defined on the syntax of history

expressions, in the proof of (Σ◦,Σ•,Ψ◦,Ψ•) � H
l1
1 there exists a subderivation with conclusion

(Σ◦,Σ•,Ψ◦,Ψ•) � hl
i
. By the premises of the rule (AVAR) we know that Σ◦(li) ⊆ Σ◦(l),

Σ•(l) ⊆ Σ•(li), Ψ◦(li) ⊆ Ψ◦(l) and Ψ•(l) ⊆ Ψ•(li). So by applying Lemma B.3 n-times, we
have (Σ◦,Σ•,Ψ◦,Ψ•) � H

l1
1 [(µ.H l1

1)l/hl
i
] for i ∈ {1, . . . , n}. Now the premises of rule (AREC)

suffices to establish that Σ◦(l) ⊆ Σ◦(l1), Σ•(l1) ⊆ Σ•(l), Ψ◦(l) ⊆ Ψ◦(l1) and Ψ•(l1) ⊆ Ψ•(l).

– rule (AFRAME)
In this case we have H l = ψl[H l1

1] and C,H l1
1 → C ′, H l2

2 . By the premises of the rule (AFRAME)
we know (Σ◦,Σ•,Ψ◦,Ψ•) � H l1

1 , and by induction hypothesis it holds (Σ◦,Σ•,Ψ◦,Ψ•) � H l2
2 ,

Σ◦(l1) ⊆ Σ◦(l2), Σ•(l2) ⊆ Σ•(l1), Ψ◦(l1) ⊆ Ψ◦(l2) and Ψ•(l2) ⊆ Ψ•(l1). The thesis follows by
transitivity of set inclusion and by applying the rule (AFRAME).

51

