95 research outputs found

    Phase-Fitted and Amplification-Fitted Higher Order Two-Derivative Runge-Kutta Method for the Numerical Solution of Orbital and Related Periodical IVPs

    Get PDF
    A phase-fitted and amplification-fitted two-derivative Runge-Kutta (PFAFTDRK) method of high algebraic order for the numerical solution of first-order Initial Value Problems (IVPs) which possesses oscillatory solutions is derived. We present a sixth-order four-stage two-derivative Runge-Kutta (TDRK) method designed using the phase-fitted and amplification-fitted property. The stability of the new method is analyzed. The numerical experiments are carried out to show the efficiency of the derived methods in comparison with other existing Runge-Kutta (RK) methods

    A class of explicit two-step hybrid methods for second-order IVPs

    Get PDF
    AbstractA class of explicit two-step hybrid methods for the numerical solution of second-order IVPs is presented. These methods require a reduced number of stages per step in comparison with other hybrid methods proposed in the scientific literature. New explicit hybrid methods which reach up to order five and six with only three and four stages per step, respectively, and which have optimized the error constants, are constructed. The numerical experiments carried out show the efficiency of our explicit hybrid methods when they are compared with classical Runge–Kutta–Nyström methods and other explicit hybrid codes proposed in the scientific literature

    An Optimized Runge-Kutta Method for the Numerical Solution of the Radial Schrödinger Equation

    Get PDF
    An optimized explicit modified Runge-Kutta (RK) method for the numerical integration of the radial Schrödinger equation is presented in this paper. This method has frequency-depending coefficients with vanishing dispersion, dissipation, and the first derivative of dispersion. Stability and phase analysis of the new method are examined. The numerical results in the integration of the radial Schrödinger equation with the Woods-Saxon potential are reported to show the high efficiency of the new method

    High Order Multistep Methods with Improved Phase-Lag Characteristics for the Integration of the Schr\"odinger Equation

    Full text link
    In this work we introduce a new family of twelve-step linear multistep methods for the integration of the Schr\"odinger equation. The new methods are constructed by adopting a new methodology which improves the phase lag characteristics by vanishing both the phase lag function and its first derivatives at a specific frequency. This results in decreasing the sensitivity of the integration method on the estimated frequency of the problem. The efficiency of the new family of methods is proved via error analysis and numerical applications.Comment: 36 pages, 6 figure
    • …
    corecore