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Abstract

A class of explicit two-step hybrid methods for the numerical solution of second-order IVPs is presented. These
methods require a reduced number of stages per step in comparison with other hybrid methods proposed in the
scientific literature. New explicit hybrid methods which reach up to order five and six with only three and four
stages per step, respectively, and which have optimized the error constants, are constructed. The numerical ex-
periments carried out show the efficiency of our explicit hybrid methods when they are compared with classical
Runge–Kutta–Nyström methods and other explicit hybrid codes proposed in the scientific literature.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the last two decades there has been a great interest in the research of new methods for the numerical
integration of initial value problems associated to second order ODEs

y′′ = f (t, y), y(t0) = y0, y′(t0) = y′
0, (1)

in which the first derivative does not appear explicitly. Such problems often arise in different fields of
applied sciences such as celestial mechanics, molecular dynamics, quantum mechanics, spatial
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semi-discretizations of wave equations, electronics, and so on (see Refs.[11,12]), and they can be effi-
ciently solved by using Runge–Kutta–Nyström (RKN) methods or by using special multistep methods
for second order ODEs (see[9]).
In the case of special multistep methods for second order ODEs, particular explicit hybrid algorithms

have been proposed by several authors[1–3,8,13,14,17,15,16]. A pioneer paper is due to Chawla[1];
in it (by using the explicit two-step Störmer method as an intermediate stage) a modification of the
classical Numerov method is presented. In this way he obtains a fourth-order two-stage explicit hybrid
method which has better stability properties than the classical Numerov method. In later papers, several
authors[2,3,8,13]have obtained explicit hybrid methods with algebraic order four and six in the context
of initial-value problems with periodic or oscillating solutions. The maximum algebraic order obtained
by the explicit hybrid methods presented in the literature until now is eight (see for example[14,17]).
But the main handicap of these methods is that they require a high number of stages per step. So, the
sixth-order hybrid methods require at least six stages per step, whereas the eight-order hybrid methods
use at least ten stages per step. This fact is due to the technique used in the construction of the methods,
which is based on the evaluation of interpolatory off-step nodes with high accuracy, and increases the
computational cost. In this paper we investigate the construction of explicit hybrid methods without this
drawback.
Recently, Coleman[5] has investigated the order conditions of two-step hybrid methods for differential

systemsof type (1)byusing the theoryofB-series.So, thisauthoroffersanalternative for thedetermination
of the order of a two-step hybrid method based on checking certain relationships between the coefficients
of the method, analogously to the case of RK or RKN methods. He has considered two-step hybrid
methods of the form

Yi = (1+ ci)yn − ciyn−1 + h2
s∑

j=1
aijf (tn + cjh, Yj ), i = 1, . . . , s, (2)

yn+1 = 2yn − yn−1 + h2
s∑

i=1
bif (tn + cih, Yi), (3)

whereyn−1, yn andyn+1 represent approximations fory(tn −h), y(tn) andy(tn +h), respectively. These
methods are characterized by the coefficientsbi , ci andaij , and they can be represented in Butcher
notation by the table

The order conditions (up to order�8) for this class of two-step hybrid methods (in terms of their
coefficients) are tabulated in[5]. In addition, as is usual in the case ofRKorRKNmethods, the coefficients
of the leading term associated to the local truncation error for apth-order two-step hybrid method (2)–(3)
will be denoted as

ep+1(ti) = �(ti)

(p + 2)! [1+ (−1)p+2 − bT�′′(ti)], ti ∈ T2, �(ti) = p + 2, (4)
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where�(ti), �(ti),�′′(ti) andT2 are defined in[5]. The quantity

Cp+1 = ‖(ep+1(t1), . . . , ep+1(tk))‖2,
wherek is the number of trees of orderp + 2 (�(ti) = p + 2), will be called theerror constantfor the
pth-order method.
An important property for amethod to performefficiently is the accuracy versus the computational cost.

In the case of explicit hybrid methods for the numerical integration of (1), this depends on the algebraic
order and the number of stages per step used by the method. So, the purpose of this paper is the design
and construction of two-step explicit hybrid methods so that the ratio� = algebraic order/number of
stagesis as large as possible, which leads to obtain practical and efficient codes. The paper is organized
as follows: In Section 2 we present a class of explicit two-step hybrid methods of the form (2)–(3) which
requiress−1 stages (function evaluations) per step. In Section 3 we derive explicit hybridmethods which
reach up to order five and six with only three and four stages per step, respectively. The derivation of
these methods is based on the order conditions obtained in[5] and we pay special attention to optimize
the error constantCp+1 of the methods. In Section 4 we present some numerical experiments that show
the efficiency of the new methods when they are compared with other methods proposed in the scientific
literature such as RKN methods or explicit hybrid methods. Section 5 is devoted to conclusions.

2. The class of explicit two-step hybrid methods

In this section we present the class of explicit two-step hybrid methods which is the subject of our
study. The methods are of the form (2)–(3) and they are defined by

Y1 = yn−1, Y2 = yn, (5)

Yi = (1+ ci)yn − ciyn−1 + h2
i−1∑
j=1

aijf (tn + cjh, Yj ), i = 3, . . . , s, (6)

yn+1 = 2yn − yn−1 + h2

[
b1fn−1 + b2fn +

s∑
i=3

bif (tn + cih, Yi)

]
, (7)

wherefn−1 andfn representf (tn−1, yn−1)andf (tn, yn), respectively, and the two first nodes arec1=−1,
c2 = 0.
We note that after the starting procedure, the methods only require the evaluation off (tn, yn),

f (tn + c3h, Y3), . . . , f (tn + csh, Ys) in each step (s − 1 function evaluations). Therefore, they can
be considered as two-step hybrid methods withs −1 stages per step which can be represented in Butcher
notation by the table of coefficients
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In order to analyze the phase properties of the two-step hybrid methods above mentioned, we consider
the second order homogeneous linear test model (see[6,10])

y′′(t) = −�2y(t), with �>0. (8)

If an s-stage two-step hybrid method (2)–(3) is applied to the test (8), it may be written in vector form as

Y = (e + c)yn − cyn−1 − H 2AY, H = �h, (9)

yn+1 = 2yn − yn−1 − H 2bTY , (10)

whereY = (Y1, . . . , Ys)
T ande = (1, . . . ,1)T ∈ Rs . Then, solving the stages in (9) we obtain

Y = (I + H 2A)−1(e + c)yn − (I + H 2A)−1cyn−1,

and substituting in (10) we see that the numerical solution satisfies the recursion

yn+1 − S(H 2)yn + P(H 2)yn−1 = 0, (11)

where

S(H 2) = 2− H 2bT(I + H 2A)−1(e + c), P (H 2) = 1− H 2bT(I + H 2A)−1c.

In the case of the explicit two-step hybrid methods (5)–(7), the matrix of coefficientsA is nilpotent of
degrees − 1 (As−1 = 0), and therefore we can write

(I + H 2A)−1 = I − H 2A + H 4A2 − · · · + (−1)s−2H 2s−4As−2.

So, the coefficients of the difference (11) are polynomials inH 2 which are determined in terms of the
coefficients of the method (5)–(7) by the expressions

S(H 2) = 2− H 2bT(e + c) + H 4bTA(e + c) − · · · + (−1)s−1H 2s−2bTAs−2(e + c), (12)

P(H 2) = 1− H 2bTc + H 4bTAc − · · · + (−1)s−1H 2s−2bTAs−2c. (13)

The phase properties of the two-step hybrid methods considered are determined by the characteristic
polynomial of the difference (11):

�2 − S(H 2)� + P(H 2), (14)

and following the nomenclature given in[18], the quantities

�(H) = H − arccos

(
S(H 2)

2
√
P(H 2)

)
, d(H) = 1−

√
P(H 2), (15)

are called thedispersion errorand thedissipation error, respectively. Then, a method is said to be
dispersive of order qanddissipative of order r, if

�(H) = O(Hq+1), d(H) = O(Hr+1).

We remark that themagnitude of the dispersion and dissipation errors is an important feature for solving
second-order IVPs (1) with periodic or oscillating solutions. In such problems, it is also desirable that
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the numerical solution defined by the difference (11) should be periodic, as is the exact solution of the
linear test model (8). This last property is equivalent to the fact that the coefficients of polynomial (14)
satisfy the conditions

P(H 2) ≡ 1, and |S(H 2)|<2, ∀H ∈ (0, Hp), (16)

and the interval(0, Hp) is known as theinterval of periodicityof the method. In[18], the methods
which satisfy conditions (16) are calledzero dissipative(d(H)=0). On the other hand, when the method
possesses a finite order of dissipation, the integration process is stable if the coefficients of polynomial
(14) satisfy the conditions

|P(H 2)|<1, and |S(H 2)|<1+ P(H 2), ∀H ∈ (0, Hs), (17)

and the interval(0, Hs) is known as theinterval of absolute stabilityof the method. The first mention to
these intervals appears in Refs.[4,10].
As an example we consider the explicit hybrid methods (5)–(7) withs = 3 defined by the table of

coefficients

If we impose the order conditions up to algebraic order four (see Coleman[5]) given by

Ae = c2 + c

2
, bTe = 1, bTc = 0, bTc2 = 1/6, bTc3 = 0, bTAc = 0, (18)

for the coefficients of the method we have the unique solution

b1 = b3 = 1

12
, b2 = 5

6
, c3 = 1, a31= 0, a32= 1.

So, the only fourth-order explicit hybrid method with two stages is given by equations

Y3 = 2yn − yn−1 + h2f (tn, yn),

yn+1 = 2yn − yn−1 + h2

12
[fn−1 + 10fn + f (tn+1, Y3)],

and it is theexplicit versionof theNumerovmethodobtainedbyChawla[1].Thecoefficientsof polynomial
(14) for this method are

P(H 2) = 1, S(H 2) = 2− H 2 + H 4

12
,

and therefore it is zero dissipative, dispersive of order four and possesses the interval of periodicity
(0,

√
12).

In the next section we analyze the case of explicit hybrid methods (5)–(7) withs=4 and 5 which reach
up to order five and six, respectively.
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3. Construction of the explicit hybrid methods

Here, we analyze the construction of explicit hybrid methods (5)–(7) which reach up to order five and
six, and only require three and four stages per step, respectively. The construction of such methods is
carried out paying special attention to optimize the error constantCp+1 associated to each method.

3.1. Explicit hybrid methods with three stages (s = 4)

We consider the explicit two-step hybrid methods defined by the table of coefficients

The order conditions up to algebraic order five (see Coleman[5]) are given by (18) and the following
ones

bTc4 = 1/15, bT(c · Ac) = −1/60, bTAc2 = 1/180. (19)

If we impose conditions (18) and (19), the coefficients of the methods are determined in terms of the
arbitrary parameterc3 by the expressions

b1 = c3 + c4

6(1+ c3 + c4 + c3c4)
, b2 = 1− c3 − c4 + 6c3c4

6c3c4
, b3 = 1− c4

6c3(1+ c3)(c3 − c4)
,

b4 = −1+ c3

6(c3 − c4)c4(1+ c4)
, a31= c3(1+ c3)

10(1− c4)
, a32= c3(1+ c3)(−4+ 5c4)

10(−1+ c4)
,

a41= −c4(1+ c4)(3+ 2c3 + c4)

30(−1+ c23)
, a42= c4(1+ c4)(−13c3 + 15c23 + c4)

30(−1+ c3)c3
,

a43= (c3 − c4)c4(1+ c4)

30c3(−1+ c23)
, c4 = −2+ 5c3

−5+ 5c3
,

and the coefficients of polynomial (14) are given by

S(H 2) = 2− H 2 + H 4

12
−
(
1

360
+ bTA2c

)
H 6, P (H 2) = 1− (bTA2c)H 6.

Now, we select the free parameterc3 so that the error constantC6 is as small as possible, obtaining the
values

c3 = 63

100
, C6 = 1.24 · 10−3.
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This fifth-order explicit two-step hybrid method will be denoted as ETSHM5, it is defined by the table
of coefficients

and it possesses the interval of absolute stability(0,2.68).
Other possibilities are to select the free parameterc3 so that the order of dispersion or the order of

dissipation are increased. If we choosec3 so that the method is dispersive of order eight, we obtain

c3 = 25

28
, C6 = 7.26 · 10−2,

and the dispersion and dissipation errors are given by

�(H) = − 13H 9

7257600
+ O(H 11), d(H) = H 6

20160
+ O(H 8).

This fifth-order method which is dispersive of order eight and dissipative of order five will be denoted as
ETSHM5(8, 5), it is defined by the table of coefficients

and it possesses the interval of absolute stability (0, 2.84).
If we select the free parameterc3 so that the order of dissipation is increased, then the method is zero

dissipative

bTA2c = 0,

obtainingc3 = 1. But unfortunately this value of the parameterc3 is incompatible with the fifth-order
conditions (19), and the algebraic order of the method should be restricted to four. So, we investigate the
construction of fourth-order methods which are zero dissipative and dispersive of order six. In order to
do this we impose conditions (18) and

bTA2c = 0, bTA2e = 1

360
,
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obtaining the coefficients of the methods in terms of the arbitrary parametersc3 andc4

b1 = c3 + c4

6(1+ c3 + c4 + c3c4)
, b2 = 1− c3 − c4 + 6c3c4

6c3c4
, b3 = 1− c4

6c3(1+ c3)(c3 − c4)
,

b4 = −1+ c3

6(c3 − c4)c4(1+ c4)
, a42= c4(1+ c4)(−16c3 + 15c23 + c4)

30(−1+ c3)c3
, a32= c3(1+ c3)

2
,

a41= −(c3 − c4)c4(1+ c4)

30(−1+ c23)
, a31= 0, a43= (c3 − c4)c4(1+ c4)

30c3(−1+ c23)
.

We note that the last two conditions imposed (zero dissipation and dispersion of order six) are the
conditionsC3 = 0 andU3 = 1/360 in the notation of Section 9 of[5].
First, we select the free parametersc3 andc4 so that the error constantC5 is as small as possible,

obtaining the values

c4 = −2+ 5c3
−5+ 5c3

, C5 = 1.66 · 10−2.

Now, the free parameterc3 is chosen so that the resulting method is optimized for linear systems of ODEs
(f (t, y) = Ky + g(t)) and possesses order five for this class of differential systems, obtaining

c3 = 33

50
, C∗

6 = 3.26 · 10−4,

whereC∗
6 is the error constant for the class of linear differential systems.

The resulting fourth-order explicit hybridmethodwhich is zero dissipative (dissipative of order infinity)
and dispersive of order six will be denoted as ETSHM4(6,∞), and it is defined by the table of coefficients

The dispersion and dissipation errors for this method are

�(H) = − H 7

40320
+ O(H 9), d(H) = 0,

and it possesses the interval of periodicity (0, 2.75).
We remark that for the nodesc3 = 1 andc4 = 0, Chawla and Rao[2] have derived an explicit hybrid

method of this class with algebraic order four which is also zero dissipative and dispersive of order six.
But this method only has algebraic order four for the class of linear differential systems and its error
constant isC5 = 3.28 · 10−2 (it is greater than the error constant of our method).
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3.2. Explicit hybrid methods with four stages (s = 5)

Now we analyze the case of explicit two-step hybrid methods defined by the table of coefficients

The order conditions up to algebraic order six (see[5]) are given by the following expressions

bTe = 1, bTc = 0, bTc2 = 1/6, bTc3 = 0, bTc4 = 1/15, (20)

bTAc2 = 1/180, bTc5 = 0, bT(c · Ac2) = 1/72, bTAc3 = 0, (21)

together with the simplifying conditions

Ae = c2 + c

2
, Ac = c3 − c

6
. (22)

If we impose conditions (20)–(22), the coefficients of the methods are determined in terms of the
arbitraryparametersc3andc4,whichdefinea two-parameter familyof sixth-orderexplicit hybridmethods,
where the coefficients of polynomial (14) are given by

S(H 2) = 2− H 2 + H 4

12
− H 6

360
+ bTA3(e + c)H 8, P (H 2) = 1+ (bTA3c)H 8.

First we select the free parameters so that the error constantC7 is as small as possible, obtaining the
values

c3 = −1
5
, c4 = −2

5
, C7 = 2.51 · 10−3.

This sixth-order explicit hybrid method will be denoted as ETSHM6, it is defined by the table of
coefficients

and it possesses the interval of absolute stability (0, 3).
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We remark that for the nodesc3 = 1/2 andc4 = −1/2, Tsitouras[16] has derived an explicit hybrid
method of this class with algebraic order six and error constantC7 = 3.45 · 10−3 which is greater than
the error constant of our method.
Other possibilities consist of selecting the nodesc3 andc4 so that the order of dispersion or the order

of dissipation or both orders are increased. If we choosec3 andc4 so that the method is dispersive of
order eight with the error constant being as small as possible, we obtain

c3 = 3

4
, c4 = −25

42
, C7 = 4.91 · 10−3,

and the dispersion and dissipation errors are given by

�(H) = − 11H 9

14515200
+ O(H 11), d(H) = H 8

483840
+ O(H 10).

This sixth-order method which is dispersive of order eight and dissipative of order seven will be denoted
as ETSHM6(8, 7), it is defined by the table of coefficients

and it possesses the interval of absolute stability (0, 2.98).
If we select the nodesc3 andc4 so that the order of dissipation is increased, then the method is zero

dissipative (bTA3c = 0), obtaining

c3 = −2+ 3c4
−3+ 5c4

.

But unfortunately, for this value of the parameterc3 the term of order eight associated to the dispersion
error is not zero for allc4 ∈ R, and the dispersion order of the method is restricted to six. So, we use the
free parameterc4 so that the error constant is as small as possible, obtaining the values

c4 = 7

10
, C7 = 5.73 · 10−3.
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This sixth-order method which is zero dissipative and dispersive of order six will be denoted as ET-
SHM6(6,∞), and it is defined by the table of coefficients

The dispersion and dissipation errors for this method are

�(H) = − H 7

40320
+ O(H 9), d(H) = 0.

and it possesses the interval of periodicity (0, 2.75).

4. Numerical experiments

In order to evaluate the effectiveness of the new explicit hybrid methods derived above, we consider
several model problems. The newmethods have been comparedwith other explicit hybrid codes proposed
in Refs.[2,16], and with classic RKN integrators. The criterion used in the numerical comparisons is the
usual test based on computing the maximum global error over the whole integration interval. InFigs. 1–8
we have depicted the efficiency curves for the tested codes. These figures show the decimal logarithm
of the maximum global error (log10(GE)) versus the computational effort measured by the number of

Fig. 1. Methods with three stages per step in Problem 1.
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Fig. 2. Methods with three stages per step in Problem 2.

Fig. 3. Methods with three stages per step in Problem 3.

function evaluations required by each code. The codes used in the comparisons have been denoted by:

(i) Methods with three stages per step

(a) ETSHM5: The first explicit hybrid method derived in Section 3.1 (� = 5/3).
(b) ETSHM5(8,5): The second explicit hybrid method derived in Section 3.1 (� = 5/3).
(c) ETSHM4(6,∞): The third explicit hybrid method derived in Section 3.1 (� = 4/3).
(d) CHARA: The explicit hybrid method derived by Chawla and Rao[2] (� = 4/3).
(e) ERKN4: The explicit fourth-order RKN method obtained in[7] (� = 4/3).

(ii) Methods with four stages per step

(a) ETSHM6: The first explicit hybrid method derived in Section 3.2 (� = 3/2).
(b) ETSHM6(8, 7): The second explicit hybrid method derived in Section 3.2 (� = 3/2).
(c) ETSHM6(6,∞): The third explicit hybrid method derived in Section 3.2 (� = 3/2).
(d) TSITOURAS: The explicit hybrid method derived by Tsitouras[16] (� = 3/2).
(e) ERKN5: The explicit fifth-order RKN method given in[9] (� = 5/4).
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Fig. 4. Methods with three stages per step in Problem 4.

Fig. 5. Methods with four stages per step in Problem 1.

We have used the following four model problems:

Problem 1. We consider the nonlinear system

y′′
1 = y1(log

2(y2) − log(y1)), y1(0) = e, y′
1(0) = 0, t ∈ [0, tend],

y′′
2 = y2(log

2(y1) − log(y2)), y2(0) = 1, y′
2(0) = 1,

whose analytic solution is given by

y1(t) = ecos(t), y2(t) = esin(t).
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Fig. 6. Methods with four stages per step in Problem 2.

Fig. 7. Methods with four stages per step in Problem 3.

In our test we choose the parameter valuetend= 10, and the numerical results stated inFigs. 1and5
have been computed with integration stepsh = 1/2i , i�2.

Problem 2. We consider the two body gravitational problem

y′′
1 = − y1

(y21 + y22)
3/2 , y1(0) = 1− e, y′

1(0) = 0,

y′′
2 = − y2

(y21 + y22)
3/2 , y2(0) = 0, y′

2(0) =
√
1+ e

1− e
,

wheree represents the eccentricity of the orbit. This problem has been solved in the interval [0, 20] with
the parameter valuee = 0.7, and the numerical results stated inFigs. 2and6 have been computed with
integration stepsh = 0.1/2i , i�1.
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Fig. 8. Methods with four stages per step in Problem 4.

Problem 3. We consider the oscillatory nonlinear system

y′′
1 = −4t2y1 − 2y2√

y21 + y22

, y1(0) = 1, y′
1(0) = 0, t ∈ [0, tend],

y′′
2 = −4t2y2 + 2y1√

y21 + y22

, y2(0) = 0, y′
2(0) = 0,

whose analytic solution is given by

y1(t) = cos(t2), y2(t) = sin(t2).

This solution represents a periodic motion with variable frequency. In our test we choose the parameter
valuetend=8, and the numerical results stated inFigs. 3and7have been computed with integration steps
h = 0.1/2i , i�0.

Problem 4. We consider the oscillatory linear system

y′′(t) +
(
13 −12

−12 13

)
y(t) =

(
f1(t)

f2(t)

)
, y(0) =

(
1
0

)
, y′(0) =

(−4
8

)
, (23)

with f1(t) = 9 cos(2t) − 12 sin(2t), f2(t) = −12 cos(2t) + 9 sin(2t), and whose analytic solution is
given by

y(t) =
(
sin(t) − sin(5t) + cos(2t)
sin(t) + sin(5t) + sin(2t)

)
. (24)

This problem has been solved in the interval [0,tend] and in our test we choose the parameter value
tend= 100. The numerical results stated inFigs. 4and8 have been computed with integration steps
h = 1/2i , i�2.
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4.1. Efficiency curves for the methods with three stages per step

Now we will show the efficiency for the methods with three stages per step.Figs. 1and2 show that
for general nonlinear differential systems (Problems 1 and 2) the code ETSHM5, which has optimized
the error constant, is the most efficient of the tested methods, whereas the code ERKN4 performs better
than the remaining codes. On the other hand, in the case of oscillatory problems (Problems 3 and 4)
the code ERKN4 is the least efficient of the methods being compared. We note that the method ERKN4
was derived in the context of embedded pairs providing a mechanism for error estimation, and therefore
it presents a poor behaviour in the integration of oscillatory problems. When the oscillatory problem is
nonlinear (Problem 3) the code ETSHM5(8,5), which is dispersive of high order, results to be the most
efficient, whereas in the oscillatory linear system (Problem 4) the codes ETSHM4(6,∞) and CHARA,
which are optimized for this class of problems, perform very well. Finally, we note that in general the
methods whose ratio� is greater show a more efficient behaviour.

4.2. Efficiency curves for the methods with four stages per step

Nowwewill show theefficiency for themethodswith four stagesper step. In this case,Figs. 5and6show
again that for general nonlinear differential systems (Problems 1 and 2) the codes which have optimized
the error constant perform more efficiently. So, the code ETSHM6 results to be the most efficient for
these problems, and the code TSITOURAS performs well, whereas the code ERKN5 is the least efficient
of the methods being compared. On the other hand, in the case of oscillatory problems (Problemss 3 and
4) the results are different. For these problems, the sixth-order codes which have optimized the dispersion
error or the dissipation error or both errors performmore efficiently. So, in this case the code ETSHM6(8,
7) results to be the most efficient and the codes ETSHM6(6,∞) and TSITOURAS perform well. Again,
for the methods with four stages per step, those whose ratio� is greater show a more efficient behaviour.
Finally, we note that the code TSITOURAS performs well in most cases, even though it is not the most
efficient in any of the problems solved.

5. Conclusions

A class of explicit two-step hybrid methods for solving second-order IVPs which require a reduced
number of stages per step is analyzed. New explicit hybrid methods which reach up to order five and six
with the smallest possible computational cost are derived. The derivation of thesemethods is based on the
order conditions obtained in[5] (similar to order conditions for RK methods), paying special attention to
optimize the error constant of the methods as well as the dispersion and the dissipation.
The numerical experiments carried out show that the new explicit hybrid methods perform more

efficiently than classical RKN methods and other explicit hybrid methods proposed in the scientific
literature which require the same computational cost per step. In general, for methods with the same
computational cost per step, those whose ratio� is greater result to be the most efficient. In the case of
second-order general differential systems the methods which have optimized the error constant show a
more efficient behaviour, whereas for oscillatory problems the methods which have also optimized the
dispersion and the dissipation are preferable.
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Finally, we conclude that the class of explicit hybrid methods analyzed represents an alternative to
explicit RKN methods in order to solve second-order IVPs. So, in a future research we intend to derive
explicit hybrid methods of this class with higher algebraic order.
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