3 research outputs found

    High-Performance Hardware and Software Implementations of the Cyclic Redundancy Check Computation

    Get PDF
    The Cyclic Redundancy Check (CRC) is an error detection code used in many digital transmission and storage systems. The two major research areas surrounding CRCs concern developing computation approaches and studying error detection properties. This thesis aims to explore the various aspects of the CRC computation, with the primary objective being to propose novel computation approaches which outperform the existing ones. The work begins with a thorough examination of the formulations found throughout the literature. Then, their subsequent realizations as hardware architectures and software algorithms are investigated. During this investigation, some improvements are presented including optimizations of the state-space trans­ formed and primitive architectures. Afterward, novel formulations are derived and the most significant contribution consists of a matrix decomposition that gives rise to a high-performance software algorithm. Simulation and implementation results are gathered for both hardware and software deployments of the investigated computa­ tion approaches. The theoretical results obtained by simulations are validated with implementation experiments. The proposed algorithm is shown to outperform the existing comparable low-memory algorithm in terms of time complexity

    Efficient hardware for low latency applications

    Full text link
    The design and development of application specific hardware structures has a high degree of complexity. Logic resources are nowadays often not the limit anymore, but the development time. The first part presents a generator which allows defining control and status structures for hardware designs using an abstract high level language. A novel method to inform host systems very efficiently about changes in the register files is presented in the second part. It makes use of a microcode programmable hardware unit. In the third part a fully pipelined address translation mechanism for remote memory access in HPC interconnection networks is presented, which features a new concept to resolve dependency problems. The last part of this thesis addresses the problem of sending TCP messages for a low latency trading application using a hybrid TCP stack implementation that consists of hardware and software components. Furthermore, a simulation environment for the TCP stack is presented
    corecore