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Abstract

The Cyclic Redundancy Check (CRC) is an error detection code used in many digital 
transmission and storage systems. The two major research areas surrounding CRCs 
concern developing computation approaches and studying error detection properties. 
This thesis aims to explore the various aspects of the CRC computation, with the 
primary objective being to propose novel computation approaches which outperform 
the existing ones. The work begins with a thorough examination of the formulations 
found throughout the literature. Then, their subsequent realizations as hardware 
architectures and software algorithms are investigated. During this investigation, 
some improvements are presented including optimizations of the state-space trans
formed and primitive architectures. Afterward, novel formulations are derived and 
the most significant contribution consists of a matrix decomposition that gives rise to 
a high-performance software algorithm. Simulation and implementation results are 
gathered for both hardware and software deployments of the investigated computa
tion approaches. The theoretical results obtained by simulations are validated with 
implementation experiments. The proposed algorithm is shown to outperform the 
existing comparable low-memory algorithm in terms of time complexity.

K eywords: Cyclic Redundancy Check (CRC), computer arithmetic, hardware ar
chitecture, software algorithm, field-programmable gate array (FPGA), application- 
specific integrated circuit (ASIC).
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Preface

T HIS thesis aims to provide the reader with an understanding of the principles of 
the Cyclic Redundancy Check (CRC) computation. We assume that the reader 

has minimal knowledge of CRCs and have made our best effort to present the material 
accordingly. Many different conventions for describing the CRC computation exist in 
the literature, and we have selected what we feel are the best set of notations. In our 
presentation, we separate the formulations from the deployments, either in hardware 
or software for this case. By taking this approach, we have found that the ideas are 
more clearly conveyed to the non-expert reader.

Our experience has taught us that examples are an excellent tool for expressing 
the various CRC computation approaches. However, providing completely worked 
in-text examples would distract the reader from the further reaching concepts of a 
given approach. To combat this problem, we have included two appendices which con
tain the implementation details for some useful hardware architectures and software 
algorithms.

The preliminaries and literature analysis contained in this thesis provide the reader 
with a solid foundation in CRCs, which allows them to understand our contributions 
and the open research questions in this area. From the contributions contained in 
this thesis, we have had two refereed conference papers accepted and are proceeding 
with our second revised submission of a full journal manuscript. The comments 
received from the reviewers of our first journal submission have helped us improve 
our experimental methodology and gave us thoughtful advice on ways to clarify the 
formulation.

Finally, we draw inspiration from Evariste Galois; the late French mathemati
cian who laid the foundations for Galois theory, which is the branch of mathematics 
that CRCs are based on. Without his contributions, this work would not have been 
possible.
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Organization

The organization of the content contained in this thesis is as follows. In Chapter 1, 
we provide the introduction. In Chapter 2, the preliminaries required to understand 
the CRC computation are reviewed. In Chapter 3, our analysis of the literature is 
presented. In Chapter 4, the novel CRC formulations and their resultant realiza
tions as hardware architectures and software algorithms are proposed. In Chapter 
5, the simulation and implementation comparison of the studied architectures and 
algorithms is presented. In Chapter 6, the conclusions and future work are discussed. 
In Appendix A, hardware equations for some CRC-32 computation architectures are 
listed. In Appendix B, software look-up table entries for some CRC-32 computation 
algorithms are listed. In Appendix C, the z-Transform approach to obtain parallel 
hardware equations is reviewed. In Appendix D, the identified technical errors in the 
literature are corrected.

A portrait of Évariste Galois (1811 - 1832).
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Chapter 1 

Introduction

1.1 Preview

A N increasing number of designers are utilizing wireless communication tech
nology in their systems. However, wireless networks are more susceptible to 

transmission errors; some causes are random channel noise, fading of signals, and at
mospheric conditions. Due to the greater probability of transmission errors occurring 
in these systems, it is necessary to verify the integrity of a received message using an 
error detection code (EDC). Research for fast and flexible computation methods for 
dependable EDCs is ongoing.

One of the more popular EDCs is the Cyclic Redundancy Check (CRC) [1]. From 
a certain perspective, the CRC can be considered as an insecure hash function. In 
other words, the CRC function maps a large variable length message to a small fixed 
sized checksum. This checksum is appended to its message to form a codeword. The 
redundancy in the codeword is typically used to verify the integrity of a message after 
it has been transmitted or stored.

The two major research areas surrounding CRCs concern its error detection prop
erties and computation approaches. This thesis is primarily focused on the study of 
the mathematics and performance of the various approaches that perform the CRC 
computation. The existing formulations and their resulting realizations as hardware 
architectures and software algorithms are extensively reviewed, and some novel com
putation approaches are proposed.

In this chapter, we briefly introduce CRCs to set the stage of our study. Afterward, 
the motivation, approach, and objectives of this thesis are outlined.
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1.1.1 Organization

The remainder of this chapter is organized as follows. In Section 1.2, the basic 
concepts of the CRC are introduced. In Section 1.3, the motivation for this thesis is 
presented. In Section 1.4, the approach taken in this thesis is explained. In Section 
1.5, the objectives of our work are stated.

1.2 Cyclic Redundancy Check

In information theory, there are two major error control strategies: forward error 
correction (FEC) and automatic repeat request (ARQ) [2]. FEC must be used when 
the transmission channel is unidirectional and detected errors must be corrected by 
the receiver. ARQ may be used in bidirectional communication systems when it 
is more convenient to simply detect an error and request a retransmission. ARQ 
codes are typically more light-weight in terms of the number of redundant bits and 
computation times compared to FEC [2],

The CRC was proposed in 1961 by Peterson and Brown [1] as a separable EDC, 
that is now used in many digital transmission and storage systems. Before transmis
sion, a message has its CRC appended as a frame check sequence (FCS) to form a 
codeword. On arrival, the FCS of the received message is computed and compared 
with the sent FCS; if they differ, an error is detected, else the transmission is assumed 
to be error free. When errors are detected, the transmission protocol dictates what 
action should be taken, i.e., discard the corrupted data and/or send a retransmission 
request.

Some examples of digital communication standards where the CRC is currently 
employed are, the Asynchronous Transfer Mode (ATM) [3], and the Institute of Elec
trical and Electronics Engineers (IEEE) communication standards, such as, IEEE 
802.3 (Wired Ethernet) [4], IEEE 802.11 (WiFi) [5], and IEEE 802.16 (WiMAX) [6].

As aforementioned, the main research activities concerning CRCs consist of error 
detection properties and computation approaches. In [1], the authors propose using a 
linear feedback shift register (LFSR) to perform the CRC computation. This simple 
architecture operates serially, processing one message bit per clock cycle. After [1], 
a large amount research effort has been invested in developing parallel hardware 
architectures and software algorithms that perform the computation more quickly or 
efficiently, and this thesis continues along this path.
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1.3 Motivation

In this section, we present the motivation for our study. With the current wireless 
telecommunications boom that is world is undergoing, ensuring data integrity will 
become more of an issue in the future. The CRC is an attractive option for use 
in communication systems, because it is easily described mathematically and the 
error detection properties are well understood. Moreover, there are many different 
approaches to perform the CRC computation, and any contributions that advance 
or improve upon these ideas could end up being deployed in real-world industrial 
systems.

In terms of the amount of research attention it receives, the CRC can be considered 
a hot topic. At the time of this writing, recent IEEE Transactions journal papers with 
contributions pertaining to the theory of CRCs include [7], [8], [9], [10], [11], and [12]. 
This demonstrates the large amount of current interest in this area. Furthermore, 
the most recent and only survey [13], was published in 1988, and many developments 
have happened since then. For these reasons, we feel that the time is right for a fresh 
investigation and discussion of this topic.

1.4 Approach

In this section, we present the approach of our study. Since this thesis is in the field 
of computer arithmetic, generally, all of the concepts discussed stem from a mathe
matical formulation. After one performs some manipulations and obtains a desired 
formulation, the next step is realizing that formulation as a hardware architecture 
or software algorithm. After realization, one proceeds to implement the architecture 
or algorithm, using a hardware description or programming language, respectively. 
Finally, the implementation is then deployed on a platform and its correctness can 
be verified. Figure 1.1 illustrates how we go through these steps in this study.

In this thesis, all of the formulations begin from the CRC equation, that is intro
duced in [1]. As shown later, many computation schemes have been deduced from the 
application of different techniques to manipulate that equation. Our approach begins 
by generalizing those existing methods found in the literature. By accomplishing this, 
we have more flexibility to describe and compare the different schemes which have 
been previously published. Afterward, we present some novel formulations and their 
resultant realizations as CRC computation approaches that yield new architectures 
and algorithms.
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Figure 1.1: Different stages of the approach.

In terms of the experimental methodology, after an architecture or algorithm has 
been proposed, one can perform simulations to obtain the theoretical area/memory 
and time complexities. The majority of the simulation data in this thesis is obtained 
through custom C + +  software, that has been written by the author over the course 
of this study. These theoretical evaluations serve to validate our experimental results 
gathered through deployment of our implementations on their respective platforms.

1.5 Objectives

The primary objective of this thesis is to propose novel CRC computation approaches 
which outperform the existing ones. In this study, the performance of an approach is 
measured in terms of both area/memory and time complexity. In order to achieve this 
primary objective, we first strive to provide the reader with a complete understand
ing of the fundamentals of the CRC computation. This involves using consistent 
notations to derive and generalize the previous computation approaches. We then 
perform simulations and experiments to demonstrate the high performance of our 
novel approaches, and we thoroughly explore the area/memory versus time complex
ity trade-off. Also, we aim to identify and propose some improvements to the existing 
computation approaches. Finally, we suggest open research questions that could be 
the focus of future work.
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Chapter 2 

Preliminaries

2.1 Preview

T HE Cyclic Redundancy Check (CRC) is a term that most of us have come 
across at one time or another reading computer literature in the Internet age. 

In this chapter, we present the preliminaries required to discuss the various aspects 
surrounding the CRC. This includes a review of the branch of mathematics that CRCs 
operate in, the first hardware architectures proposed to implement the computation, 
and the general error detection properties.

Like most topics in information technology, the presentation style and notations 
used to describe the mathematics of the CRC computation have evolved consider
ably since being first introduced by Peterson and Brown in 1961 [1]. Emphasis has 
shifted from discussing the basic serial computation case to more complex parallel 
computation cases, and exhaustive explorations of error detection properties have 
been undertaken. In light of these advancements, the goal of this chapter is to review 
the fundamental material using more modern notations and conventions, and lay the 
foundation for discussing the material in later chapters.

2.1.1 Organization

The remainder of this chapter is organized as follows. In Section 2.2, the topic of 
binary polynomial arithmetic is reviewed. This includes a discussion of binary fields 
and binary polynomials, i.e., polynomials over G F {2). In Section 2.3, the CRC ba
sics are introduced using modern conventions. This includes mathematics, generator 
polynomials, serial hardware architectures, and basic error detection properties. This 
chapter is concluded with a summary in Section 2.4. We note that, most of the 
material contained in this chapter can be found in [1], [2], and [13].
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2.2 Binary Polynomial Arithmetic

This section quickly reviews the fundamentals of the branch of mathematics that 
is required for an understanding of CRC computation. This involves discussing the 
binary Galois field GF  (2) and binary polynomials. This material forms the basis for 
the later binary polynomial formulation of the CRC computation. For a more formal 
and in-depth discussion of these topics, we refer the reader to [2] and [14].

2.2.1 Binary Fields

To begin, we roughly define a field to be a set of elements for which one can perform 
addition, subtraction, multiplication, and division without leaving the set. Further
more, the commutative, associative, and distributive laws must be satisfied by the 
addition (+) and multiplication (•) operations [2], [14].

Next, an adaptation of the formal definition of a field contained in [2] is presented. 
Let F  be a set of elements on which the addition and multiplication operations are 
defined. The set F  together with the addition and multiplication operations, is a field 
if the following three conditions are satisfied:

1. The set F  is a commutative group under addition. The identity element with 
respect to addition is called the zero element and denoted by 0.

2. The set of nonzero elements in F  is a commutative group under multiplication. 
The identity element with respect to multiplication is called the unit element 
and denoted by 1.

3. Multiplication is distributive over addition; that is, for any three elements / 0, 
/ i ,  and f 2 in F,

fo • (fi +  h) — fo ■ fi +  fo ‘  h-

It follows from the above definition that a field must contain at least two elements, 
namely 0 and 1. In fact, it is the field that contains only these two elements, called 
the binary Galois field that we are most interested in. Before discussing this field, 
some basic properties are listed without proof, which can be easily derived from the 
previous definition of a field [2].
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0 1
0 0 0
1 0 1

+ 0 1
0 0 1
1 1 0

(a) (b)
Figure 2.1: Modulo-2 truth tables: (a) addition, (b) multiplication.

1. For every element / 0 in a field, /o • 0 =  0 • /o =  0.

2. For any two nonzero elements /o and / i  in a field, /o • fi ^  0.

3. For any two elements / 0 and fi in a field, for /o • f\ =  0 and /o ^  0, imply that
/ i = 0 .

4. For any three elements / 0, / i ,  and / 2 in a field, for f 0 ^  0, /o • / i  =  fo ■ f 2, 
implies that fi =  f 2.

Now consider the binary Galois field denoted as GF (2) =  {0 ,1 } that has two 
elements, with modulo-2 addition and multiplication operations defined in Figures 
2.1a and 2.1b, respectively. It is clear that the commutative, associative, and dis
tributive laws hold for the addition and multiplications operations defined on the 
set G F (2). Thus, {0 ,1 } is a field with two elements under modulo-2 addition and 
modulo-2 multiplication [2],

Note that binary addition and multiplication between two elements in GF  (2) =  
{0 ,1 }, can be implemented in hardware using logical exclusive-or (XOR) and logical 
and (AND) gates, respectively. Throughout this thesis, unless otherwise noted, the 
addition sign, i.e., “ + ” is used to denote the XOR operation, and the dot sign, i.e., 

denotes the AND operation. Finally, note that for the set GF (2), addition and 
subtraction are defined to be the same operation, i.e., 1 ±  1 =  0 and 1 ± 0  =  0 ± 1  =  1.

2.2.2 Binary Polynomials

From the definition of a binary field presented in the previous subsection, we are now 
ready to discuss binary polynomials. Consider a polynomial whose coefficients are 
from the binary field GF (2), with the variable x, i.e.,

F (x) =  f 0 +  f ix  H------ b f nxn,

where fi € { 0,1} for 0 <  t <  n. Polynomials of this form will be referred to as 
polynomials over G F (2) [2], In this thesis, upper case letters are used to denote 
polynomials over GF (2) and the coefficients are lowercase letters.
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The degree of a polynomial is defined as the largest power of x with a non-zero 
coefficient. Polynomials over GF (2) can be added (or subtracted), multiplied, and 
divided in the usual way. As an illustration of these operations let

G (x ) =  go +  g\x +  • • • +  gmxm,

be another polynomial over GF (2). Assuming m <  n, then addition or subtraction 
is computed as,

F  (x) ±  G (x) =  (/o +  go) +  ( /i  +  gi) x +  • • ‘ +  (fm +  gm) xm +

fm+ lXm+l H----- +  fnXn.

For multiplication one has the product

F(x)  -G (x) =  C (x) =  c0 +  C\x H--------1- cn+mxn+m,

where

c0 =  fogo

= fogi +  fido 

= fog2 +  figi +  /250

=  fogi +  hgi-i  +  figi-i +  • • • +  /¿50

Crt+m fngm-

Note that for CRCs, binary polynomial division is the most important operation. 
From the Euclidean division algorithm, one knows that when F (x) is divided by 
G(x),  a unique pair of polynomials over GF  (2) is obtained: Q (x ) called the quotient 
and R (x) called the remainder. Thus the relationship

F(x)  = Q (x) ■ G{x)  +  R (x) (2.1)

is obtained, where the degree of R (x) is less than the degree of G (x). From (2.1) one 
can adopt the following notation for expressing the calculation of R (x) from F (x) 
and G (x) as

R(x)  =  F  (x) mod G (x).



9

The traditional elementary school long-division technique is often used when com
puting the division operation of two binary polynomials, and in the following section 
an example is provided in Figure 2.2.

Data Representation

It is convenient to represent binary strings as polynomials over GF  (2) [2]. However, 
one source of confusion often arises with the Endianness associated to mapping bit 
positions of the binary strings to the coefficients of the polynomial [15]. In the CRC 
literature, two methods are readily used, the first being mapping the most significant 
bit (MSB) to the coefficient of the term with the highest power of x down to the least 
significant bit (LSB) being mapped to coefficient of the x° term, i.e., 1011 1001 —> 
x1 +  x5 +  x4 +  x3 +  x°. The second method is the reverse of the first, with the 
MSB being mapped to the coefficient of the x° term up to the LSB being mapped 
to the coefficient of the largest power, i.e., 1011 1001 —> x° +  x2 +  x3 +  x4 +  x7. 
These conventions will be referred to as the normal and reverse notation, for the first 
approach and second approach, respectively.

In this thesis, we have chosen to adopt the reverse notation, because software 
CRC computation algorithms are more efficiently implemented with this approach, 
and this is consistent the convention used in the latest software based CRC paper [7], 
as well as [13] and [16]. Also, in hardware it is more popular to illustrate the serial 
computation architecture using the reverse notation (e.g.: [1], [10], [17], [18], [19], 
[20], [21], [22], [23], [24], [25], [26]), rather than using the normal notation.

2.3 CRC Basics

After reviewing the related basics of binary polynomial arithmetic in the previous 
section, we are now prepared to discuss the fundamental aspects surrounding CRCs. 
In this section, the mathematics of the computation, generator polynomials, serial 
architectures, and error detection properties are all reviewed.

2.3.1 Mathematics

Let us begin by introducing the following binary polynomials listed in Table 2.1, 
which are similar to the conventions found in [13], The m-bit CRC polynomial, 
also called the syndrome and denoted by S (x) of a k-bit message, is defined as the
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Table 2.1: CRC binary polynomials.

Polynomial Name Max Degree
A(x) Quotient k -  1
E(x) Error k +  m — 1
G (x) Generator m
R (x) Received k +  m — 1
S(x) Syndrome m — 1
U(x) Message k -  1
V(x) Codeword k + m — 1

remainder of the division between the message polynomial U (x) multiplied by xm, 
and the (m +  l)-bit generator polynomial G (x), i.e.,

S (x) =  (xm • U (x)) mod G (x). (2.2)

The n-bit codeword polynomial, where n =  k +  m is defined as

V(x)  =  S ( x ) + x m-U(x) ,  (2.3)

and consists of the syndrome polynomial concatenated with the message polynomial. 
The codeword polynomial corresponds to the bits transmitted by the sender. Define 
the n-bit received polynomial R (x) to consist of

R(x)  =  V(x)  +  E( x ) ,  (2.4)

where E (x ) is an n-bit error polynomial. From (2.4) it is clear that if E (x) — 0, then 
R(x)  — V (x). Define A (x) to the quotient of the division between xm • U (x) and 
G (x), then from the property of Euclidean division one can obtain

xm-U(x)  =  A ( x ) - G ( x )  + S(x) .  (2.5)

Next, in order to discuss the error detection properties one needs to show that the 
codeword polynomial is a multiple of the generator polynomial. Substituting (2.5) 
into (2.3) and one obtains,

V(x)  = S(x)  +  xm-U(x)

=  S (x) +  (A (x) • G (x) +  S (x))

=  A(x)  ■ G (x ). (2.6)
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Thus, it is concluded that codeword is a multiple of the generator polynomial. At the 
receiver, the integrity of a frame is verified by performing one of the two following 
checks:

1. Compute and test to see if R (x ) mod G (x ) =  0.

2. Separate R(x)  into the received message xm ■ U' (x) and received syndrome 
S' (x ), and then compute and test xm ■ U' (x) mod G (x ) =  S' (x).

If either equality does not hold, then it is known that R (x) ^  V  (x), and a trans
mission error is detected. Finally, from the above definitions, it can be shown that 
if

E (x) =  F  (x) • G (x (2.7)

then an error will go undetected. Beginning from (2.4) and substituting (2.6) and 
(2.7), one can obtain,

R (x) =  V (x) +  E (x)

=  (A (x) • G (x)) +  (F (x) • G (x))

=  ( A ( x ) + F ( x ) ) - G ( x ) .

It is clear that in this case, that R (x) mod G (x) =  0, and it is concluded that error 
patterns of this type are not detectable.

2.3.2 Generator Polynomials

Next, we discuss CRC generator polynomials. Generator polynomials are always of 
the form,

m — 1

G{x)  =  1 +  Y^,9ix* +  xm, gi € {0 ,1 } (2.8)
i = 1

i.e., all generator polynomials have nonzero x° and xm terms [1]. Table 2.2 lists 
frequently referenced generator polynomials [10]. In this thesis, we denote the second 
greatest nonzero power of G (x) as r, i.e.,

T—1
G (x) =  1 +  ^ 2  9ixl +  xT +

i=i
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Table 2.2: Frequently referenced generator polynomials.

Name Polynomial
CRC-12 1 +  X +  x2 +  X 3 +  X 11 +  X 12
CRC-16 1 +  x2 +  x 15 +  x 16

CCITT-16 1 +  x5 +  x 12 +  x 16
CRC-16f 1 +  X  +  x 14 +  x 16

CCITT-16f 1 +  X 4 +  x 11 +  x 16
CRC-32 1 +  X +  x2 +  x4 +  x5 +  X 7 +  xs +  x lû 

X 11 +  X 12 +  X 16 +  x22 +  X 23 +  X 26 +  X 32
f denotes reversed polynomial coefficients.

From (2.8), we define the set T, as

T =  {7o,7i, • • • , 7|r|—1}  =  {i\9i =  M  € [0,m -  1]} , (2.9)

and define the cardinality of the set Gamma to be the number of elements in T,
denoted as jT(. It is noted that 70 =  0, since generator polynomials always have a 
nonzero x° term, i.e., g0 =  1. Earlier we defined r to be the second greatest nonzero 
power in G (x), thus 7|r|-i =  t . In later chapters, it will be convenient to show 
generator polynomials as ]Uisrxl +  xm, with T =  {70 =  0, 71, • • • , 7|r|-2, 7|r|-i =  t }. 
Table 2.3 lists the Gamma sets of the commonly used generator polynomials.

Observing (2.8), and note that CRC generator polynomials are never divisible 
by x. If one were to use a generator polynomial that had x as a factor, then the 
resultant syndrome would always have its zero-order coefficient equal to zero [1]. 
To illustrate this fact, the following derivation is provided. Consider computing a 
syndrome using a generator polynomial that has x as a factor, i.e., G (x) = x ■ G' (x),

then G' (x) =  xm_1 +  Ŷ T=i 9ixl +  1- Using G' (x) in (2.5), one obtains,

xm- 1 ■ U (x) — A (x) ■ G' (x) +  5 ' ( x ) ,

Table 2.3: Gamma sets of frequently referenced generator polynomials.

Name r in
CRC-12 {0 ,1 ,2 ,3 ,11} 5
CRC-16 {0,2 ,15} 3

CCITT-16 {0 ,5 ,12} 3
CRC-16f {0 ,1 ,14} 3

CCITT-16f {0 ,4 ,11} 3
CRC-32 {0 ,1 ,2 ,4 ,5 , 7,8,10,11,12,16,22, 23, 26} 14

fefeg!«:'. .
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where S' (x ) is at most degree xm~2. Multiplying both sides by x and one obtains,

xm ■ U (x) = A (x) ■ G (x) +  x ■ S' ( x ) .

Thus, it is shown that if G (x) — x ■ G' (x), then S (x) = x • S' (x) and always has a 
zero as its zero-order coefficient.

2.3.3 Sample Computation

In this subsection, we present a sample CRC computation using the long-division 
technique. Consider the generator polynomial CCITT-4 (G (x) =  1 +  x +  x4 [27]), 
and the 7-bit message 101 0011. Using the reverse Endianness convention, the 7-bit 
binary sequence is mapped to the message polynomial as U (x) =  1 +  x2 +  x5 +  x6. 
Substituting this message polynomial into (2.2) and one obtains,

S (x) =  (xm • U (x)) mod G (x)

=  (x4 • (l  +  x2 -I- x5 +  x6))  mod (l  +  x +  x4)

=  (x4 +  x6 +  x9 +  x10) mod (l  +  x +  x4) . (2.10)

It is known that when using this generator polynomial the syndrome is Tbits long, 
and corresponds to a binary polynomial of at most degree x3, i.e., S (x) =  Y^=osixl- 
One can proceed to perform the reduction in (2.10) and S (x) =  x will be obtained. 
The long-division steps are shown in Figure 2.2, and we remind the reader that 
in this computation binary polynomials are being used, consequently, addition and

x4 + x + 1
x6 + x5
x 10 + X 9 
„10

+ x 3 + X  + X

+ X 

X 7 + X 6
+ X

+ X + X

+ x6 + x5
X 7 + X 6 + X 5 + X 4

+ X + X

X 6 + X 5 + X
"Î 2

+ X + X

+ X

+ X + X

Figure 2.2: Example CCITT-4 binary polynomial long division computation.
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subtraction are the same operation. The correctness of the result can be verified by 
recalling (2.5), and checking that,

x4 +  x6 +  x9 +  x 10 =  (x +  x2 +  x3 +  x5 +  x6) • (l +  X +  x4) +  X.

The codeword polynomial V (x) is formed by the concatenation of the syndrome 
polynomial and message polynomial (2.3), and for this example one obtains,

V(x)  = S (x) +  xm ■ U (x)

=  X  +  x4 +  x6 +  x9 +  X 10.

Using the long-division technique, one can verify that V  (x) mod G (x) =  0. Finally, 
the 11-bit codeword is transmitted or stored as 0100 1010 011.

2.3.4 Serial Implementations

The historical serial implementation of the CRC computation (2.2) in hardware con
sists of a LFSR, which is constructed for a given generator polynomial [1]. The serial 
LFSR Architecture has a hardware cost

0  — 777. - Gp +  | r | • Cx,

where Cf and Cx  denote the cost of a flip-flop (FF) and a two-input XOR gate, 
respectively.

There are two different LFSR architectures presented in [1], named LFSRl and 
LFSR2 in [26]. In terms of computation time, LFSRl requires k +  m clock cycles 
while LFSR2 requires k clock cycles, and the general form of each architecture is 
shown in Figure 2.3. In practice, all the AND gates are replaced by open or short 
circuits depending on the coefficients of the generator polynomial, and the XOR gates 
without present feedback connections are removed. Notice that the critical path delay 
(CPD), denoted by A, of LFSRl is 1 -Tx while LFSR2 has a CPD of 2 • 7V1, where 
Tx  denotes the delay of a two-input XOR gate.

If the LFSR2 architecture is used, then the syndrome of a message is computed 
by feeding the k message bits in, beginning from the coefficient of the highest order 
term i down to uq, afterward the syndrome of the message is stored in the FFs.

1If G (x) =  1 +  xm. then the delay of the LFSR2 architecture is 1 - Tx- However, for the common 
generator polynomials in Table 2.2 this is never the case.
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(b)

Figure 2.3: Generalized serial LFSR Architectures for G (x) =  1 +  YaLi1 9ixl +  xm: 
(a) LFSR1, (b) LFSR2.

Alternatively, if the LFSR1 structure is used, then m Os must be fed in after u0 
to obtain the syndrome [1]. More formally, the LFSR2 architecture performs the 
CRC computation as (xm • U (x)) mod G (x), whereas the LFSR1 architecture treats 
the computation as U {x) mod G(x) ,  where U (x) =  xm • U (x). These two serial 
implementations serve as the starting points for all the parallel hardware architectures 
and software algorithms that are discussed in later chapters.

We close this subsection by tracing the previous example computation through 
the LFSR2 architecture. In Figure 2.4a we provide an illustration of the LFSR2 
architecture for the generator polynomial CCITT-4 [27], and Figure 2.4b shows the 
contents of the FFs after each clock cycle when processing the message U (x) =  
1 +  x2 +  x5 +  x6. Clock cycle —1 denotes the initial all zero state of the register, 
and as expected, the final result (marked in boldface) is 0100, which corresponds to 
S (x) — 0 ■ x° +  1 ■ x +  0 ■ x2 +  0 ■ x3 =  x.

2.3.5 Error Detection
A great amount of research effort has been invested in the study of the issues sur
rounding the error detection performance of CRCs. A complete discussion of this 
area is beyond the scope of this thesis, but for the sake of completeness, we review 
the basic concepts, terminology, and results. We refer the reader to the following sets 
of references for discussions concerning: general error detection properties [1], [13], 
[28], generator polynomials [8], [27], [29], [30], [31], [32], [33], [34], [35], and different 
CRC schemes [28], [36], [37], [38].
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ÌtL
FF FF ~ P FF ~ P FF

T
S, s

1100101

Cycle Input LFSR Contents
So Si S2 S3

3 0 1 1 1 0
4 1 1 0 1 1
5 0 1 0 0 1
6 1 0 1 0 0

Cycle Input LFSR Contents
So Si S2 S3

-1 — 0 0 0 0
0 1 1 1 0 0
1 1 1 0 1 0
2 0 0 1 0 1

(b)

Figure 2.4: Example CCITT-4 serial hardware computation: (a) LFSR2 Architecture, 
(b) trace.

Generally, one can say that the error detection performance of a typical CRC 
scheme depends on three factors:

• the degree of the generator polynomial;

• the generator polynomial coefficients; and

• the length of the message (the number of message bits k).

We say that a CRC scheme is typical, if a codeword is formed by computing and 
appending the m-bit syndrome to a fc-bit message (2.3). Other situations are possible, 
such as using product generator polynomials, two-fold, and cascading; for a detailed 
discussion of the effectiveness of these approaches see [38]. For the remainder of this 
subsection, our discussion is restricted to the typical scheme.

Recall the earlier definition of the error polynomial in (2.4), and it was shown 
that it must be a multiple of the generator polynomial for the error pattern to go 
undetected. The length of a burst error is defined to distance between and including 
the furthest two corrupted bits in a received codeword, e.g.: the burst error described 
by the error polynomial E (x) — x1 +  xj has a length of j  — i +  1, assuming 0 <  i < 
j  < n. It is noted that every nonzero coefficient in E (x) corresponds to an inversion 
in the codeword at that bit position. From these concepts, we are ready to discuss 
some results for simple error patterns.
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Consider the situations when the i-th codeword bit is inverted, then E (x ) =  x1 
for 0 <  i < n. Since G (x) always has present x° and xm terms (2.8), x l cannot be 
expressed as a multiple of G (x) and this type of error will always be detected.

For the cases when there are only two codeword bit inversions, they are described 
by the error polynomial E (x ) =  xl +  xJ with 0 < i < j  < n. This error polynomial 
can be factored as E (x) =  x1 • (1 +  xl~i), and it is concluded that two bit errors will 
go undetected if and only if G (x) evenly divides 1 +  xl_T

For all burst errors of length less than m, the error polynomial can be written as 
E (x) — x1 ■ P  (x), where the degree of P  (x) is less than the degree of the generator 
polynomial. Then, one has P  (x) mod G{x) =  P  (x) and this error is always detected.

Here, some useful error detection theorems for CRCs are given without proof, and 
they can be found in [28].

• All single-bit errors will be detected because the generator polynomial always 
has more than one term. The simplest generator polynomial is G (x) =  1 +  x 
(2.8).

• All cases where an odd number of bit errors have occurred will be detected if a 
generator polynomial has xa +  1 for a > 0, as a factor.

• All single- and double-bit errors will detected if the degree of the codeword 
polynomial is no greater than the period2 of the polynomial.

• All single-, double-, and triple-bit errors will be detected if the generator polyno
mial has xa +1 for a > 0 as a factor, and the degree of the codeword polynomial 
is no greater than the period of the generator polynomial.

• All burst errors of length less than or equal to m are detected.

• The misdetection probability PTOd, is defined to be the ratio of the total number 
of error patterns to the number of possible error patterns that go undetected,

Prmd.
2k -  1 
2n ~ 1

< 2'

and it can be estimated by the degree of the generator polynomial.

For proofs of these theorems and further discussion, the reader is encouraged to 
consult [1] and [13].

2Period refers to the smallest degree polynomial that G (x) evenly divides.
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Error Correction

The authors of [1] also note the potential for the CRC to be able to correct errors. 
Similar to the error detection case, the remainder of the received codeword divided by 
the generator polynomial is computed, i.e., R(x)  mod G(x). Now, if the remainder 
is zero, then correct transmission is assumed. Otherwise, the remainder is compared 
to the n stored values of xl mod G (x) for 0 <  i < n, and if a match is found, the i-th 
bit of the codeword is flipped and the message is assumed correct. Alternatively, if 
the non-zero remainder is not found in the store values, a multi-bit error has occurred 
and detected. An implementation of single-bit error correction using the generator 
polynomial CCITT-16 with k =  16 can be found in [39].

2.4 Summary

In this chapter, we reviewed the concepts of binary polynomial arithmetic and dis
cussed some of the fundamentals of CRCs. Binary polynomials or polynomials over 
GF  (2) have coefficients from the set GF  (2) =  {0 ,1 }, and they can be added (sub
tracted), multiplied, or divided in the usual way. Addition and multiplication of 
binary coefficients can be accomplished by using logical XOR and AND operations, 
respectively. The CRC computation involves finding the remainder of the division 
of the augmented message polynomial by the generator polynomial. CRC genera
tor polynomials are of degree m and always have a present non-zero x° term. The 
classical hardware implementation of the CRC computation consists of a LFSR and 
it performs the computation serially. The error detection properties are well un
derstood and depend on the generator polynomial, message length, and deployment 
scheme. For typical schemes, an error pattern must be a multiple of the generator 
polynomial to go undetected. Error correction is possible using CRCs. However, the 
entire codeword must be buffered and a look-up table is typically used to perform the 
correction.
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Chapter 3

Literature Analysis

3.1 Preview

O VER the years, various parallel formulations have been proposed with the aim 
of deriving new hardware architectures and software algorithms to perform 

the CRC computation. In this chapter, we analyze the developments most related 
to our contributions. This includes an investigation and discussion of the various 
formulations that have been published and their suggested realizations as hardware 
architectures and/or software algorithms. The aim of this chapter is to develop gen
eralized formulations for all of the previous works. This helps us to compare our 
schemes with the previous approaches, and demonstrate that our schemes presented 
in the thesis are indeed novel.

Excluding the bit-wise software algorithm, all of the architectures and algorithms 
discussed in this chapter perform the CRC computation by processing multiple mes
sage bits in an iteration. For this reason, we have included our generalized primitive 
parallel CRC formulation as a starting point for all the different formulations. By 
taking this approach, we feel the reader has a better chance of understanding the 
contributions made by the other authors, and it also provides a different angle for 
describing the published formulations. Any minor extensions that we have proposed 
to the surveyed works are noted, however we leave the discussion of the performance 
of our implementations of the architectures and algorithms to Chapter 5.
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3.1.1 Organization

The remainder of this chapter is organized as follows. In Section 3.2, we present 
the parallel formulation fundamentals. This includes a discussion of how a message 
is partitioned into blocks, and the binary polynomial and state-space approaches to 
obtain parallel primitive CRC formulations. In Section 3.3, we discuss the existing 
hardware architectures. In Section 3.4, we review the existing software algorithms and 
LUT generation algorithms. This chapter is concluded with a summary in Section 
3.5.

3.2 Parallel Formulation Fundamentals

All the parallel CRC computation architectures discussed in this thesis rely on the 
message being partitioned into blocks. Formulations are typically presented by binary 
polynomial [13], [40] or state-space (matrix) representations [20], [24], [26], and are 
based on either the serial CRC LFSR1 or LFSR2 Architectures.

In this section, we first review the existing primitive parallel CRC formulations, 
for the serial CRC LFSRl and LFSR2 Architectures. This includes binary polynomial 
and state-space derivations. We begin with the binary polynomial approach since it 
relies on a rigorous derivation for partitioning the message polynomial into blocks, 
and then the state-space approach is presented. We note that the same parallel 
CRC expressions can be obtained from using either of these two approaches, and 
later formulations typically use one of these approaches as a starting point for their 
derivation.

In addition to the binary polynomial and state-space approaches, a third approach 
based on 2-transforms was proposed in [21]. Since none of the architectures and algo
rithms in this thesis are derived from this approach, we have presented the material 
in Appendix C.

3.2.1 Binary Polynomial Approach

The binary polynomial approach is derived directly from the CRC equation given in 
(2.2). Papers that adopted this approach include [13] and [40] for primitive LFSR2 
and LFSRl formulations, respectively. To begin our discussion, we must first set up 
the required mathematics to rigorously define the iterative CRC computation. This 
involves formally partitioning the message decomposing it into blocks of equal length. 
The material contained in this subsection is adapted from our conference paper [41] 
with some small notational changes, and extended to describe the LFSRl formulation.
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Message Partitioning

Parallel implementations of the CRC computation process the message block-wise 
iteratively. Let q =  [|] and q =  ["^p] denote the number of iterations required to 
process a k-bit message, where at each iteration l bits are processed using parallel 
architectures based on the serial CRC LFSR2 and LFSR1 Architectures, respectively. 
In this thesis, we refer to l as the degree of parallelism and to distinguish between 
LFSR1 and LFSR2 formulations, we mark the LFSR1 variables with tildes. Now, 
we describe how the message polynomial is formally partitioned for the LFSR2 and 
LFSR1 binary formulations.

LFSR2: Consider an LFSR2 based formulation, one can partition U (x) into q =  
[y] message blocks, i.e.,

<}-l
U(x) =  '%2xHq- 1~i) -B®(x),  (3.1)

¿=o

where (x ) represents a binary polynomial of at most degree l — 1 corresponding
to the /-bit message block being processed at the i-th iteration. If k mod l ^  0, then 
there are basically two solutions, and in this thesis we consider the simpler solution 
where one has the ability to prepend / — (k mod l) Os to U (x) increasing the message 
length to a multiple of l. Alternatively, l — (k mod l) Os can be appended to U (x ) 
and the CRC value is modified after all the blocks have been processed [11], [42].

Let I/M (x ) be the portion of U (x ) that contains all the blocks (x) for 0 <
j  < i, and let (x) be the syndrome of (x), i.e., a binary polynomial of at 
most degree m — 1. Also, define [ / H  (x) =  0 and S H  (x) =  ¿¡„¡t (x), where S-m\t (x) 
denotes the initial content of the CRC register. Then these definitions can be written 
as

U[{](x) =  xl ■ U[i~1] (x) +  R [i] (x ) ,

A[i] (x) =  (xm • U[i] (x)) mod G (x),

for 0 <  i < q — 1. It is noted that U (x) =  Û q~  ̂ (x) and S (x) =  S^-1! (x). 
For clarification, a pictorial illustration of the relationships between these recently 
introduced polynomials is shown in Figure 3.1.
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U (x)

Figure 3.1: Illustration of the message polynomials.

LFSR1: A similar approach is taken for LFSR1 based formulations, where U (x) =  
xm ■ U (x), and U (x) is partitioned into q =  message blocks, i.e.,

9 -1
U (x) =  J^x'-W "1- 0 • (x), (3.2)

i=0

where (x) represents a binary polynomial of at most degree l — 1 corresponding to 
the /-bit message block being processed at the ¿-th iteration. If (k +  m) mod 1 ^ 0 ,  
then we similarly assume one can prepend l — ((k +  m) mod /) Os to U (x) to increase 
the length of U (x) to be a multiple of /.

Let I/M (x) be the portion of U (x) that contains all the blocks (x) for 0 < 
j  <  /, and let (x) be the syndrome of U® (x), i.e., a binary polynomial o f at most 
degree m — 1. Also, define f /F 1] (x) =  0 and (x) =  Sjnit (x), then these definitions 
can be written as

m  (x) =  x i ■ m - v  ( x )+ ¿w  (x ) ,

S® (x) =  f/^  (x) mod G (x),

for 0 <  i < q — 1. It is noted that Ü (x) =   ̂ (x) and S (x) =   ̂ (x).

LFSR2 Formulation

From the previous definitions, one can derive a recursive expression for S'W (x) in 
terms of (x) and B^ (x), i.e.,
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S[{] lx =  (xm ■ U[i] (x)) mod G (x)

= (xm ■ (xz • (x) +  B^ (x ))) mod G (x)

=  (xl • xm ■ (x) +  xm ■ B® (x)) mod G (x)

=  (x* • S[l~1] (x) +  xm • B^ (x)) mod G (x)

=  T[l] (x) mod G (x), (3.3)

for 0 <  i < q — 1, where

(x) =  xl • S [i~1] (x) +  xm • B® (x ) . (3.4)

Observing (3.3), there are three cases to consider: / =  m, l < m, and l > m, called 
Cases I, II, and III, respectively. Each case yields a slightly different formulation with 
regards which present terms in the polynomial (x ) require reduction [43]. These 
cases are discussed separately.

Case I: When the degree of parallelism is equal to the generator polynomial degree, 
i.e., I =  m, (3.4) becomes

T li](x) =  xm-Y ^
3=0
TO— 1

£ (

m — 1 m — 1

3=0

Sj ~‘XJ +  X L- xJ

=  X

3=0
TO—1

m ^ ( + b
3=0

;])  xj . (3.5)

In (3.5), the terms m the polynomials  ̂ (x) and (x) completely overlap, and 
one can factor the xm term out to show that all the terms in (x) require reduction.

Case II l < m: When the degree of parallelism is less than the generator polynomial 
degree, i.e., I < m, (3.4) becomes

m— 1 /-I
r ^ (x )  =  xl ■ J 2 sll~1]xj +  xm xJ

j=0
m —l—1

3=0 
l-l

=  X■1■ s[i~ l]xj + x m
3=0

E ( * G + ^ V -
j=o

(3.6)

In (3.6), the polynomial (x) has l terms that overlap and require reduction between 
S^-1! (x) and B^ (x), while m — l terms of (x) do not require reduction.
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Case III l > m: When the degree of parallelism is greater than the generator 
polynomial degree, i.e., I > m, (3.4) becomes

T¡i¡ (z) require reduction.

LFSRl Formulation

In [40], the author proposed the first parallel LFSRl formulation, using Galois field 
multiplications. Here, we take a slightly different approach and modify our LFSR2 
derivation to obtain a parallel LFSRl formulation. By combining the xm term into 
the message polynomial U (z) to form U (x ) in (2.2), one obtains

(3.7)

In (3.7), the all of the terms in the S  ̂  ̂ (z) overlap with the m greatest power terms 
of RM ( z ) .  Again, one can factor the xm term out to show that all of the terms in

S (z) =  (zm • U (z)) mod G (z) 

=  Ü (z) mod G (z). (3.8)

Again, from the previous definitions, one can derive a recursive expression for (z) 
in terms of (z) and (z), i.e.,

S®(x) =  Ü[í[ (x) mod G (z)

f w (z) mod G (z), (3.9)

for 0 <  i < q — 1, where

T[¿1 (z) =  x l • S [i~ 1] (z) +  R[i] (z ) . (3.10)
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From (3.9), one observes that for all l and m cases, l terms in (x) require 
reduction and no terms between xl • (x ) and (x) overlap. These facts are
clearly illustrated by examining an expanded form of (3.10),

¡—1 m — 1

(x) =  &^xJ +  x l ■ s^_1'xb
j=0 j—0

3.2.2 State-Space Approach

The second approach that we will discuss for obtaining the primitive parallel CRC 
equations consists of developing a state-space model for the serial LFSR architectures, 
and subsequently extending them to parallel input cases.

Fundamentals

In this subsection, notations similar to those used in linear systems theory are used 
to describe the typical state-space model. The general linear, step-invariant, discrete
time state space is commonly represented as,

^nxl \k T l] A wxn ’ ^nxl [̂ ] T B nxr • Urxi [fc]

Ymx 1 [̂ ] =  Cm'xn ‘ ^nxl [&] ~b Dmxr ‘ Urxi [A;] , (3.11)

where the vectors xnXl, urxi, and ymxi denote the state, input, and output vectors, 
respectively, and the matrices A nxn, BnXr, C mxn, and Dmxr denote the state, input, 
output, and input-to-output coupling matrices, respectively. A common illustration 
in block diagram form of the general state-space model is shown in Figure 3.2 [44],

Figure 3.2: General state-space model [44].
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Figure 3.3: Delay diagram of the serial CRC LFSR2 Architecture.

LFSR2 State-Space Formulation

Published CRC LFSR2 state-space models that use nearly identical notations to the 
ones used in this thesis are presented in [20], [24], and [45], and two other examples of 
models with slightly different notations can be found in [17] and [22], When comparing 
the notations used here to the ones from digital system theory, the same letters for 
the coupling matrices will be maintained, however to mark their dimensions, the CRC 
variables m and l will be used, therefore n = m and r =  l, also the output vector 
size is equal m. Finally, we substitute k with i for the iteration index. Observing the 
architecture in Figure 3.3, and one can derive the following state-space model for the 
serial CRC LFSR2 Architecture,

Xmx 1 [* 4“ 1] — A mX77i • X mx l +  t>mxl ' ^  [®]

ymxl [¿] =  Cmxm ‘ Xmxl T dmxl ' ^ [z] , (3.12)

0 0 0 0 9o go
1 0 0 0 9i 9i

for 0 <  i < k — 1, where A mxm — 0 1 0 0 92 i b mxi 92

0 0 0 . . .  1 9m-1 9m— 1
Cjnxm =  Imxrru dmxi Omxii and u [i] = Uk--1—i from (2.2).

The serial formulation in (3.12) can easily be extended to a parallel formulation 
that processes l message bits in an iteration,

Xmxl [z T 1] — A mxm ' ^-mx 1 [̂ ] T  B mxl ' Wxl [̂ ] 

ymxl [̂ ] =  Cmxm ' Xmx 1 [¿] T D mxZ ' U.;X1 [z] , (3.13)
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for 0 <  i <  where A mXm =  (A mxm)1,

Bmxl ( A - m x m )  ' b;xl (Am x m )  ' A m x m  ' b/xl (A mxm) ‘ b/xl ]•
Cmxm — C mXm — Imxmj D mx; — 0mx/i Slid

uixi [ i ]=  u[i-l  +  ( l - 1)] u[i-l  +  ( l -  2)] ••• u[zO]

Here we have assumed that the message has been properly partitioned, and to avoid 
a notation clash with the serial state-space model (3.12), we have marked the parallel 
state-space matrices and vectors in (3.13) with bars.

LFSR1 State-Space Formulation

In [26], a state-space model was presented for the serial CRC LFSR1 Architecture 
that was extended to the parallel case. We have modified the notations used in 
that paper to make them more consistent with the notations used in this thesis to 
describe the serial LFSR2 Architecture. Furthermore, the approach presented in [26] 
cannot be extended for situations when the degree of parallelism is greater than the 
generator polynomial degree, and the formulation we present next does not impose 
those restrictions.

Observing the architecture in Figure 3.4, and one can derive the following state 
space,

^mx 1 "F 1] — A mxm ‘ Xmx 1 \f\4" bmxi • u [z]

Ymxl [i] =  C mXm ‘ -kroxl [¿] 4“ dmxi u [z], (3.14)

Figure 3.4: Delay diagram of the serial CRC LFSR1 Architecture.



28

0 0 0 0 9o 1
1 0 0 0 9i 0

for 0 < i < k +  m — 1, where A mxm = 0 1 0 0 92 i b mxi 0

0 0 0 • • 1 9 m — 1 0

Lmxm i, Cr, = c 771X7715C mxm lmxm; and dmxi Omxi- It is noted that 
dTOxi =  dmxi, and u [i] =  uk+m_i_i from (3.8). Again, to avoid a notation clash with 
the LFSR2 state-space model, we mark the LFSR1 matrices and vectors in (3.14) 
with tildes.

For the cases when the degree of parallelism is less than or equal to the generator 
polynomial degree l < m, this formulation can easily be extended to

^mxl [* T l] — A mxm ^mxl [*] T B mxZ ' Ù/xl [*]

Ymxl [̂ ] =  C'mxm ilmxl [¿] T DmxZ ' b ;xi [i] , (3.15)

for 0 <  i < [ fc+7  x], where À mXm =  ( Amxmj : ~̂ mxl

1---
---

---
1

o X 1__
___

___
___

_J

> C'mxm =

Imxmi DmxZ Omxi, and

fhxi [*] =  ù[i- l  +  (l -  1)] ù [* •/ +  ( / -  2)] •••

E-h1-----
1

It is noted that A mxm — A mxmi C mxm — C'mxrre) and D mx; Dy^x/. 
For the cases when l > m, the input coupling matrix becomes

BmxZ

where b mxi is the input coupling matrix of the serial LFSR2 state-space model (3.12), 
and all the other coupling matrices in (3.15) are unchanged.

3.3 Hardware Architectures

In this section, we review most of the published hardware CRC computation archi
tectures found in the literature [10], [17], [20], [21], [22], [23], [24], [25], [26], [40], 
[46], [47], [48], and [42]. The two parallel LFSR Architectures derived from the prim
itive formulations developed in the previous section are examined first. Afterward, 
the Two-Step [46], Cascade [23], Look-Ahead [25], State-Space Transformed [24], and



29

Retimed Architectures [10], [42], [47] , and [48] are discussed. For most of the ap
proaches, we present a generalized formulation that extends from a primitive one, and 
its subsequent hardware realization.

3.3.1 Primitive Architectures

The parallel LFSR Architectures that perform CRC computation are hardware re
alizations of the primitive parallel formulations that were derived in the previous 
section. Since the expressions are in the primitive form, they are the fastest non- 
pipelined hardware architectures that perform the CRC computation. In other words, 
there is no cancellation or sharing of terms between the parallel equations.

We have chosen to present these architectures using binary polynomial notations, 
and we briefly explain how the state-space or ^-transform approach can also be used 
to obtain the equivalent parallel architectures. It is important to remember that a 
designer can use whichever method they are most comfortable with to obtain their 
desired implementation.

Before beginning this discussion, we note that the publications concerning parallel 
LFSR Architectures have not considered the case when l > m. The figures drawn in 
this chapter are rather general and in Chapter 4 we provide detailed design that is 
specific for the parallel LFSR2 Architecture when l > m. This can be found in our 
conference paper [41].

Parallel LFSR2 Architecture

The parallel LFSR2 Architecture hardware realization that is illustrated in Figure 3.5, 
can be obtained by directly mapping (3.4) to a hardware architecture. One observes 
that there is a level of XOR gates required to combine the overlapping terms between 
the xl • (a;) and xm ■ (x) polynomials, and then a block of XOR tress to

Shift-XOR

Figure 3.5: Generalized parallel LFSR2 Architecture.



30

perform the reduction of (x) mod G (x ). Finally there is a block that contains an 
array of FFs to store the (x) results. The latency of this approach is [y] clock 
cycles, and the reader can consult [17], [20], [21], [22], and [45] for further information.

Now, to obtain an equivalent architecture using the state-space approach, we note 
that j-th columns of A mxm and B mx/ correspond to the coefficients of xl+j mod G (x ) 
and xm+j mod G (x), respectively. Depending on l and m, there will be columns that 
are identical between A mxm and B mx;, and these matrices can be seen as alternative 
representations of (xl ■ (x)) mod G (x) and (xm ■ (x)) mod G(x). Finally,
output coupling matrix Cmxm is an identity matrix, therefore, by combining the 
common columns in the input and state coupling matrices with a level of XOR gates, 
a representation equivalent to the binary polynomial approach is obtained.

The z-transform approach [21] is quite similar to the binary polynomial approach, 
only the calculation of the parallel expressions is different. With the binary poly
nomial approach, one selects a method to compute 5^ (x) =  (x) mod G (x) and
develop the m parallel equations. Alternatively, the convolution operation is used to 
construct the parallel equations and the realization of the result can be achieved with 
an architecture similar to Figure 3.5.

Finally, we note that is in this thesis we have assumed that is customary to first 
fix the generator polynomial and degree of parallelism before designing and imple
menting an architecture. Recently, a programmable CRC architecture based on the 
parallel LFSR2 Architecture [22] was proposed. However, we consider this topic to be 
outside the scope of this thesis and the interested reader can consult [49] for further 
information.

Parallel LFSR1 Architecture

Similarly, the parallel LFSR1 Architecture hardware realization that is illustrated in 
Figure 3.6 can be obtained by directly mapping (3.10) to a hardware architecture. 
From the figure, one observes that the high-level structure is nearly identical to that 
the parallel LFSR2 Architecture in Figure 3.5, but in this case the input polynomial is 
not augmented before it is added to the previous syndrome. Later, it is shown that in 
some situations the CPD of this architecture can one less Tx  than the corresponding 
LFSR2 realization. The latency of this approach is clock cycles, and the reader
can consult [26] and [40] for further information.
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Shift-XOR

Figure 3.6: Generalized parallel LFSR1 Architecture.

3.3.2 Two-Step Architecture

In [46], the Two-Step Architecture for performing the CRC computation was pur
posed. Basically, the author showed that it is possible to first use a polynomial that 
is a multiple of the generator polynomial to perform the reduction of the message 
and obtain a fixed-length intermediate result. Then, the intermediate is subsequently 
reduced by the generator polynomial to obtain the final syndrome.

The key to this approach is to find the multiple polynomial M  (x ) that results in a 
parallel LFSRl implementation with CPD Tx - To achieve this, the present non-zero 
coefficients of M  (x) must be spaced at least l terms apart [46]. Since this method is 
based on an LFSRl formulation [26], [40], an additional m Os must be appended to 
the message to obtain the correct result, and this fact is not mentioned in [46]. The 
author notes that the second reduction only needs to be performed once, and since 

•the intermediate is of a fixed length, the implementation of the second block does not 
require feedback connections.

F o r m u la t io n

The formulation for the Two-Step Architecture can be expressed by first defining the 
multiple polynomial

M( x)  =  P ( x ) - G ( x ) ,

where the multiplicand polynomial P (x) = 1 +  Pixl +  xPi and

m +p— 1

M( x)  =  1 +  mixi +  xm+p
i= 1

(316)
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such that when G (x) is multiplied by P (x), M  (x) has its present non-zero coefficients 
spaced apart by at least l terms. Then, the first step of the reduction is performed as

$m (x ) =  ( x1 ■ S H  +  j  mocj m  (x)

=  fW (r)m odM (i).

for 0 <  i < q — 1, where l < m +  p. After the intermediate Sm (x ) is obtained, it 
is subsequently reduced by the generator polynomial G (x) and the final syndrome 
S (x) is obtained as

S (x) =  Sfj~  ̂ (x) mod G (x).

Multiple Polynomial Search

As one may imagine, it is difficult to find P  (x) polynomials which produce suitable 
M  (x) polynomials that result in implementations with first stage CPD of Tx for large 
degrees of parallelism. Little insight is provided into the method used in [46] to find 
P  (x) for CRC-32 with l =  8 other than the author mentioning that an exhaustive 
search was performed. Out of curiosity, we wrote C + +  code that performed a search 
for P (x) polynomials for the other frequently referenced generator polynomials with 
1 =  8 and the found M  (x) are listed in Table 3.1.

The search strategy that we devised can be summarized as an improved exhaustive 
search technique. After completing an exhaustive search to find a suitable M  (x) for 
the CRC-12, which consisted of testing each P  (x) of the form P  (x) =  1 +  X^=i PiPP 
xp up to degree p =  32, i.e., 231 distinct polynomials, we proceeded to cover the same 
search space for CRC-16 without any luck. We then reconsidered the problem and 
noticed that it is possible to solve for the coefficients of the terms with the l smallest 
and greatest l powers of P{x) .  By knowing that M  (x) is of the form (3.16), but

Table 3.1: Two-Step Architecture multiple polynomials for frequently referenced gen
erator polynomials when l =  8.

G (x) M  (x)
CRC-12 1 +  x ri +  x30 +  x44
CRC-16 1 +  x9 +  x22 +  x34 +  x51 +  X60

CCITT-16 1 +  x 10 +  x24 +  x32
CRC-16f 1 +  X 9 +  X 26 +  x38 +  x51 +  x60

CCITT-16t 1 +  X 8 +  x22 +  X 32

CRC-32* 1 +  X 23 +  x46 +  x64 +  x84 +  X 92 +  X 111 +  x 123
* reported in [46].



33

more specifically,
m + p —l

M  (x) =  1 +  ^  rriiX1 +  xm+p,
i=l

i.e., mj =  0 for 1 <  i < l — 1 and m +p — l < i <  m+p — l. In other words, after the x° 
term the next l — 1 terms must not be present, and before the xm+p term the previous 
l — 1 terms are not present. Consider extracting the l smallest and greatest degree 
terms from P  (x) and G (x), and then call those polynomials Ps (x) and Pq ( x ) ,  and 
Gs (x) and Gg ( x ) ,  respectively. We know that for the smallest l terms

/-i
Ps (x) • Gs (x) =  1 +  ^ 2  Ox1 +  xTS H----- ,

i=1

where ts >  l, and there is only one Ps (x) that satisfies that relation. A similar 
argument can be made for the product of the greatest l terms of P  (x) and G (x) 
resulting in

m +p—l

PG (x) • Gg ( x ) =  • • • +  xTE +  0xi +
i=m+p—l+1

where rE < m+p—l, and there is only one Pq (x ) that satisfies that relation. In Tables 
3.2a and 3.2b the Ps (x) and PG (x) polynomials for common generator polynomials 
with degree of parallelism l =  8 are listed, respectively.

To put it in perspective, the naive exhaustive search for the CRC-12 multiple 
polynomials lasted approximately one week (with the simulation running constantly). 
With the improved method, we are able to complete the same search in about one 
minute. However, we note that this approach cannot be easily extended to solve 
for more coefficients in M  (x). Consequently, it would not be feasible to find the 
M  (x) polynomial for CRC-32 reported in [46]. An alternative approach could test 
M  (x) mod G(x)  =  0 using one of the software CRC computation algorithms, where 
the coefficients in M  (x) are at least l terms apart.

Realization

The approach to realize the Two-Step Architecture suggested by the author consists 
of two blocks, and an illustration of the architecture is given in Figure 3.7. The first 
block which is denoted by (x) mod G (x), is used to perform the initial reduction 
by M  (x) and can be executed at a very high clock rate. The second block, denoted 
by Sm (x) mod G (x), performs the final reduction by G (x) once, at a much slower 
rate. However, since the second block does not have a feedback connection, it can be
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Table 3.2: Two-Step Architecture multiplicand polynomials for frequently referenced 
generator polynomials when l — 8: (a) smallest order terms, (b) greatest order terms.

(a)
G(x) Ps(x)

CRC-12 1 +  X +  X4 +  X5

CRC-16 1 +  X2 +  X4 +  X5

CCITT-16 1 X ̂
CRC-16f 1 +  X +  X2 +  X3 +  X4 +  X5 +  X® +  X7

CCITT-16f 1 +  X4

CRC-32 1 +  X +  X3 +  X5 +  X7

(b)
G{x) Pg (x)

CRC-12 xp~7 +  xp~6 +  xp~5 +  xp~4 +  xp~3 + xp~2 + xp~l +  xp
CRC-16 xp~7 +  xp~6 +  xp~b +  xp~A +  xp~3 +  xp~2 +  xp~l +  xp

CCITT-16 XP~A +  xp
CRC-16f xp-a +  xp~A +  xp~2 +  xp

CCITT-16f xp~5 +  xp
CRC-32 xp~6 +  xp

easily pipelined and this extension is not stated in [46]. Thus it is possible to derive a 
pipelined parallel implementation with CPD Tx- Furthermore, as stated earlier, the 
author neglects to mention the fact that an additional m Os must be appended to the 
message to make the scheme functional. So, if the second block is pipelined, then the 
latency of this approach is +  Sp clock cycles, where Sp denotes the number of
pipeline stages in the second block.

Shift-XOR

Figure 3.7: Generalized Two-Step Architecture.
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3.3.3 Cascade Architecture

In [23], the idea of cascading the serial LFSR2 combination logic to obtain the Cas
cade Architecture was presented. In this approach, the author notes that if one 
separates the combinational logic from the register in the serial LFSR2 Architecture, 
and cascades copies of it, then a parallel architecture is obtained. The strength of 
this approach is its implementation simplicity. A designer with limited knowledge of 
CRCs can easily derive and implement a parallel architecture from the serial archi
tecture without restriction on the desired degree of parallelism. Other papers that 
use different forms of this approach include [50], [51], and [52],

Formulation

The formulation of this approach is quite simple, beginning with the recursive equa
tion in (3.3), and letting the degree of parallelism l =  1 one can obtain,

S® (x) =  (x(1) • (x) +  xm • B® (x)) mod G (x)

=  ^x • S (x) +  xm • mod G (x)

=  crci ( x ) , b ^  , (3.17)

where crci ( x ) , b ^  =  ^x • (x) +  xm • 6^ (x) j  mod G (x). Now, writing
an equation for (x) from (3.17), one can obtain

S[i+1] (x) =  crCl (s®  ( x ) ,

=  crci (crci ( x ) , ,

which can be generalized for Ŝ l+l 1 (x) as,

S[i+l] (x) =  crCl ( s [i+l- l] ( x ) , b̂ +l]^

=  crci ^crcj (x ) ,

=  crci (crci • • crd  (S [l“ 1] ( x ) , b ^  , • • • , )  , b .

(3.18)
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Now, if one considers a change of variables in (3.18) to describe a system that processes 
/ message bits at a time, by defining (x) =  JZjZo bfx3 where b'f =  b{')+l~(j+1)Z and 
replacing Ŝ 1+l̂ (x ) with (x), one can obtain,

S[l] (x) =  crc! ^crci • • crcx ( s [l_l1 (x ) , , • • • , bf1)  , . (3.19)

The formulation in (3.19) shows that the CRC operation as defined in (3.17) can be 
applied repeatedly during a single clock cycle to obtain a parallel architecture.

Though it was not mentioned in [23], it is clear that this approach can be gener
alized by defining the CRC function to process more than one message bit at a time, 
i.e.,

crc, (x ) , B® (x)) =  (xl ■ S^-11 (x) +  xm • B® (x)) mod G (x),

where (x) =  In facb this concept is extended in the following section
and employed to develop architectures that are flexible in the sense that the degree of 
parallelism can altered without modification to the architecture. However, the main 
advantage of the cascading approach is to allow a designer with limited knowledge to 
implement it, thus it is best suited for the serial cascade case.

An extension that can be more useful is cascading the LFSR1 combinational logic 
instead of the LFSR2 combinational logic. The CPD of the LFSR1 logic is Tx, while 
the LFSR2 logic has a CPD of 2 • Tx . Thus, for some generator polynomials, one can 
reduce the CPD by using the LFSR1 logic. However, if the LFSRl logic is used, then 
an additional m Os must be appended to the message to obtain the correct result.

Realization

The generalized hardware realization of (3.19) is illustrated in Figure 3.8, and Fig
ures 3.9a and 3.9b illustrate the generalized LFSRl and LFSR2 combinational logic,

€\ XORs bl-2 XORs hZ XORs

Figure 3.8: Generalized Cascade Architecture.
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Figure 3.9: Generalized cascade combinational logic blocks for G (x) .= 1 +  
+  (a) LFSR1, (b) LFSR2.

respectively. From the figures it is clear that both architectures require |F| x l XOR 
gates, and the computational latency is [y] and clock cycles when using the
LFSR2 and LFSR1 combinational logic, respectively. Finally, in [23] a sample imple
mentation for G (x) =  1 +  x2 +  x3 with l =  4 is illustrated1.

3.3.4 Look-Ahead Architecture

In [25], a look-ahead approach was applied to the serial LFSR2 architecture to derive 
the Look-Ahead Architecture. The technique described in this paper is applied to 
both internal and external LFSR architectures. Since the CRC is defined only for 
internal LFSRs, we do not discuss the applications to external LFSR architectures.

Formulation

The formulation presented in [25] is unique in the sense that it begins from the 
message being partitioned in l blocks, where l is the degree of parallelism. Here, we 
reproduce the derivation, using notations consistent with the ones used in this thesis. 
Begin by assuming that k mod l =  0 and partitioning the message into l blocks, i.e.,

U (x) =  U0 (x) +  U1(x) +  --- +  Ut- 1 ( x ) , (3.20)

k_j
where Ui (x) =  UiX1+ui+ixl+l -\-------huk̂ i+ixk~l+l =  Y2j=o Uj.i+ixkl+l. The next step is
to manipulate the Ui (x ) polynomials; consider the effect of multiplying the message

1 There is a typo in Figure 3a on page 110 and it is corrected in Appendix C.
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polynomial by xm, and from (3.20) one can obtain,

xm -U ( x )  =  xm ■ (U0 (x) +  Ui (x) +  • • • +  E//_i (x))
/ - i

= E  (x"  ■ u ‘ <x>)

/-I  /  f - 1

=  E K ’ - E ' v m ^
i—0 \ j=0
l-l

E
x m - ( l - l ) + i  . ^ 2 Uj l+ .x U+O -'-1

¿=0 Y j=0
/-I

¿=o
(3.21)

where £/* (x) =  UiXl~x +  ui+ix 2l~l H------- h ufc_;+jXfc-1 =  ^ L o  Table
3.3 is a reproduction of Table 1 in [25], showing the relationship between the U (x), 

Ui (x), and Ui (x) polynomials, but using the reverse Endianness notation.

Now substituting (3.21) into the CRC definition given in (2.2), and one obtains,

/ - i
S ( X) =  ^  x ™-(l~l)+i . fj. mod Q

¿=0

=  ( x m- l+1 • Uo (x) +  x m~l+2 • Cfi (x) +  • • • +  xm • Ui-i (x)) mod G  (x).
(3.22)

The authors of [25] then make the remark that the multiplication of x m~l+l with 
Ui (x) can be accomplished in hardware by shifting the Ui (x ) into the (m — Z +  ¿)-th

Table 3.3: Look-Ahead Architecture polynomial relationships for k =  9 and l =  3.

deg x° X 1
5X Xs X4 X 5 X 6 x 7 X *

V  O) u0 U\ U2 U3 U4 u5 Uo u7 Us
U0 (x) Uo 0 0 Uz 0 0 u6 0 0
U ,(x ) 0 «i 0 0 U 4 0 0 u7 0
U2 (x) 0 0 U2 0 0 U5 0 0 U 8

U0 (x) 0 0 Uo 0 0 U 4 0 0 u7
tii(x) 0 0 Ui 0 0 ^5 0 0 u8
U2 (x) 0 0 u2 0 0 «6 0 0 9̂
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Figure 3.10: Non-optimized parallel CRC computation architecture where l <  m.

right-most position of the LFSR2 architecture [2], An illustration of a realization of
(3.22) is shown in Figure 3.10, where similar to the serial LFSR architectures, the 
coefficients of the greatest order terms are fed in first, i.e., u^k-1 , u^k-2 , • • ■, uifi for 
Ui M  =  E tc 1 Uijxi. The authors note that this architecture does not have any speed 
advantage over the traditional serial LFSR2 architecture, requiring k clock cycles to 
process a £;-bit message, and we note that this approach cannot be easily extended for 
l >  m. However, by applying look-ahead techniques it is possible to take advantage 
of the Z — 1 Os between message bits in the inputs Ui (x ).

Next, we examine a simplified state-space model of the architecture in Figure 3.10 
where zeros are applied to the inputs. Noting that l <  m  and beginning from the 
system,

1 T 1] =  A-mXTn ' Xfnxl X] T Bmxm • Umxl [¿]

Ymx 1 [XI — C mxm ’ ^mxl ] -f- D mxm U-mxl [X] 1 (3.23)

0 0 0 0 go
1 0 0 0 9i

for 0 <  i  < k 1, where A mxm B mXm 0 1 0 0 92 5 ^mxm

Imxm? Dmxm 0mxm) Billd
0 0 0 1 9m—1

iimxl 0 ixm—l 'U'O.k—l—i ^l,k—l—i . . . Ui— l,k—1—i
T

which describes the architecture in Figure 3.10. Consider applying zeros to the input 
u.mx 1 then (3.23) reduces to
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^mx 1 "I" 1]

Y m x l [¿]

-mxm

'm xm

^mx 1 [̂ ] 

^mx 1 [̂ ] 5

and after Z — 1 clock cycles the content of the state register can be expressed as

^mxl [¿“hi] — (A mxm) ’ ^mxl [¿] • (3.24)

Since the JJi (x) input polynomials were defined to have one message bit followed by 
l — 1 Os, one can consider the input bit and then apply the look-ahead transformation 
in (3.24) to account for the Z — 1 Os during a single iteration without inputting them. 
Thus the formulation becomes,

^mxl [i d  1] — (AmXm) ’ ( -̂mxm ‘ ^-mxl [¿] T Rmxm ' ^mxl [̂ ])
Ymxl [*] =  G mxm • Xmxi [z] +  D mxm ' Umxl [z] , (3.25)

for 0 < i <  [ V -] , where the coupling matrices are as defined in (3.23) and the input 
vector umxi [z] is formed from the primitive LFSR2 state space in (3.13) with some 
extending zeros, i.e.,

Ofll-Zxl

Ujxi [i

Now, since A mxm =  B mXm5 one can modify (3.25) and obtain,

% x l  [z] —

X-mx 1 [z T 1]

Y m x l [̂ ]

(■A-mxm) ' fmx 1 \̂\

C mxm ‘ Xmxx [*] T  D mxm xl W, (3.26)

for 0 < i < [ V I ’ where tmxl [®] =  Xmxi [i] +  Umxl [«]■

Realization

The approach to realize the Look-Ahead Architecture consists of computing the addi
tion xmxi [z] +  umxi [z] and then cascading l copies of the A mxm combinational logic 
depicted in Figure 3.11 to perform the look-ahead operation. Figure 3.12 shows the 
generalized look-ahead architecture. This architecture is non-primitive, cannot be 
easily developed for cases when l >  m, and requires |T| x l XOR gates to implement. 
Finally, we note that a detailed design and trace is provided for k =  8, l =  2, and 
G  (x) =  1 +  x  +  x 3 +  x 4 in Section 4.1 of [25].
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Amxm-----------------V
P- 1— % A

;
. 1— I a

Figure 3.11: Generalized look-ahead combinational logic block for G (x) =  1 + 
S X i 1 9iX* +  x m.

Figure 3.12: Generalized Look-Ahead Architecture.

The characteristic noted by the authors that we feel is most unique to this ap
proach is the ability to develop an architecture that is capable of varying the degree of 
parallelism. By adopting an architecture shown Figure 3.13, one can realize a flexible 
parallel CRC computation architecture that can be adapted by simply by-passing 
look-ahead logic blocks. This design could be suitable for deployment in intellectual 
property (IP) cores or part of an adaptive system. One point not raised by the authors 
of [25] is the ability to adjust the generator polynomial by simply supplying control 
signals to the AND gates in the look-ahead blocks as depicted in Figure 3.11. We 
note that similar modifications could be made to the cascading approach to obtain 
an even more flexible design, that does not place the restriction of having the degree 
of parallelism less than the generator polynomial degree.
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Figure 3.13: Design of the Flexible Look-Ahead Architecture.

3.3.5 State-Space Transformed Architecture

In [24], a state-space similarity transformation method was proposed to obtain the 
State-Space Transformed Architecture that is easily pipelined. Excluding the Two- 
Step Architecture, all of the previous approaches discussed thus far cannot be easily 
pipelined dude to the feedback loop complexity [24], The state-space transformation 
proposed in [24] creates a system with a feedback loop complexity equal to that of 
the serial LFSR2 architecture, and the input and output logic blocks can be pipelined 
resulting in a parallel architecture with CPD 2 • Tx-

Formulation

Beginning with the parallel LFSR2 state-space equations (3.13), consider a similarity 
transformation xTOXi [z] =  Tmxm • x(nxl [z], which takes the state coupling matrix to 
companion form. Then, the transformed state-space equations can be written as,

X m x l  ~h 1] A m x m  ' X m x l Kl ~h ’ *-hxl [¿]

Y m x l \i\ =  Cmxm • X m x l [z] +  D rnxl ' Ù /x l  [¿] ) (3.27)

=  c'^mxm ^

m x m  m xm

T
• A m xm  * T m x m j  ^ m x l  ^ m x m  ’ ^ m x l j  3-11(1for 0 < % <  [ , where A'

• Tn -1- m x m

In [24], it is shown that the matrix T mXm that takes A mxm to companion form
A ^ xm, can be found as

m xm ^ (A mxm)  ̂ *bmxl ^(Amxm) j  * b mxl ^ ( Amxm) ^
m—1

A m x m ) ) ' b m x l

(3.28)

and the vector2 b ^ xl can be selected freely subject to the constraint that the columns 
of Tmxm are linearly independent, i.e., TmXm is invertible. Furthermore, if the gen
erator polynomial is irreducible, then any b ^ xl can be selected.

2 In [24], b i denotes the m x 1 vector that is used to create the matrix T mxm.
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In [24] an example is presented for CRC-32 with l =  32, and for simplicity the
T

author selects b 32xl 1 0 0 0 to construct the transformation matrix
T 3 2x3 2 - The author makes the comment in the discussion proposing an open research 
question that “it may also be possible ... using a different choice for [b^xl], to find 
cases [with lesser hardware requirements]” [24]. The hardware requirements in this 
case consist of the number of XOR gates, FFs, and pipeline stages (PSs). We chose 
to investigate this open research question in our conference paper [53] and our search 
approach is explained next.

We make one final note concerning the formulation of this approach. In [54], the 
authors extend the formulation in [24] to handle the case when the message length is 
not a multiple of the degree of parallelism. We consider this to be outside the scope 
of this thesis, and we will omit it from our discussion.

Vector b^xl Search

We perform a brute-force search testing all possible b ^ xl vectors for their result im
plementation complexity. Since designers take different approaches to implement an 
architecture (possibly depending on what different hardware elements are available), 
to consider a b ^ xl to be optimum, we feel that it is best to count the number of Is in 
the coupling matrices for the frequently referenced generator polynomials. This may 
always result in the globally optimum value for all the different hardware libraries, 
but the end result will likely have a lower hardware complexity than selecting the

r l T
simple vector b ^ xl =  1 0 0 • • • 0 vector.

To perform our analysis of the selected generator polynomials with l =  m, we 
wrote C ++  code that precomputed the state-space matrices Amxm, B mx; in (3.13) 
for each generator polynomial. After the precomputation stage, we loop over all the 
2m — 2 possibilities for the different b ^ xl vectors. For each b ^ xl candidate, the 
matrix T mxm is computed from (3.28) and inverted using Gauss-Jordan elimination,
i.e.,

771X771 •771X771 -771X777
i- l
777X777 ]•

to obtain T “ xm. Next, we verify that T mxm • T “ xm =  Imxm, and afterward the 
transformed coupling matrices A'mxm, B ^ ; ,  and C'mxm in (3.27) are obtained. We 
proceed to count the number of Is in A'mxm, B 'mxl, and C'mxm, and the set of b^ xl 
vectors that produced minimum values is retained. One optimization for the compu
tation exploits the fact that if l =  m, then A mxm =  B mx(m) [24], thus we are able 
to first compute B'mxrn =  T ~ xm • BmXm and then compute A'mxm -  B ’mxm ■ T mxm.
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Table 3.4: Optimum bjnx] for frequently referenced generator polynomials when l =  
m.

G W h*umxl
CRC-12 r-~1 00 XO

 !

CRC-16 [OxCOODf
CCITT-16 [0x648B]r , * [0x908C]r , [0xC916]r , * [0xF664]7
CRC-16t [OxOOEO]7, * [0x740l]r

CCITT-16f [0x390D]r , [0x721A]r , * [OxAClF]"'
CRC-32 [0x0AA4 1D98]T, * [0x3C9C 8222]r

Table 3.5: Comparison of the total number of Is in the transformed coupling matrices.

G {x) h*umx 1 h*umx 1 % Savings
CRC-12 136 120 11.8
CRC-16 218 188 13.8

CCITT-16 238 226 5.0
CRC-16f 250 190 24.0

CCITT-16t 248 226 8.9
CRC-32 1031 929 9.9

By taking this approach, we save one matrix multiplication operation in our main 
simulation b ^ xl loop.

The results of our search are summarized using a compact hexadecimal notation
r i  T

in Table 3.4, and the comparison with the simple b ^ xl = 1 0 lxm—1 vectors is
shown in Table 3.5. We note that at this writing, we have completed over 50% of the 
CRC-32 search, and the final result will appear in our conference paper [53]. As an 
example of the hexadecimal notation, the optimum vector for CRC-12 with Z =  12 is 
found to be

^12x1
-i T1 0 0 0 0 0 0 1 0 1 0 0

ITwe denote it as b*2xl = [0x814] , and hats are used to mark the optimum vectors.

Realization

A block diagram of the pipelined architecture is shown in Figure 3.14. In our real
ization, we assume only two-input XOR gates are available and pipelined the input 
and output blocks such that their output wires were clocked. Any required retiming 
FFs are placed at the roots of the pipelined XOR trees. Finally, we note a typo in 
the matrix T _1 listed at the end of [24] and we have corrected it in Appendix C.
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Figure 3.14: Generalized State-Space Transformed Architecture.

3.3.6 Retimed Architectures

In [10], the authors manipulated the serial LFSR2 architecture by unfolding, pipelin
ing, and retiming it. Since no closed form formulation for this approach is presented, 
we neglected to study it in detail. However, the results achieved by this approach are 
quite good for CRC-32, but it is difficult to gage its performance with other degrees of 
parallelism. We note that a possible future study could consist deriving the parallel 
expressions of this approach based on mathematical manipulations.

Other proposed retimed architectures include [42], [47], and [48]. In [47], a parallel 
architecture is proposed based on the LFSR1 formulation. The input reduction logic 
is unfolded and retimed, however the critical path in the feedback loop is unchanged 
limiting the operational frequency. The other two retimed architectures, i.e., [42] 
and [48], rely on assumptions that may limit their deployment. For instance, in
[42] the message length must be known beforehand and [48] assumes that there are 
buffered packets to achieve good throughput. For these reasons, we consider all of 
these retimed architectures to be outside the scope of this thesis and they are omitted 
from our comparisons.

3.4 Software Algorithms

In this section, the published software algorithms that perform the CRC computation 
are surveyed. CRC software algorithms are generally slower than their hardware 
architecture counterparts, however they offer the designer greater flexibility and are 
useful in systems that employ micro-controllers. The Bit-wise Algorithm, Table Look
up Algorithm, Reduced Table Look-up Algorithm, On-the-Fly Algorithm, Slicing 
Algorithms, and Distributed Table Look-up Algorithm, as well as the LUT Generation 
Algorithms are discussed in detail.
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In our discussion, we take an approach similar to what used to discuss the hardware 
architectures in the previous section. Each algorithm is summarized by presenting a 
generalized formulation and a possible software realization using C++ pseudo code. 
All of the algorithms are based on the primitive LFSR2 formulation, and are pre
sented using binary polynomial derivations. We begin our discussion by outlining our 
assumptions in the following subsection. Published papers concerning CRC software 
algorithms include [7], [13], [15], [16], [55], [56], [57], [58], [59], and [60].

3.4.1 Assumptions

To simplify our discussion of the CRC software algorithms, in this thesis we assume 
the following:

• u>-bit bus width;

• datapath with standard instruction set, e.g.: desktop personal computer (PC);

• all typical bit-wise operations are assumed to take equal run time;

• the leading x m term of the generator polynomial is considered implicit;

• generator polynomial degree is less than or equal to the bus width, i.e., m <  w,

• degree of parallelism is less than or equal to the bus width, i.e., I <  w,

• word-sized chunks of the message are fetched at a time;

• reverse Endianness convention is employed; and

• W  =  words are required to store a A-bit message in memory.

Since the target deployment for our software experiments consisted of a desktop PC 
with w =  32, most of these assumptions are rather trivial. Before moving on to the 
discussion of the algorithms, we provide some justification for the assumptions that 
may not be obvious to the reader.

First, we feel that the most important issue for CRC software algorithms is the 
Endianness convention of the computation. We have chosen to maintain the reverse 
convention in all our implementations, because this notation simplifies the implemen
tations of most CRC algorithms, including our later proposed algorithm. Also, it is 
used in the most recent software CRC publication [7] and this convention is illustrated 
in Figure 3.15.
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Figure 3.15: Illustration of the message array.

Next, when representing generator polynomials in memory, there are traditionally 
two approaches. Since generator polynomials always have non-zero x° and xrn terms
[1], one of those terms can considered implicit and we do not need to store it in 
memory. The overwhelming majority of papers adopt the approach to make the 
coefficient of the xm term implicit, e.g.: [7], [13], [56], and [58], and we also follow that 
convention. Moreover, the Endianness of that representation is also important, and 
in Table 3.6, we provide both representations for the common generator polynomials 
with the leading xm term implicit.

Again, like a hardware architecture, an iteration of a software algorithm is defined 
as the operations to process l message bits. We note that since l <  w was assumed, 
then it is possible for an implementation of an algorithm to require multiple iterations 
to process one w-bit message chunk. Finally, since we have assumed m <  w, the final 
syndrome and all the LUT entries can fit inside a single word. For discussion of 
implementations when m >  w, the reader can consult [15].

Table 3.6: Standard hexadecimal representations of frequently referenced generator 
polynomials.

G( x) Normal* Reverse*
CRC-12 0x80F OxFOl
CRC-16 0x8005 OxAOOl

CCITT-16 0x1021 0x8408
CRC-16f 0x4003 0xC002

CCITT-16f 0x0811 0x8810
CRC-32 0x04Cl 1DB7 0xEDB8 8320

* x 171 term is implicit.
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3.4.2 Bit-wise Algorithm

The Bit-wise Algorithm (CRCB) [56] is an emulation of the serial LFSR2 Architecture 
(Figure 2.3b) in software. The CRCB does not capitalize on the advantage that 
datapaths can manipulate multiple bits (a word) at a time, and consequently it is 
quite slow.

Formulation

The formulation for this approach is quite simple, recalling the equation that was 
used to develop (3.17),

(x ) =  (x ■ S^  ̂ (x ) +  xm ■ B ^  (x )) mod G (x). (3.29)

If one expands the (x ) polynomial and replaces B® (x) with 6^ in (3.29), then

(3.30)

is obtained. Since generator polynomials can be written as

xm =  go +  g ix  +  g2x 2 4------- h gm- \ x m 1

equation (3.30) becomes

(3.31)

Realization

The realization of (3.31) is rather straightforward, and in Algorithm 3.1 we show a 
code snippet for a possible C ++  implementation of CRCB(l) assuming m — w =  32. 
Observe that the parentheses are used to denote the number of message bits processed
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Algorithm 3.1 Bit-wise Algorithm.
crc = INIT__VALUE; 
while (p_buf < p_end) {

msg = * (uint32_t *)p_buf;

for (i=0; i<32; i++) {
if ((msg A crc) & Oxl) == 0x1)

crc = (crc »  1) A polynomial;
else

crc » =  1;

msg >>= 1;
}

p_buf += 4;
}
return crc A FINAL VALUE;

T T

T T
u.

(a)

--------

T T 
¿0

T T
Uiw  U(i+\)-w-i

(b)
Figure 3.16: Illustration of CRCB Endianness for m <  w: (a) normal, (b) reverse.

in an iteration for a realization of an algorithm. For further discussion concerning 
implementations of CRCB, the author may consult [13], [15], and [56]. Finally we 
note that, if the normal Endianness convention is used to implement this algorithm 
and m <  w, then an extra shift is required in the condition in Algorithm 3.1 to form 
s^l1! +  (as well as all the other shifts being reversed), see Figure 3.16. In fact, all 
the CRC software algorithms in this thesis suffer this problem for normal Endianness 
convention when m <  w.

3.4.3 Table Look-up Algorithm

The Table Look-up Algorithm (CRCT) first suggested in [56], but often credited to 
[58], is rather easily implemented and useful for software deployments of high-speed 
CRC computations where memory is readily available. Consequently, this algorithm 
is popular for desktop PC deployments.
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Formulation

The formulation of this approach consists of combining l iterations of CRCB into a 
single iteration. Beginning with (3.3), assuming l <  m, and expanding the (x ) 

and B^ (x ) polynomials, one can obtain,

(x) =  (x l • (x) +  x m • B® (x )) mod G  (x)

=  ( a g " V  +  s li~ 1]x l+1 +  • • • +  s t 1Ja;i+m_1+

b[$ x m +  b f x m+1 +  ■■■ +  b[li 1 a:m+i- 1)  mod G  (x)

=  a g - V  +  a f " V + 1  +  • • • +  h x ^  +  (  ( a t 1,1 +  fig1)  x"*+ 

( s t - l i  +  bi )  ^ + 1  +  ' ' '  +  (s t-3  +  ^ l i )  *m+l~X)  mod G (x)

=  a g - V  +  a f - V + 1  +  • • • +  a t lL ^ ™ - 1 +
(xm • H [i] {x)) m odG (x), (3.32)

where (x) =  (^ t i+ j +  i - i )  ■> ancl (x ) is use(l to represent the terms
that require reduction in xl • (x) +  xm • B^ (a;). If one performs the reduction of
x m ■ H® (x) in (3.32) during a single iteration, then the performance of this approach 
will be better than CRCB.

Realization

An LUT is created with 2l m-bit entries for the syndromes of each of the possible 
Z-bit patterns of H®  (x), where

lut (H® (x )) =  (xm ■ H®  (re)) mod G (x).

The most common degree of parallelism for implementations of this algorithm is 
l =  8 . Selecting l such that w mod l ^  0 makes little sense, because the number of 
bits processed in the iterations of a word fetch will not be equal. The next logical 
value would be l =  16, but that results in a LUT with 216 entries, and the designer 
may not have that amount of memory available. Furthermore, even when there is 
enough memory available to implement l =  16, the access times are likely to be poor 
mainly due to caching [1 2 ], [61].
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Algorithm 3.2 Table Look-up Algorithm.
crc = INIT_VALUE; 
while (p_buf < p_end) {

msg = * (uint32_t *)p_buf;

for (i=0; i<4; i++) {
term = (crc A msg) & OxFF; 
crc = lut[term] A (crc >> 8);

msg » =  8;
}

p_buf += 4;
}
return crc A FINAL VALUE;

In Algorithm 3.2, we show a code snippet for a possible C ++  implementation of 
CRCT(8 ) assuming m  =  w =  32. For the cases when l > m, the development of the 
formulation in (3.32) is slightly different with

l—m—l m—1
H [i] (z) =  Y  b f x j +  Y  ( 4 _1] +  bf+i-m) x j - 

j=o j=o

In our discussion of the next algorithm, we develop this formulation in detail. Finally, 
additional implementations and further discussion of this algorithm can be found in 
[7], [13], and [15].

3.4.4 Reduced Table Look-up Algorithm

The Reduced Table Look-up Algorithm (CRCR) first suggested in [13], also known 
as the Virtual Table Algorithm [15], is derived from the linearity property of the 
modulus operation. Typical implementations slightly outperform CRCB, at the cost 
of a small amount of additional memory.

Formulation

The approach of this algorithm is based on decomposition of the polynomial H® (x ) 
and the distribution of the modulus operation. Beginning from (3.3), assuming l >  m, 
and expanding the (x) and (x) polynomials, one can obtain,
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5 [i] (x) =  (x l • (x) +  x m ■ B®  (x)) mod G  (x)

=  ( s | p V  +  H-------- 1- S[̂ } \x l+m~l+

+  b f x m+1 +  • • • +  b f^ x " 1̂ - 1}  mod G (x)

=  ( f f  i ”>+ i f * “ « +• • •+ +  ( s i ; - 1) + 4 + )  * '+

( + "  +  d -™ + i) x ‘+l  +  • ■ ■ +  ( » t - 'J  +  i’L )  m od G (x )

=  (xm ■ (x)) mod G  (x), (3.33)

where ifW (x) =  sj ~ 1] xJ+  ̂ 2^Jm-i ( si _1] +  bf-m+i) x j ■ Then, the polynomial
x m ■ HW (x) in (3.33) is decomposed and the mod operation is distributed, i.e.,

(x) =  (x m ■ H®  (x)) mod G  {x\

=  X

l- 1
m X ' L.KI^  h y x 3 ) mod G  (x )

3 = 0

h ^ x m mod G  (x) +  h^xm + 1  mod G  (x) +  
h f ^ x ™ ^ - 1 mod G  (x).

+

(3.34)

Realization

To implement (3.34) in software, one can create a reduced LUT with l m-bit entries, 
where

lut (xj ) =  x m+j mod G  (x).

Then, during each iteration, the CRCT LUT entry is constructed from the required 
look-ups (depending on values of h® for 0 <  j  <  l — 1) to the reduced LUT table. 
This approach serves as a low-memory alternative to CRCT. Selecting the degree of 
parallelism equal to bus width is generally the best choice for the fastest implementa
tions of this algorithm [13]. In Algorithm 3.3, we show a code snippet for a possible 
C ++  implementation of CRCR(32) assuming m  =  w =  32.

3.4.5 On-the-Fly Algorithm

The On-the-Fly Algorithm (CRCF) [13], [56], also known as the Optimized Virtual 
Table Look-up Algorithm [15], relies on implementing the primitive LFSR2 equations 
in software with datapath operations. Unlike the previously described software CRC
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Algorithm 3.3 Reduced Table Look-up Algorithm.
crc = INIT_VALUE; 
while (p_buf < p_end) {

term = crc A * (uint32_t *)p_buf;

crc = 0x0;
for (i=0; i<32; i++) {

if ((term & 0x1) == 0x1) 
crc A= lut[i];

term >>= 1;
}

p_buf += 4;
}
return crc A FINAL VALUE;

computation algorithms CRCB, CRCT, and CRCR, the performance of CRCF is 
dependent on the degree of parallelism, coefficients of the generator polynomial, and 
creativity of the implementer.

Formulation

As we have demonstrated though out this chapter, there are many different ways to 
obtain the primitive parallel LFSR2 equations. In typical explanations of CRCF, the 
equations are obtained from the entries of the CRCR LUT, and both [13] and [56] 
present a table outlining those equations for CRC-16 with l =  8 . We have produced a 
similar table in Appendix B, that outlines the equations for CRC-32 with l — 8 . For 
designers not experienced with hardware, this is probably the best method to obtain 
the CRCF expressions.

Realization

The implementations of CRCF(8 ) for CRC-16 that are described in [13] and [56] 
make use of special memory flags such the register parity. In many cases, these flags 
may not be known of or available to the designer. Referring to the expressions for 
CRCF(8 ) with CRC-32 in Appendix B, one can see that it would be difficult to derive 
an implementation that outperforms CRCR(32) on any datapath. Also, we feel that 
this algorithm is best suited for smaller datapaths such as w =  8  or w =  16. For 
these reasons, we omit this algorithm from our comparisons.
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3.4.6 Tea-Leaf Reader Algorithm

The Tea-Leaf Reader Algorithm was one of the earliest CRC algorithms proposed by 
the authors of [57], We note that the presentation style and notations contained in 
the paper are quite cumbersome and difficult to understand. This algorithm was sub
sequently shown to be less efficient in terms of the number of number of instructions 
and LUT sizes when compared to CRCT in [58]. Furthermore, in [62] the authors 
discuss the differences between internal and external LFSRs, and they state the CRC 
computation is implemented with an internal LFSR architecture, whereas the Tea- 
Leaf reader algorithm is based on an external LFSR architecture. It is noted that 
there exists a unique one-to-one mapping between the signatures created from an 
input sequence inputted to each architecture, but the result produced from the ex
ternal LFSR architecture is not the CRC computation as defined in (2.2). Therefore, 
the Tea-Leaf Reader Algorithm does not perform the CRC computation. For these 
reasons, we omit this algorithm from our comparisons, and for further discussion on 
internal and external LFSRs and the signatures generated by them, the reader may 
consult [63] and [64],

3.4.7 Joshi-Dubey-Kaplan Algorithm

In [16], a parallel CRC algorithm was proposed, which we refer to as the Joshi-Dubey- 
Kaplan Algorithm (CRCJDK). It was designed to take advantage of the instruction 
set extensions present in the IBM PowerPC 128-bit architecture. It is difficult to 
compare implementations of CRC JDK [7], because similar to CRCF its performance 
relies on specific datapath instructions that are not always available to the designer. 
We attempted to implement it on our w =  32 system and derive a formulation that 
modeled the operation of this algorithm, but we were unsuccessful. For these reasons, 
we omit this algorithm from our software comparisons.

At the end of [16], a parallel CRC architecture is proposed by mapping the CR- 
CJDK to hardware. However, the explanation of its implementation is not clear, and 
we failed at attempts to implement it. We have found no other papers in the liter
ature that provide comparisons of the theoretical or implementation performance of 
this architecture, and for these reasons we omit it from our hardware comparisons.
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3.4.8 Slicing Algorithms

The Slicing Algorithms are the fastest known software CRC computation algorithms. 
The derivation of these algorithms presented in [7] is quite complex involving many 
theorems and lemmas. In this subsection, we derive the slicing formulation though 
simple binary polynomial manipulations, and show this approach is really a combi
nation of the CRCR and CRCT algorithms. Two variants of approach are presented 
in [7] called the CRC Slicing-by-4 Algorithm (CRCS4) and the CRC Slicing-by- 8  Al
gorithm (CRCS8 ). They are suitable to process one word and two words portions 
of the message stream during an iteration for CRCS4 and CRCS8 , respectively. Our 
formulation for this approach focuses on CRCS4, but it is easily extended to the 
CRCS8  case.

Formulation

The formulation of this approach can be considered as an extension of the CRCR 
algorithm, and it is typically developed for situations when l >  m. For CRCS4, 
continuing from (3.33) and assuming that l mod 4 =  0, slicing H®  (x) into four 
polynomials, then distributing the modulus operation, and one obtains

S® (x) =  (xm ■ H®  (x)) mod G (x)

=  ( x m ■ (.H f1 (x) +  £ 4  . H f ] (x) +

x^ ■ (x) +  ( x )^  mod G  (x)

=  ^xm ■ H §  (x)j  mod G  (x ) +  (x m+^1 • H® (x)j  mod G  (x) +

^rm + 2 • (xfj  mod G  (x) +  ( x m+^  • H®  (x)^ mod G  (x),

(3.35)

— 1 4 - 1where H ?  (x) =  £ £  h^x*, (x) =  T . U  , H ?  (x) = - lV 4 hli rl ^3 =  0 nU jX ’
ï - 1

H3 (X) =  E i= 0  h 31
+ 3

X- and assuming that l mod 4 =  0.

Observing (3.35) and one notices that a similar approach was taken with CRCR, 
but in this case the reduction of (x) has been split in such a way that four 
polynomials of | bits require reduction. Also, note that each polynomial requires 
reduction at a different offset. For CRCS8 , one splits (x) into eight polynomials 
assuming that l mod 8  =  0 .
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Algorithm 3.4 Slicing-by-4 Algorithm.
crc = INIT_VALUE;
while (p_buf < p_end) {

term - crc A * (uint32_t *)p_buf;

crc = lut_56[term & OxFF] /'
lut_48[(term »  8) & OxFF] A 
lut_40[(term »  16) & OxFF] A 
lut_32[term »  24];

p_buf += 4;
}
return crc A FINAL VALUE;

Realization

The realization of this approach in software is rather straightforward. For CRCS4, 
four LUTs are created for the different offsets xm, xm++ xm+5 , and x m+^ . With 
w =  32, l =  32 is generally the best choice with size of the LUTs exploding for 
greater values of l, and awkward alignments and poor performance for smaller values 
of l. In Algorithm 3.4, we show a code snippet for a possible C ++ implementation 
of CRCS4(32) assuming m  =  w =  32, and this is similar to what is presented in [7]. 
This approach outperforms CRCT because it avoids alignment shifts by processing 
an entire word in an iteration and the caching problem by requiring four LUTs, each 
with 23 m-bit entries.

3.4.9 Distributed Table Look-up Algorithm

Recently, the Distributed Table Look-up Algorithm (CRCD) was proposed in [60]. 
Basically, this approach adapts CRCS4 to perform the CRC computation with dis
tributed accumulators, i.e., one on each processor. The message is then partitioned, 
and portions are processed in parallel before the final result is obtained from combin
ing all the partial results. Since we did not have access to a distributed environment, 
we opted not to implement this algorithm.

However, in the future work section of that paper, the authors suggest an inves
tigation into a hardware realization of their approach. In the following chapter, we 
investigate this idea and show that it is likely that cases exist where this approach 
can offer improvement over the existing hardware approaches. However, simulations 
need to be performed to verify that these cases exist and that they are for useful 
situations.
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3.4.10 Look-up Table Generation

In this subsection, the three LUT generation algorithms for the LUT based CRC 
computation algorithms discussed in this chapter are presented. We note that LUT 
entries are typically computed offline, so efficiency is not a primary concern. There
fore, we feel that designers should aim to implement algorithms that are more easily 
maintained, so their correctness that can be verified. We remind the reader of our 
assumption that m  <  w, i.e., all LUT entries can be stored in a single word. No
tice that we drop the iteration superscript from the H  (x ) polynomials, because the 
iteration has no impact when we are considering the creation of an LUT.

CRCT LUT Generation

As previously discussed, the m-bit LUT entries for CRCT were defined as

lut (H  (x)) =  (xm ■ H  (x)) mod G  (x),

where H  (x) =  To generate the entries for the LUT, the bit-wise CRC
algorithm can be used. One can loop over the 2l different bit patterns of H  (x), 

compute the CRC with CRCB, and store the result in a table at the index described 
by the bit pattern of H  (x). In Algorithm 3.5, we show a code snippet for a possible 
C ++  implementation of the CRCT LUT generation algorithm.

Algorithm 3.5 Table Look-up LUT Generation Algorithm.
lu t s ize  = pow(2 , dop );

for (i= 0 ; i< lu t s iz e ; i++) { 
msg = i ;
1  f  s r = 0 ;

for (j =0 ; j<dop; j++) {
i f  (((msg A l fs r )  & 0 x 1 ) 

l f s r  = ( l fs r  »  1 )
else

l f s r  » =  1 ;

== 0 x 1 )
A polynomial;

msg » =  1 ;
}

lu t [ i ]  = l f s r ;
}
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Algorithm 3.6 Reduced Table Look-up LUT Generation Algorithm. 
lut_size = dop;

for (i=0; i<lut_size; i++) {
lfsr = polynomial;

for (j=0; j <i; j++) {
if ((lfsr & Oxl) == 0x1)

lfsr = (lfsr »  1) A polynomial;
else

lfsr » =  1;

lut[i] = lfsr;

CRCR LUT Generation

Recalling, that the m-bit LUT entries for CRCR were defined as

lut (xJ) =  (xm • x-7) mod G  (x),

for 0 < j  < 1  — 1. The cleaver reader may notice that to compute the CRC of a 
message of the form U  (x) =  x3 involves shifting one 1 followed by j  — 1 Os into the 
Serial LFSR2 Architecture. Again, using CRCB one can easily generate this LUT, 
and in Algorithm 3.6, we show a code snippet for a possible C ++ implementation of 
the CRCR LUT Generation Algorithm. One final point worth noting, the CRCT LUT 
can be generated from the CRCR LUT entries by means of the CRCR Algorithm, 
and this is discussed by the authors of [13].

CRCS LUT Generation

Recalling, that the LUT entries for the slicing algorithms depend on the offset and 
the degree of parallelism, we define the generalized CRCS LUT as

lutG (H  (x)) =  (xm ■ x° ■ H  (x)) mod G  (x),

which is slightly different than the notation used in [7]. This is easily implemented 
as combination of the two previous approaches, using CRCB to reduce H  (x) and 
shifting in an additional o Os. In other words, combining the x° ■ H  (x) together, and
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Algorithm  3.7 Slicing LUT Generation Algorithm. 
lut_size = pow(2, dop);

for (i=0; i<lut_size; i++) {
msg = i; 
lfsr = 0;

for (j=0; j< (dop+offset) ; j++) {
if (((msg A lfsr) & 0x1) == 0x1)

lfsr = (lfsr »  1) A polynomial;
else

lfsr » =  1; 

msg >>= 1;

lut[i] = lfsr;

one obtains,

lut0 (H  (x)) =  (xm • x° • H  (x)) mod G  (x)

=  (x m • H ' (x)) mod G  (x),

where H ' (x) =  x°  * H  (x). In Algorithm 3.7, we show a code snippet for a possible 
C ++  implementation of the CRCS LUTs generation algorithm.

3.5 Summary

In this chapter we reviewed the CRC formulations, architectures, and algorithms 
most relevant to our work. We identified three methods to obtain the primitive 
parallel CRC equations: binary polynomial, state-space, and ^-transform. Parallel 
hardware architectures are based on either LFSR1 or LFSR2 formulations, while 
software algorithms are based solely on LFSR2 formulations.

The LFSR Architectures that perform the CRC computation are direct hard
ware realizations of their mathematical formulations, and are the fastest known non- 
pipelined architectures. The Two-Step Architecture can result in parallel implemen
tation of the CRC computation with CPD Tx,  however it is difficult to find M  (x ) 
polynomials for degrees of parallelism greater than l =  8 . The approach used to de
rive the Cascade Architecture places no restrictions on the degree of parallelism and



60

generator polynomial degree, and is useful for designers with limited knowledge who 
wish to implement a parallel CRC architecture. The Look-Ahead Architecture is yet 
another systematic method to realize a parallel CRC computation in hardware. The 
State-Space Transformed Architecture, can be used to derive a realization that can be 
pipelined with CPD 2  -Tx - We performed a brute-force search to obtain the set of op
timum vectors used to construct the transformation matrices for frequently referenced 
generator polynomials. Unfolding, pipelining, and retiming techniques were applied 
to the serial LFSR2 Architecture to obtain high-speed parallel CRC computation 
circuits.

The Bit-wise Algorithm is software emulation of the LFSR2 Architecture. The 
Table Look-up Algorithm uses LUTs to perform the computation at a fast rate and 
requires 2l m-bit LUT entries. The Reduced Table Look-up Algorithm is slightly 
faster than the Bit-wise Algorithm requiring l m-bit LUT entries. The On-the-Fly 
Algorithm relies on the designer being able to implement the parallel LFSR2 equa
tions using bit-wise operations. Unlike the previously mentioned algorithms, the 
performance depends on the coefficients of the generator polynomial. Although the 
Tea-Leaf Reader Algorithm is frequently cited in software CRC papers, it does not ac
tually perform a proper CRC computation. The Joshi-Dubey-Kaplan Algorithm was 
designed to operate on a 128-bit Power PC architecture, and relied on instructions 
specific to that architecture. The Slicing Algorithms use multiple LUTs to perform 
the CRC computation, and they are the fastest known software algorithms. The Dis
tributed Look-up Algorithm extends the slicing approach to operate across multiple 
processors. All of the LUTs for the previously mentioned software algorithms can be 
computed using a variant of the Bit-wise Algorithm.
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Chapter 4

N ovel C om putation Approaches

4.1 Preview

T HE previous chapter studied the existing CRC formulations. These formula
tions can be used to derive subsequent hardware architectures and software 

algorithms. We have seen that many approaches exist, all having different implemen
tation trade-offs. Now, with the existing work sufficiently described and analyzed, we 
are poised to develop our novel computation approaches.

In this chapter, we present a few novel extensions to the CRC formulation. These 
contributions give rise to new computation approaches that are realized as architec
tures and algorithms. We show that some of these approaches improve upon the 
existing ones, while the others are explored and could be the focus of future work. 
In the following chapter, we present the performance comparison of our proposed 
approaches versus the exiting ones.

4.1.1 Organization

The remainder of this chapter is organized as follows. In Section 4.2, we present 
the binary polynomial to matrix derivation and our optimized parallel LFSR2 Ar
chitecture for the case when the degree of parallelism is greater than the generator 
polynomial degree. In Section 4.3, the derivation, algorithm, and architecture of 
Lambda Gamma approach are presented. In Section 4.4, we extend the existing bi
nary polynomial approaches discussed in the previous chapter and propose a novel 
architecture. In Section 4.5, we derive and present the Message Splitting Architecture 
which is based on the Distributed Table Look-up Algorithm and show that it may 
outperform the existing approaches. This chapter is concluded with a summary in 
Section 4.6.
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4.2 Binary Polynomial to Matrix Approach

In this section, we construct a matrix-based representation of the parallel CRC LFSR2 
formulation. Unlike the previous matrix-based approaches that are obtained through 
state-space manipulations, our approach begins from the binary polynomial descrip
tion of the CRC computation presented in the previous chapter. After completing 
the derivation, we propose an architecture specific to the case when the degree of 
parallelism is greater than the degree of the generator polynomial. The majority of 
this material appears in our conference paper [41], with some notational changes to 
bring the formulation in-line with the material in the previous chapter.

4.2.1 Formulation

Assuming that degree of parallelism is greater than the generator polynomial degree, 
i.e, l >  m, and continuing from the LFSR2 derivation presented in (3.7), one can 
obtain

771—1(l—m —1

j=o j =o
l—m—1 771—1

Z  bf xj +  Z  ( Si 11 +  bf+l~m)  ^
j=o j =0

771—1

= E bf*1+m+E (A"+
j=0 j=0
1-777—1

E ^
3=0

where

(4.1)

0
0  <  j  <  m

* ? = ‘ b ' K m <  j  <  l (4.2)

/ f - l  +  bf-m l <  j  <  l +  m

Now, we introduce a matrix multiplication for representing the non-zero portion
of scalar (re ) in (4.1), as the product of a row vector Xix/ = 1  x x i-1

%and the column vector = 7̂77+1 Ẑ+777—1 , i.e.,

Z+777— 1 /+771—1

=  x m -
j=m j=m

-  x m - fxixi-tjld .
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From (4.2), it is clear that (x) =  YljtIZ 1 tjXj , consequently,

r W ( i )  =  x ’" - x lx, . t W 1. (4.3)

From the recursive definition of the CRC given in (3.3), and using (4.3), one can 
derive a generalized matrix-based formulation for the CRC computation as

S [l] (x) =  ( x m ■ X i xi • t j ^  mod G  (x )

1 ] -t fii mod G (x)2>m

X

x m mod G  (x) 
mod G  (x)

l+m—'.

-i T

m+1

Xm+l—1 mod G (x)

7x1

00,0 +  01,0^ +  * * * +  0m—1,0  ̂
0 0 , 1  +  0 1 , 1 ^  +  * • * +  0771— 1 ,1 -2 '

771—1

771— 1

771— 1

X i

9o,l- 1 +  9l,l-lx +  • • • +  9m-l,l-lx

9 o,o 9o,i • • • 9o,i-i
9 i,o 9i,i • • • 9 i, i- i

7x1

xm 7x1

0m—1,0 0m—1,1 ' ’ ’ 0m— 1,/—1
_ Y O _ . f  W— Alxm Vjmx/ Lix V

for 0  < i <  q — 1 , where Xixm — l x xm~ i and

00,0 9o,i 9o,i-i

GrmX/ ~
0 1,0 9i, i 9i,i-i

0 m—1,0 9m—1,1 9m—1,1-

(4.4)

Similar to the method used to express (x ) as the product of a row and column
vector in (4.3), one can write the left-hand side of (4.4) as

5 [1 x =  Xi Xm °77ixl (4.5)
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1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1
1 1 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1
1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1
1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0
0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0
1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0
1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1
0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
1 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1
1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0
0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1
0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0
0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1
1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1
1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1
0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0
0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1
1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 1
0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 X 1 1 1 0 1 0 0
0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0
0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1
0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0
0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1

Figure 4.1: Matrix G 3 2X32 for the generator polynomial CRC-32 when l =  32.

Then dropping x ixm from (4.4) and (4.5) and one obtains

i x i W  = G mxrt|[‘J1. (4.6)

We note that having the matrix Gmx; expressed in this form (4.4) simplifies the task 
of developing software to generate it for different generator polynomials and degrees 
of parallelism. An example of the matrix G 3 2 X 32 using the generator polynomial 
CRC-32 is shown in Figure 4.1.

4.2.2 Realization

We begin by noting that since the iteration number has no impact on an architecture, 
for convenience, one can drop the superscript notation from the terms in the parallel 
CRC formulations. However, since these equations are recursive and contain both 
and Sj~^ for 0 < * <  q — 1 and 0 < j  <  m  — 1, we can mark the next CRC terms, 
i.e., with primes. This notation is also used in [22] and [26].
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Observing (4.6), it should be clear that there are m  equations (one equation per 
syndrome bit),

S0 /O (tmt t"m+1) j tm +l—l)

=  f l  tm +1) j An+i—l)

^m—1 =  fm — 1 iS"mi bn+1) ? tm +l—l) ■

A parallel CRC circuit can be constructed by direct realization of the m  equations de
scribed by the multiplication Gmxrt/xi, i.e., independent realizations of the functions 
fiS-

It is possible to use complexity reduction techniques to share hardware between 
these m  parallel equations, i.e., sub-expression sharing. Some of the published sub
expression sharing techniques include [65], [6 6 ], [67], [6 8 ], and [69], Initially, we 
attempted to develop our own complexity reduction approach tailored for CRCs, 
but afterward we found [6 8 ] which outperformed our approach and subsequently we 
abandoned this topic.

Now, recalling from Chapter 2, where A and 0  are defined to be the time and area 
complexity of a hardware architecture, respectively, we now let Si and (9,; represent 
the delay and hardware complexity of for 0 < i <  m  — 1, respectively. Then, the 
CPD of a hardware architecture A is determined by,

A =  max(<J0A , - - -  J m - 1) ,

and we define the total hardware complexity of a parallel CRC architecture as

TO —1
0 = to • Cx + Qi +  m • Cf ,

¿=o

where, C x  and Cp were previously defined to be the cost of an XOR gate and FF, 
respectively.

As we are interested in the fast realization of /¿s, XOR trees can be utilized to 
implement the equations. It is known that an n-bit XOR tree has hardware cost 
{n — 1) • C x  and [log2 n] gate levels. Therefore, if all the terms in an equation have 
delay O -T x ,  this results in a delay of flog2 n] • Tx , where Tx  is the delay of an XOR 
gate.
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Figure 4.2: Example DARC- 8  XOR tree architecture for s'2 =  t2 +  t5 +  t6 +  t7 +  tg +  ti2 
with l =  16.

Since l >  m, Us are computed with different delays (either 0 -Tx  or 1 -Tx ). Thus it 
is possible to reduce the Sis if proper care is taken when constructing the XOR trees. 
As can be seen in (4.2), terms tm to £/_i can be obtained with no delay, whereas the 
terms tt to £m+/-i have the delay 1 • Tx . Therefore, in this architecture, we begin to 
construct the XOR tree by pair-wise XORing the terms tm to U- i  that are present 
in each /¿, and at the same time we obtain the present ti to £m+/_i terms. Assuming 
that in fi there are cq,0 terms with no delay and cr,̂  terms with 1 -Tx  delay, if > 0 

then the results can be summed up after [log2 (cq,i +  [ivr"|)'| levels. Thus, the delay 
of is equal to

Si = ( l  +  log2 ( <A, 1 + (4.7)

and the hardware complexity is

— (o'i.o +  CRi — 1) • Cx . (4.8)

Figure 4.2 graphically shows how one can build an XOR tree for the s'2 equation of 
the generator polynomial DARC- 8  (G (x) =  1 +  x 3 +  x4 +  x5 +  x 8 [27]) with l =  16.

Considering all the above remarks, we can now present a generalized design of 
the parallel LFSR2 Architecture when l >  m  as shown in Figure 4.3, which appears 
in [41]. It is an extension of the parallel CRC architecture presented in [2 2 ] and 
illustrated with conventions similar to those of the parallel LFSR1 Architecture for 
l =  m  in Figure 4 of [26], with some optimizations specific to the case l >  m. The 
first optimization is trivial, like previously published primitive architectures, we share 
the feedback XOR gates that combine Sj-i and for l <  j  <  l +  m — 1 (4.2). The 
second optimization comes from the previous discussion about how one can reduce 
the overall delay by first having a level of XOR gates that combine the present tj 

for m <  j  < 1  — 1 terms with no delay, and then construct an XOR tree with the 
remaining terms.
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This architecture was novel in the sense that no one had undertaken a study of 
the design when l >  m. In the following chapter, simulations are performed for this 
situation and the optimum degrees of parallelism are determined.

4.3 Lambda Gamma Approach

In this section, we present the Lambda Gamma approach for performing the CRC 
computation. We consider this to be the most significant contribution contained 
the thesis. This approach gives rise to both a software algorithm and hardware 
architecture. Compared to the existing approaches, the novel software algorithm 
provides high-performance and requires low-memory usage.

4.3.1 Formulation

Here, we examine the relationships between the columns of Gmx/ and discuss how 
the matrix is constructed. Afterward, we propose a matrix decomposition that we 
call the Lambda Gamma decomposition. This derivation assumes that the degree of 
parallelism is greater than or equal to the degree of the generator polynomial, i.e., 
I >  m. We note that in [70], the original formulation for the modular reduction with 
l =  m — 2 is introduced and it has been used to design a bit-serial multiplier. In 
the following, we extend this development to the CRC computation for l >  m  and 
propose software and hardware approaches.

Beginning from the formulation in (4.6), the entries of the left-most column of 
G mxz are obtained from the coefficients of G (x )  as follows: g^o =  g¿, where gij0 E 

G mxi and gi E G  (x), for 0 <  i <  m  — 1; this is because

Therefore, when computing the remaining l — 1 right-most columns of Gmxz, in gen

771— 1

x m mod G( x)  =  | 1  +  giX1 j mod G (x)

771— 1

1 +  9%x%

eral, each column represents the result of x m+i mod G  (x ) for 0 <  j  <  l, and we 
have
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Recall that x T denotes the order of the second greatest nonzero term in the generator 
polynomial, i.e.,

r —1
G (x) =  1 +  ^ 2  9ix% +  xT +  %m-

i—1

Now, if j  <  m  — r  then no further reduction by G  (x) is required [70], and for 
these cases, the top-most entry of the j-th. column is equal to zero, i.e., goj =  0 . 
However, when r  +  j  =  m, the term x T+G requires reduction, i.e., substitute xT+J = 
xm =  x T +  giX1 +  1; this results in the entry g0,m-T =  1. For the remaining 
cases r  +  j  >  m, the value of g0j  depends on the generator polynomial. Also, it is 
interesting to note that g0jS are fixed for a given generator polynomial.

From the entries in the top-most row of Gmxj, i.e., c/0j  for 0 < j  <  l — 1, we define 
the set A such that

A =  { Ao, Ai, • • • , A|a|_i }

=  {J I 9o,j =  1)7^ [0, l — 1], go,j ^ G mxi} . (4.9)

In other words, A can be seen as the set of js  for 0 <  j  <  l — 1, for which the 
coefficient of the least significant term, i.e., x°, in the polynomial representation of 
x m+o mo(| q  (a;) is i. Note that A0 =  0, since go =  1 for all generator polynomials [1 ]. 
Moreover, the set A is easily computed using the serial LFSR2  Architecture (Figure 
2.3b), by feeding in 1,0,0, ••• ,0, and recording the cycle numbers when so =  1 
(counting the first cycle as cycle 0).

From the earlier discussion concerning reduction, it is clear that A0 =  0 and 
Ai =  m — r. With the left-most column of G mxi, which contains the coefficients of 
the generator polynomial, one can obtain the columns between A0 and Ai of G mxi, as

xm+j mod G  (x)

for Ao =  0 < j  <  Ai =  t ; which is equivalent to a j-fold down-shift operation of the

r —1

X~ 1 +  9iZl + x
i= 1

T —  1

— x? +  9ix%+J +
i= 1
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left-most column of GTOX/. For the case j  =  Ai, we have

Xm+Xl mod G  (x ) =  x Xl ■ ^ 1  +  QiXx +  x T̂

r—1
=  xAl +  J 2  9ixi+Xl +  xT+Xl • (4.10)

i—1

Substituting Xi =  m — t into the right-hand side of (4.10), one obtains

r—1
xm+Xl mod G  (x) =  x m~T +  9iXi+m~T +  x T+m~T

t= 1 
T—1

=  x m- T +  Y , 9 i xi+m~T +  xTn'
i=i

which is equal to the addition of the left-most column of Gmxi with its Ai-fold down
shifts. Next, for Ai < j  < A2, x m+i mod G (x) can be obtained by (j — Ai)-fold 
down-shifts of column A^ This is the same as the addition of the j-fold and (j — Ai)- 
fold down-shifts of the left-most column in Gmx;. The remaining columns can be 
obtained similarly.

4.3.2 Matrix Decomposition

From the set A, we introduce a group of |A| matrices that have the dimension m  x l 

denoted as À j^  for 0 < k <  |A| — 1. To construct À j^ ,  begin with an m  x l null 
matrix, add a south-east (\ )  diagonal string of Is, which originate from A -̂th column 
in the top-most row of À j^ ,  and extend across to the opposite side of the matrix; 
the remaining entries of À j^  are Os, i.e.,

where

IYmxl —

X f t j = <
0 i ^ j — Afc

h3
c 1 * =  3 — Afc

A0,0
X lXk] 
A0,l A 0,l-1

X \̂ k]
Al,0

X lXk] 
Al,l

X [̂ fc]
AU -i

\ l xk]
. A m - 1,0

X [̂ fc]
Am—1,1 A m—1,/—1 _
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Alternatively, the matrix A|^/ can be expressed as

A [ A fc]  =
mxl o mxAfc D mx(l-\k)

where D mx(i-\k) is a rectangular diagonal matrix1. Also, note that square bracketsv r \ i
have been chosen to describe the A J^  matrices, and this should not be confused with 
the square brackets used to denote iteration numbers elsewhere in the thesis.

Next, define the matrix down-shift operator, denoted by j  i , which acts on the 
matrix A pxq as

A(p_q

where [A(9_qX9] denotes the p — i top-most rows of A pXq and i < q. We note that 
this matrix j  i operator can be expressed by the matrix multiplication

(A

(Apxg)^ — [Ojxp]
[D(p_i)Xp]

A pxq■

With the matrix down-shift operator defined and generalizing the above construc
tion explanations, we can decompose the matrix Gmx/ as

. (4.11)
jer \keA /  ij

Furthermore, we can express the equation given in (4.11) as a matrix product

G mxl mxm ■Amxl (4.12)

where
go 0 . . .  0

9i go . . .  0

l 0

9m— 1 g-m- 2 ••• go

XD — [dij] and ditj =  1 if i — j  else dij =  0.
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and
9o,m—l • • • 90,1-1

00,m —2 ' ' ■ 90,1-2
• . • ’

$0,0 * ' * 90,l—m

recalling that c/j G G  (x) and gitj G GTOX;. To prove (4.12) is equivalent to (4.11), we
make the following observation

Amxl =  A-mxO (4-13)
ifcg A

which is obvious from our definition of the matrices. Then, substituting (4.13)
into (4.11) and one obtains

Gjyjx/ =  5 3
ter

=  (Amxz)i7o +  (Amx/)|7l H +  (AmxO^ip^! ■ (4-14)

A  mxl

00,0 00,1
0  00,0

0 0

Replacing the down-shift operations with their equivalent rectangular diagonal matrix 
products, one obtains

G tox; — (A mxz)j.7o +  (A mx/) lrYl +  • • • +  (A

0
D

7o x l 
(l~7o)xl

l7 i

A  mxl T

■mx^i7in-i

O71 xl 
D 0-7i)xZ

A mxl +  ••• +

07|r|-ixJ

D
•A

(l—7| r| -i)x i _ 

O70 xl

l~7o)xl

mxl

+
O71 xl 

D (/-7i)x/
+  — h

07in-i xl

D
A

(*_ 7|r|-i)x* _
mxl

(4.15)

From the definition of the set T in (2.9), it is clear that the expanded sum in (4.15) is 
equal to rmxm. Thus, we have shown both decompositions to be equivalent. Finally, 
we note that the sets A and T serve as compact and convenient methods to represent 
the Amxi and r mXm matrices, respectively.

Next, the matrix Gmx/ decomposition expressed in summation form (4.11) is used 
to propose a software algorithm, whereas, the product form decomposition (4.12) is 
used to propose a hardware architecture. Before proceeding we provide the following 
example to illustrate how one can decompose a matrix Gmx;-
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An Example

Consider constructing and decomposing the matrix G4x5 using the CCITT-4 gener
ator polynomial (G (x) =  1 +  x  +  xA [27]) and l =  5. From G  (x) one can quickly 
obtain m — 4 and T =  { 7 0 , 7 1 } =  {0,1}. Next,

^1x4 *G4 x 5 —

x 4 mod G (x)
T

1 0 0 1 1 "
x 5 mod G (x)

^  G 4 X 5 =
1 1 0 1 0

0 1 1 0 1

x8 mod G (x) _ 0 0 1 1 0

is computed. From the top-most row of G 4 X 5 (shown in boldface), one extracts 
A =  {A0, Ai, A2} =  {0, 3,4}.

Next, using the set A, the three A4Axfcg matrices are constructed as

1 0 0 0 0 " '  0 0 0 1 0 "

A [0] -iV 4 x 5 “

0

0

1

0

0

1

0

0

0

0

m  -, i v 4 x 5  —
0

0

0

0

0

0

0

0

1

0

0 0 0 1 0 0 0 0 0 0

and
0 0 0 0 1

 ̂[4j 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Now, consider the inner summation of (4.11), and compute the sum

V ( A [*]  ̂ -  A [0] + A [3] + A [4]/  ,, ^yv4 x 5 J ~  yv4 x 5 +  a 4 x 5  +  yv4 x 5 
fce A

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0
+

0 0 0 0 1
+

0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

’  1 0 0 1 1 "

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0
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Finally,

E
/ ’  1 0 0 1 1 \

0 1 0 0 1

0 0 1 0 0

\ o 0 0 1 0 /

1 0 0 1 1

0 1 0 0 1

0 0 1 0 0
0 0 0 1 0

’ 1 0 0 1 1

0 1 0 0 1

0 0 1 0 0
0 0 0 1 0

1 0 0 1 1

1 1 0 1 0
0 1 1 0 1

0 0 1 1 0

1 0  0 1 1  
0 1 0  0 1 
0 0 1 0  0 
0 0 0 1 0

o o o o o "  

1 0  0 1 1  
0 1 0  0 1 
0 0 1 0  0

Notice the single cancellation which occurs in the matrix addition (shown in boldface). 

Alternatively, using (4.12) and starting from the sets T and A, one constructs

Then

' 1 0 0 0  ' " 1 0 0 1 1

1 1 0 0 and A 4 X5 = 0 1 0 0 1

0 1 1 0 0 0 1 0 0

0 0 1 1 0 0 0 1 0

4 x 4 A 4 x 5

1 0 0 0 1 0 0 1 1

1 1 0 0 0 1 0 0 1

0 1 1 0 0 0 1 0 0

0 0 1 1 0 0 0 1 0

1 0 0 1 1

1 1 0 1 0

0 1 1 0 1

0 0 1 1 0

4 x 5 .

As a final remark, we observe that the equality stated in (4.13) holds in this example.
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4.3.3 Algorithm Realization

From the matrix decomposition presented in (4.11), we propose a new software algo
rithm that performs the CRC computation, we call it the Lambda Gamma Algorithm 
(CRCAr). Like the all the previously published algorithms, our proposed algorithm 
processes the message iteratively and we adopt the reverse Endianness convention for 
representing the message and syndrome polynomials in memory (see Figure 3.15).

Beginning with the matrix and vector product in (4.6) and substituting (4.11), 
one can obtain

(4.16)

When realizing (4.16) in software, after forming tjxl, we move it into the inner sum
mation of (4.16) and perform the multiplications with the matrices. This cor
responds to extracting and summing m-bit groups from t[xl beginning at the Afc-th 
left-most bit position. If A*, points to a position in tjxl where m  consecutive bits 
would run off the end of tjxl, then zeros are used to fill the higher order positions (as 
would be the result of • tjxl). We denote the m-bit intermediate result of the 
set A summation by lJ)Jxl, i.e.,

(4.17)

Since we are discussing a software algorithm, in fact (4.17) is realized as

Afterward, the set T summation is carried out on the intermediate vector lj^xl and 
the result is stored as the next syndrome. The set T summation is realized in software 
as

Finally, the order of operations for CRCAr is denoted by parentheses as

(4.18)



76

bits sh ifted  out

MSB LSB

g a rb a g e

MSB LSB

Figure 4.4: Illustration of the Lambda Gamma Algorithm when l >  m  and l =  w: 
(a) left-shifting by the set A, (b) right-shifting by the set T.

Figure 4.4 shows a pictorial representation of the Lambda Gamma Algorithm when 
l >  m. The A and T summations are shown as a group of left-shifts and right-shifts, 
in Figure 4.4a and 4.4b, respectively. Again, we remind the reader that we are using 
the reverse Endianness convention and the algorithmic form of CRCAr(32) is shown 
in Algorithm 4.1 as a C ++  code snippet. One observers that the implementation is 
straightforward and consists of two for-loops.

Similar to the CRCT, CRCR, and CRCS4 algorithms, the CRCAr algorithm re
quires precomputation operations, consisting of the sets A and T for a given generator 
polynomial and degree of parallelism. In Algorithm 4.2, we show a code snippet for a 
possible C ++  implementation of the Lambda LUT generation algorithm. The algo
rithm is derived from the definition of the set A in (4.9), and uses a modified version

Algorithm 4.1 Lambda Gamma Algorithm.
crc = INIT_VALUE; 
while (p_buf < p_end) {

term = crc A * (uint32_t *)p_buf;

intermediate = 0x0;
for (i=0; i<lambda_size; i++)

intermediate A= term «  lambda[i];

crc = 0x0;
for (i=0; i<gamma_size; i++)

crc A= intermediate »  gamma[i];

p_buf += 4;
}
return crc A FINAL VALUE;
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Algorithm 4.2 Lambda LUT Generation Algorithm.
lut_size = 0; 
lfsr = polynomial;

for (i=0; i<dop; i++) {
if ( ( (lfsr »  (gpd-1)) & 0x1) == 0x1) 

lut[lut_size++] = i;

if ((lfsr & 0x1) == 0x1)
lfsr = (lfsr »  1) A polynomial;

else
lfsr >>= 1;

}

Table 4.1: Lambda sets for the frequently referenced generator polynomials.

G ( x ) A for l =  32 |A|
CRC-12 {0,1,2,3,4,5,6,7,8,11,12,13,14,15, 

16,17,22,23,24,25,26, 29,30}
23

CRC-16 (0 ,1 ,2 ,3 ,4 ,5 ,6 , 7,9,10,11,12,13,15,16,17, 
18,19, 20,21, 22, 23, 24,25, 26, 27, 30,31}

29

CCITT-16 (0,4, 8,11,12,19, 20, 22, 26, 27,28} 1 1

CRC-16f {0, 2 ,4 ,6 , 8,10,12,14,15,18,19, 22, 23, 26, 27, 31} 16
CCITT-16f {0, 5,10,12,15,16, 20, 22, 24, 25, 26, 29, 30} 13

CRC-32 (0,6,9,10,12,16, 24,25,26, 28,29,30, 31} 13

of CRCB to perform the xm+l mod G  (x) reductions for 0 < i <  l — 1 and records 
the iterations when the term x°  is present in the result. The A sets for the frequently 
referenced generator polynomials with l =  32 are provided in Table 4.1. The set T is 
easily obtained from the coefficients of the generator polynomial, and T sets for the 
frequently referenced generator polynomials were provided earlier in Table 2.3.

4.3.4 Architecture Realization

From the matrix and vector product presented in (4.12) and substituting (4.11), one 
can obtain

Smxl =  ( r 'mxm  ‘ A m xl) " 1 * (4-19)

When realizing (4.19) in hardware, is formed by the addition of the input message 
block and the previous syndrome. Then, the multiplication between the matrix Amxi 

and vector t j^  is performed, resulting in an m-bit intermediate vector, denoted by
l[i] i eAmx 1’ 1*c,5

771X  1 A  ; • t 1i l m x! l l x l -
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Shift-XO R

Figure 4.5: Generalized Lambda Gamma Architecture.

The vector l ]̂xl is subsequently multiplied by the matrix T mxm and the result is stored 
as the next syndrome in the m-bit FF array. The order of operations is denoted by 
parentheses as

smxl =  (j^mxm  • mxl ' . (4.20)

A pictorial representation of (4.20) when l >  m  is shown in Figure 4.5. Since the 
delays of the vector inputs to these matrices can be different, one should proceed by 
pairing terms in order of least delay first, in order to obtain the fastest overall CPD. 
We have taken this approach for our implementations and our results are stated in 
the following chapter.

4.4 Extended Binary Polynomial Architecture

In this section, we introduce a new parameter that extends the existing binary polyno
mial formulations of the CRC computation. This parameter, denoted as p, allows one 
to derive both the LFSR2 and LFSR1 formulations from a common staring point. We 
call this the LFSRp approach, and show it is useful for obtaining optimized primitive 
hardware architectures in terms of CPD and latency for a given generator polynomial 
and degree of parallelism.

4.4.1 Formulation

We begin by modifying the original CRC equation (2.2) as

S  (x) =  ( x m~p ■ Ù  (x)) mod G  (x), (4.21)

where
U (x) =  xp • U (x ). (4.22)
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Next, we decompose our discussion into two parts that consider non-negative and 
negative values of p. From this point forward, hats are used to denote variables used 
to describe the LFSRp formulation.

Non-negative p

Assuming that p >  0, we provide recursive polynomial-based definitions similar to 
the ones in the previous chapter, and derive a generalized parallel polynomial-based 
CRC formulation with the parameter p.

Message Partitioning The approach taken is similar to what is done for the primi
tive parallel LFSR2 and LFSR1 formulations presented in the previous chapter. Begin 
by partitioning U (x ) into q message blocks, i.e.,

9-1
U( x )  =  -R [i] (x),

1=0

where (x) represents a binary polynomial of at most degree l — 1  corresponding to 
the Z-bit message block being processed at the ¿-th iteration. Again, if (k +  p) mod 
G  (x) 7  ̂ 0, then we assume one can prepend l — ((k +  p) mod G  (x)) Os to U (x) to 
increase its length to a multiple of /.

Let t/M (x) be the portion of U (x) that contains all the blocks (x) for 0 < 
j  <  i, and let (x ) be the syndrome of (x). Also, define i /H  (x) =  0 and

(x) =  ¿»¡nit (x), then these definitions can be written as

t /[i](x) = xl ■ Û [i~1] (x) +  R [i] (x ) ,

S [i] (x) =  ( x m~p ■ Û [i] (x)) mod G  (x),

for 0 <  i <  q — 1. It is noted that Û (x) =  (x) and S  (x) =  (x). For more
information, we refer the reader to examine Figure 3.1, where the message polynomial 
relationships for the LFSR2 approach are illustrated.

Derivation From the previous definitions, one can derive a generalized recursive 
expression for S'W (x) in terms of (x) and B®  (x), i.e.,
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S® (x) =  (xm“p • U® (x)) mod G (x )

=  ( x m~p • ( x l • (x ) +  (x )^  mod G  (x)

=  ( x l ■ x m ■ (x) +  xm ■ B ®  (x)) mod G  (x)

=  x̂* • (x) +  xm~p ■ B ^  (x)^ mod G  (x)

=  T® (x) mod G  (x), (4.23)

where
fN  (x) =  x* • S [i~1] (x) +  xm~p ■ B® (x) . (4.24)

for 0 < i <  q — 1.

Observing (4.23), there are a few cases to consider depending on the values of l, 

m, and p. The discussion of these cases is first partitioned by the ranges 0 < p <  m  

and p >  m.

Case I: 0 <  p <  m  First, we note that for any l and G (x), if p =  0 then a primitive 
parallel LFSR2 formulation is obtained. Conversely, if p =  m, then we obtain a 
primitive parallel LFSR1 formulation. Similar to the LFSR2 approach, we first form 

(x) by performing the addition of (3.10), then the final reduction is carried out
(4.23). Depending on l and m  there are different overlapping situations between the 
terms of x l • (x) and x m-p . ¿\i] (x) and some of them are illustrated in Figure 
4.6.

p  m -p  p  m - l - p  I p

(a) (b)
X X

X 1 - S [M ]
xm-p -B[i] .....

** x‘
r *
1---

1 i xm~p -B{ H xi j
i ) H1

l-m + p m -p  p

(c) (d)

Figure 4.6: Illustrations of some of the LFSRp overlapping situations between x l ■ 
(x) and x m~p ■ B ^  (x) in (x): (a) l =  m  and 0 < p < m, (b) l <  m  and 

0 < p <  m — l, (c) l <  m  and m — l <  p <  m, (d) l >  m  and 0 < p <  m.
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From Figure 4.6 one can observe that only the terms in the overlap will require 
XOR gates to complete the addition in (4.24), and consequently we note that for 
0 < p < m, all implementations have equal hardware complexities. As proof, first it 
is clear that for all situations where we have complete overlap between xl • (x)
and x m~p ■ R^ (x) the hardware complexity is equal. Since in these cases, (x) has 
the same range of powers of x  present, thus the reduction (4.24) is identical and the 
number of overlapping terms is equal, see Figure 4.6b. Now, we note that regardless 
of the value of p, the degree of (x) is at least x m because we have / > 1. Since the 
degree of (x) is greater than or equal to G  (x), by properties of modular reduction 
each coefficient of (x) will be influenced by at least one coefficient of (x). 
Therefore, when we shift the degrees of the present R^ (x) terms to positions which 
do not require reduction, i.e., degrees less than xm, we remove one XOR gate required 
to form (x), but one XOR gate is added to sum the newly added xm~p ■ R^ (x) 
term that does not require reduction with the reduced (x) terms.

Case II: p >  m  When p >  m, as shown in Figure (4.7), there are no overlapping 
terms between x l ■ (x) and xm~p ■ B ^  (x) in (4.23). Consequently, the implemen
tation of this computation can be carried out as

S [i] (x) =  (x ' • S [i~ 1] (x) +  x m~p ■ B [i] (x)) mod G  (x)

(x* • (x)) mod G  (x) +  ( x m~p ■ B®  (x)) mod G  (x),

for 0 < i <  q — 1.

Furthermore, when p >  m  there are terms in x m~p • RW (x) which have negative 
powers of x. Generally, the reduction of these negative power terms is as complex as 
the terms with powers greater than xm. Therefore, it is not of any interest to explore 
this case because the latency is equal to [^y2] cycles.

*

I m i m

(a) (b)

Figure 4.7: Illustrations of some of the LFSRp non-overlapping situations between 
xl ■ RM (x) in jTM (x): (a) l =  m  and p =  m, (b) l >  m  and p >  m.

] x'-S^tx) 
| x - p -Bl'] (x)
i A i(d

x '-S l‘~1]

i[i) (
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Negative p

Assuming p <  0, we can rewrite (4.22) as

U  (x) = xp ■ (u0 +  uix H------- b life-\xk~l) ,

or

U (x) =  u0xp +  uxxp+1 H------- bu|p|_ix 1 +  ii|p| +  ii|p|+ix H------- bufc-ixfc+p x. (4.25)

One can observe that there are two groups of terms in (4.25). One group includes 
the terms with negative powers of x  and the other one includes the terms with non
negative powers of x. Therefore, one can split (4.25) into two parts as

U (x) = Ut {x) +  U2 ( x ) , (4.26)

where,

&! (x) =  UqXP +  UiXP+1 H------- b U\p\-\X 1, (4.27)

and

U2 (x) =  x\p\ +  u\p\+ix H------- b Uk~ixk+P x. (4.28)

As shown above, (4.27) has |p| terms with negative powers of x and (4.28) has 
k — \p\ terms with non-negative powers of x. Substituting (4.26) into (4.21) and we 
obtain

S  (x) -  (xm~p ■ ( u ,  (x) +  U2 (x ) ) )  mod G  (x),

which, by properties of modular reduction, can be split into two independent compu
tations as

Si (x) =  ( x m p • U\ (x)J mod G  (x), (4.29)

and
S2 (x) =  (x m~p • U2 (x)^ mod G  (x). (4.30)

Now, the final CRC can be obtained using the following

S  (x) =  S\ (x) +  S2 (x ) . (4.31)
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However, this approach has two drawbacks, the message length k must be known in 
advance and the first half of the message buffered, before the parallel computation 
can be performed. We feel that these dependencies are not desirable for typical 
implementations of the CRC computation, and for this reason we do not consider 
this approach further.

4.4.2 Realization

For non-negative p values, the generalized parallel LFSRp Architecture is illustrated 
in Figure 4.8. As previously noted, this approach can give rise to both generalized 
parallel LFSR2 (Figure 3.5) and LFSR1 (Figure 3.6) Architectures by selecting p =  0 
and p =  m, respectively.

Discussion

Since we have shown that the hardware complexity is constant for all the implemen
tations of LFSRp with 0 < p < m, we are interested in finding the optimum p for 
0 < p < m, in order to minimize the overall time complexity of the CRC computa
tion. This is accomplished by finding all the set of ps that result in a realization with 
minimum CPD. Then, the smallest p in the set is identified as the optimum p which 
reduces the computational latency.

Revisiting the serial LFSR Architectures shown in Figure 2.3, if we wish to modify 
those architectures and find the optimum p in 0 < p <  m  for l =  1, then we search for 
the maximum value of i where g* =  0 and gi G G  (x), and then we select p =  m — i. 

In other words, we are looking to place the input at the right-most LFSR position 
without a present feedback connection, and this results in an implementation with 
CPD 1 • Tx  and computation time k + p  cycles.

Shift-XOR

Figure 4.8: Generalized parallel LFSRp Architecture.
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For parallel CRC computation architectures, determining the optimum p is not as 
straightforward. To this end, we provide an illustrative example with m =  l =  6 and 
show the affect of three different ps.

Example

Consider the generator polynomial DARC-6 (G  (x) =  l+ x 3 + x4+ x 6 [27]) with degree 
of parallelism l =  6. We provide dot notations for the LFSRp implementations with 
p =  0, 4, and 6, in Figures 4.9a, 4.9b, 4.9c, respectively. We use white and gray dots 
to denote terms with no delay and 1 • Tx  delay, respectively, while the syndrome bits 
are denoted with black dots.

In these figures, we first show how to form (x) and then perform the reduc
tion (x ) mod G  (x), observing the reduction in Figure 4.9a (marked with arrows), 
beginning with the first term requiring reduction, we show

x 6 =  l + x 3 +  x4 

x 7 =  X +  x4 +  x5

x 11 =  x +  x 2 +  x3 +  x4 +  x5.

The other two figures have similar reduction patterns, however (x) has some terms 
with different delays and powers that do not require reduction.

Using the XOR construction technique where we pair 0 • Tx  terms first before 
construction XOR trees, the CPDs are 4 • Tx , 3 • Tx , and 3 • Tx  for the p =  0, 4, 
and 6 implementations, respectively. One can observe that all three implementations 
require 24 XOR gates. For the other ps in 0 < p < 6 the corresponding CRC 
implementations can be obtained similarly, all require 24 XOR gates, clock
cycles, and have CPDs of 4 • Tx , 4 -Tx , 4 ■ Tx , 3 -Tx , 3 -Tx , and 3 -Tx , respectively. 
However, the CRC realization with p =  4 is identified as the optimum p for 0 < p <  m, 

because it minimizes CPD and latency.
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Figure 4.9: Example DARC-6 dot notation for the parallel LFSRp Architecture with 
l =  6: (a) p =  0, (b) p =  4, (c) p — 6.
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4.5 Message Splitting Architecture

In this section, we explore the application of idea of message splitting proposed in 
[60] as a software algorithm to a hardware architecture. The authors of [60] suggested 
that a hardware architecture based on their software algorithm could be the source 
of some future work.

In this approach, one computes a number of separate syndromes for different por
tions of the message. These syndromes are finally combined to obtain the syndrome of 
the entire message. The formulation of this approach begins by following the LFSR2 
binary polynomial formulation discussed in the previous chapter. Unlike the gen
eralized LFSRp formulation with p < 0 that also splits the message, this approach 
does not depend on the message length k. The derivation we provide is for situa
tions when the message is partitioned into to two groups. Extending this approach 
to higher orders, such as four, is rather straightforward.

4.5.1 Formulation

By recalling how the message polynomial was partitioned into Z-bit blocks in (3.1), 
one can perform the following expansion,

9-1
u ( x )  =  -B ®  (x)

¿=0
=  x Hq~1] ■ ( x ) +  xHq~2) ■ B [1] (x) +  xHq- 3) • B [2] (x) +

xU<7-4) . B {3] (x) +  . . . +  x l .  £[ff-2] (x) +  #[9-1] (x) .

Now, assuming that one has the ability to prepend the required number of zeros 
to extend the message to a length such that there are an even number of message 
blocks, i.e, q mod 2 =  0 and then grouping the blocks in U (x) into evens and odds, 
one obtains

U (x) =  x l'̂ q~lS> • B ^  (x) +  x l'(q~3̂  ■ B ^  (x) +  ••• +  £*• B^q~2̂ (x) +  

x liq- 2) • £ [1] (x) +  x Hq~4) • B [3! (x) +  • • • +  B [q~^ (x)

=  Ue (x) +  U0 (x ) ,

where Ue (x) =  xU?-i) . _g[°l (x) +  ^K?-3) . fil2] (x) +  • • • +  xl ■ B^q~2̂ (x) and Ua (x) =  

x;-(9_2) . B ^  (x) +  x l'̂ q~4  ̂ ■ B ^  (x) H------- 1- B^q~^ (x).
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Let u f  (x) and u f  (x) be the portions of U (x ) that contain all the blocks (x) 
and B ĵ+11 (x) for 0 <  j  <  i, respectively, and let S f ' (x) and So' (x) be the syndromes 
of u f  (x) and u f  (x), respectively. For convenience, define B f  (x) =  S '2z' (x) and 
B f  (x) =  (x). Also, define (x) = t/i-1' (x) =  0 and Si *' (x) =  Sinit (x)
and si-1' (x) =  0, where S;nit (x) denotes the initial content of the CRC register. Then 
these definitions can be written as

U f  (x) =  x 21 • U f~ 1] (x) +  B f  (x ) ,
S f  (x) =  (xm ■ U f  (x)) mod G  (x),

and

U f ( x )  =  x 21 • U t 1] (x) +  x l ■ B f  (x ) , 
S f  (x) =  (xm • U f  (x)) mod G  (x),

for 0 < i < [^2^]. It is noted that U (x) and S(x)

Derivation

From the previous definitions, one can derive recursive expressions for Se' (x) and 
So' (x) using a manner similar to the polynomial based derivations, i.e,

S f  (x) =  (xm • U f  (x)) mod G  (x)
=  (xm • (x21 • f/J1-1' (x) +  B f  (x))) mod G  (x)

=  (x21 ■ x m ■ i/]1-1' (x) +  xTO • I^1' (x)) mod G  (x)

=  (x21 • Sj*-1' (x) +  xm • B f  (x)) mod (7 (x)
=  ( x ) mod G (x), (4-32)

for 0 < i <  \̂ 2~"|, where

T f  (x) =  x21 ■ S t 1] (x) +  xm • B f  (x ) , (4.33)
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and

S® (x) =  (xm - U f  (x)) mod G  (x)
=  (xm • (x21 ■ U^~1̂ (x) +  x l • (x))) mod G (x)

=  (x21 ■ x m ■ u t 1] {x) +  Xm+l ■ B f  (x)) mod G (x)
=  (x21 • Si*"11 (x) +  xm+l ■ B f  (x)) mod G  (x)

=  TW(x)modG(x) ,  (4.34)

for 0 <  i <  \̂ 2^], where

T® (x) =  x 21 ■ S%~1] (x) +  xm+l ■ B f  (x ) . (4.35)

4.5.2 Realization

The hardware realization of the split approach is shown in Figure 4.10. One observes 
that two accumulators are required, each with m  FFs and the message block is split 
in half (into even and odd digits). Next, we analyze the CPD of this approach and 
show that it can outperform the extended binary polynomial approach for some cases. 
However, simulations should be undertaken to see if useful cases exist, and this could 
be the focus of some future work as outlined in Chapter 6.

Figure 4.10: Generalized parallel Message Splitting Architecture.
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Figure 4.11: Illustrations of the Message Splitting Architecture overlapping polyno
mial situations when / =  m: (a) Splitting LFSR2, (b) Splitting LFSRl, (c) LFSR2, 
(d) LFSRl.

Discussion
The formulation described by (4.32), (4.33), (4.34), and (4.35) is strongly based on the 
binary polynomial approach analyzed in the previous chapter. Here, we have shown 
that one is free to split the of blocks the message polynomial into groups and process 
these groups in parallel. It is noted that these blocks need not be of equal length, 
but for simplicity we have chosen to split the message into even and odd digits. As 
noted in [60], this approach is different than the message slicing approach [7] because 
it uses multiple accumulators.

Observing the polynomial manipulations in (4.32) and (4.34), it should be clear 
that the extended binary polynomial approach (4.21) can easily be applied to gen
eralize the splitting formulation. Here, the final LFSRl result is provided without 
derivation,

T f { x )  =  x 21 • ^  (*) +  B f  (s)
5^ (x) =  (x) mod G  (x),

fW(x)  =  x 21 ■ S [t 1] (x) +  x l ■ É® (x) 

S ® (x )  =  f 0[i] (x) mod G  (x).

and
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Now, we show that this approach can offer speed improvement on the existing par
allel LFSR Architectures at the cost of additional hardware. Consider implementing 
the Splitting Architecture with 21 =  m, i.e., this approach splits message blocks of 
21 bits into two ¿-bit sub-blocks during each iteration. The terms (x ) and (x )
to be reduced are formed as illustrated in Figure 4.11b, and Figure 4.l id shows the 
terms (x) for parallel LFSR1. It is clear that the reduction of the polynomials 
x m • (x ), x m ■ So~^ (x) ,  and x m ■ (x)  require equal time complexity, and
B $  ( x )  +  • B̂ o (x)  =  ( x ) .  Therefore, the equation with the CPD in the LFSRl
approach also exists in one of the split architecture groups. Hence, we conclude 
that both have equal CPDs, but the hardware complexity of the Message Splitting 
Architecture is nearly double.

For the LFSR2 case, we reason from the bar Figures 4.11a and 4.11c as follows. 
It is clear that the delay of the realization of each half of the LFSR2, split approach 
is less than or equal to the delay of LFSR2 since not all the positions in ( x ) 

and Te  ̂ have delay 1 • Tx - Therefore, it is possible that the CPD split architecture 
can be less than LFSR2. Furthermore, we have shown that the delay of LFSRl is 
less than or equal to that of LFSR2, and for all the cases when LFSR2 and LFSRl 
have equal CPDs the splitting approach has a chance to outperform the primitive 
approaches. We conclude that these situations are possible, however it is not known 
if they will exist for the frequently referenced generator polynomials and/or useful 
degrees of parallelism. A possible future study could involve performing simulations 
to determine if and what situations this is possible for.

4.6 Summary
In this chapter, we presented the detailed design of the parallel LFSR 2 Architecture 
specific to the case when the degree of parallelism is greater than the degree of the gen
erator polynomial. Afterward, three novel formulations of the CRC computation were 
presented. The Lambda Gamma formulation yields a high-performance low-memory 
software algorithm, which is suitable for implementations when the generator poly
nomial degree is less than or equal to the word size. The extended binary polynomial 
formulation demonstrates how the classical binary polynomial formulation can be 
generalized to allow one to derive LFSR2 and LFSRl based formulations from a com
mon starting point. Finally, the future work suggested in [60] is explored and shown 
that their proposed Message Splitting Architecture could offer improvement over the 
existing primitive architectures. However, simulations are required to identify those 
cases and we have opted to leave them for a possible future investigation.



91

Chapter 5

Sim ulations and Im plem entations

5.1 Preview

T HE performance of a hardware architecture is evaluated in terms of its area 
and time complexities. Whereas, the performance of a software algorithm is 

measured by its memory and time complexities. Other qualitative factors such as, 
ease of implementation and regularity can also be considered. In the CRC compu
tation domain for a fixed generator polynomial and degree of parallelism, hardware 
architectures are quantitatively compared in terms of their XOR gate and FF counts, 
as well as their critical path delay and latency values. Conversely, software algorithms 
are quantitatively compared by their memory requirements (code and data), as well 
as their execution times.

In this chapter, we present the data that we have gathered through our simula
tion and implementation experiments, which were conducted over the course of this 
study. We begin with the examination of the hardware architectures by performing 
simulations followed by comparisons and analysis. Some of these simulations are fol
lowed up with implementations for validation. Then, the performance of the software 
algorithms are measured with a thorough theoretical analysis, which is followed by 
implementations for verification. Similar to what is found the literature, our com
parisons are carried out using the frequently referenced generator polynomials with 
useful degrees of parallelism.

In terms of the novel approaches presented in this thesis, we compare the Lambda 
Gamma Architecture against its non-pipelined counterparts. The parallel LFSRp 
Architecture is compared against the parallel LFSR1 and LFSR2 Architectures. The 
CRCAr(32) is compared against the existing software algorithms. Additionally, we 
present the experimental results contained in our conference papers [41] and [53].
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Figure 5.1: Different quantitative comparison metrics for implementations of the CRC 
computation: (a) hardware architectures, (b) software algorithms.

The implementations of the hardware architectures are deployed on application- 
specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs). 
The ASIC data is reported as the required area and timing, whereas, the FPGA data is 
given in terms of the number of occupied slices and worse case delay. These hardware 
metrics are summarized in Figure 5.1a. The software algorithms are compared in 
terms of memory, i.e., number of instructions and look-up table (LUT) sizes, and 
computation speed. The implementation data provides execution times for various 
message lengths, and these software metrics are summarized in Figure 5.1b.

5.1.1 Organization

The remainder of this chapter is organized as follows. In Section 5.2, we present the 
results of our hardware experiments. This includes our simulations and implementa
tions data on FPGA and ASIC platforms. In Section 5.3, we present the results of our 
software experiments. This includes a theoretical analysis and some benchmarking 
results. This chapter is concluded with a summary in Section 5.4.

5.2 Hardware Experiments

This section presents the studies conducted on the CRC hardware architectures. First 
we detail the results obtained through simulations and then implementation data is 
provided for some selected simulation experiments.
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5.2.1 Simulations

Here we provide the theoretical comparison between all the hardware architectures 
that perform the CRC computation studied in this thesis. In addition to the standard 
analysis of the algorithms in terms of the hardware and time complexity, we have 
undertaken two additional studies. The first study investigates and finds the optimum 
degrees of parallelism in terms of CPD for the parallel LFSR2 Architecture and was 
the focus of our conference paper [41]. The second study investigates and finds the 
optimum p values on the interval 0 < p <  m  for the LFSRp Architecture.

Comparison: Non-Pipelined Architectures

We begin our hardware simulations by comparing our proposed Lambda Gamma 
Architecture against the existing non-pipelined architectures, i.e., [22], [40], [23], and 
[25], when the degree of parallelism is equal to the generator polynomial degree. We 
remind the reader that all of these architectures require m FFs to implement and 
have a computation latency of [y] clock cycles, except [40] which requires 
clock cycles to process a A>bit message. The comparison results are presented in 
Table 5.1.

Comparing the Lambda Gamma Architecture against the systematic approaches, 
i.e., [23] and [25], one observes that the proposed architecture has an equal or lower 
CPD, but requires more XOR gates. The only exception being CRC-32 where the 
Lambda Gamma Architecture requires the fewest gates of all the approaches. We 
remind the reader that the proposed architecture is expected to perform poorly for 
digit sizes less than the degree of parallelism, and its implementation is not easily 
described for those input sizes. However, if l >  m  then we expect the area complexity 
to improve.

Table 5.1: Theoretical non-pipelined hardware architecture comparison for frequently 
referenced generator polynomials when l — m.

G (x)
Arch

CRC-12 
© A

CRC-16 
0  A

CCITT-16 
0  A

CRC-161 
0  A

CCITT-16f 
0  A

CRC-32 
0  A

[22] 52 5 72 5 88 4 154 5 ' 84 4 452 6
[40] 52 4 72 4 88 4 154 4 84 4 452 5
[23[ 60 24 48 32 48 8 48 16 48 8 448 18
[25] 60 13 48 17 48 5 48 9 48 5 448 16
Ar 104 7 149 6 60 5 90 6 53 5 439 8
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Study: Optimum Degrees of Parallelism

This portion of the thesis outlines our results in our conference paper [41], concerning 
the optimum degrees of parallelism in terms of CPD for the parallel LFSR2 Archi
tecture. We begin by discussing how we obtain the optimum degrees of parallelism. 
Then, with these optimum degrees of parallelism, we show how the computation time 
can be minimized. Finally, the time-area product efficiency metric is investigated.

For this study, we have written C ++ software that computes the matrix Gmx; 
for a given generator polynomial and degree of parallelism. One can compute the 
A and © values from the number of Is in a row of the matrix G mxi, and they are 
stated in terms of the maximum number of XOR gate levels and the total number 
of XOR gates, respectively. The computation time <i> of a A:-bit message using the 
parallel LFSR2 Architecture is equal to q clock cycles multiplied by the CPD of the 
architecture, i.e.,

m  .<f> =  -  x A.
t

We restate that for a given generator polynomial, A is a function of l. Therefore, 
to obtain the fastest architectures, we are interested in finding the maximum l for a 
given A, i.e., minimize $.

As an illustration of how to minimize <F, consider the DARC-8 generator polyno
mial (G  (x ) =  1 +  x3 +  x4 +  x5 +  x8 [27]). Through simulations, we obtain the A 
and 0 , for 1 < l < 256, and the results are plotted in Figure 5.2. Since the CPD 
is computed from a ceiling function, the A plots resemble step functions with some 
spikes for values of l that are greater than m. Observing Figure 5.2, we see the first 
spike at l =  16,17. As we are interested in finding degrees of parallelism that result 
in the fastest circuits, rather than selecting l =  3 with A =  3 • Tx  (which is the point 
before the first transition from A =  3-Tx  to A =  4-2"x), we select / =  17, which is the 
maximum l with A =  3 • Tx,  and we record the hardware complexity of 0  =  48 • Cx-

The plots for the frequently referenced generator polynomials resemble the DARC- 
8 plot, however they are generally not as noisy. The results for those generator 
polynomials are given in Table 5.2.
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Figure 5.2: Plot of the critical path delay and hardware complexity versus the degree 
of parallelism, for the parallel LFSR2 Architecture using DARC-8 with 1 < l <  256.

Table 5.2: Hardware complexity for the maximum degree of parallelism of differ
ent critical path delays using frequently referenced generator polynomials, using the 
parallel LFSR2 Architecture.

A
G (x) l

2
© l

3
© l

4
0 l

5
© l

6
0 l

7
0

CRC-12 1 5 3 13 7 33 46 192 107 517 247 1345
CRC-16 1 3 3 13 7 33 18 82 61 295 146 826

CCITT-16 4 12 8 32 16 88 49 307 98 722 234 1786
CRC-16f 2 6 4 16 8 48 35 329 90 794 191 1697

CCITT-16f 5 15 10 40 19 105 55 333 106 752 236 1810
CRC-32 1 14 4 56 13 179 31 434 80 1169 209 3255

After we obtain the CPD versus the degree of parallelism data for a given gener
ator polynomial, obtaining the computation time is rather trivial. For the generator 
polynomial CRC-32, we show the A and $, versus l plot for k =  1500 bytes (which is 
the MTU size for Ethernet) in Figure 5.3. For clarity, the points shown in boldface 
in Table 5.2 are marked on the plot. Obtaining similar plots for the other generator 
polynomials is not difficult. But, due to the vast number of different standards that 
employ these polynomials, presenting specific data for all the U-values would prove 
to be too cumbersome. Nevertheless, we provide timing data for the points found in 
Table 5.2 using a message length of k =  1024 bits for all the frequently referenced 
generator polynomials (excluding CRC-32 whose results are for k =  1500 bytes) and 
the values are shown in Table 5.3. The l values marked with asterisks are situations 
where the timing result of l +  1 is less than or equal to that of l.
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Figure 5.3: Plot of the critical path delay and computation time for k =  1500 bytes, 
versus the degree of parallelism using CRC-32, for 1 < l < 256.

Table 5.3: Computation time for the maximum degree of parallelism of different CPDs 
using frequently referenced generator polynomials.

A
G (x) l

2
$ l

3
$ l

4
$ l

5
$

6
l $

7
l $

CRC-12 r 2048 3* 1026 7 588 46 115 107 60 247 35
CRC-16 l* 2048 3* 1026 7 588 18 285 61 102 146* 56

CCITT-16 4 512 8 384 16 256 49 105 98 66 234 35
CRC-16f 2 1024 4 768 8 512 35 150 90 72 191 42

CCITT-16f 5 410 10 309 19 216 55 95 106 60 236 35
CRC-32 1 * 24000 4 9000 13 3696 31 1940 80 900 209 406

The last comment we make in this experiment concerns the time-area efficiency. 
The hardware complexity of all the frequently referenced generator polynomials is 
a strictly increasing function, i.e., 0  is increased as l is increased. If we plot the 
time-area product $  • 0  versus l, we can compare designs in terms of their time- 
area efficiency. Figure 5.4 shows the results for CRC-32 with k =  1500 bytes. As 
expected, the time-area product roughly tracks the CPD plot, and as the degree of 
parallelism is increased the time-area product also increases, meaning that smaller 
degrees of parallelism result in more efficient designs. This result shows that increasing 
l generally results in diminishing time-area returns.

In summary, through simulations this experiment obtained the maximum degree 
of parallelism for a given CPD of the parallel LFSR2 Architecture for the frequently 
referenced generator polynomials. Investigating the computation times for the ob
tained maximum degrees of parallelism, we determined that most of them are indeed 
the local optimum choices. Finally, we showed that the time-area product efficiency 
for difference degrees of parallelism generally tracks the CPD.
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Figure 5.4: Plot of the CPD and time-area product, versus degree of parallelism, 
using CRC-32 for 1 <  l <  256.

Study: O ptim um  ps

This study concerns the selection of p to obtain the best LFSRp Architectures in 
terms of CPD and latency. The material is explored with the hope of reducing the 
time of the CRC computation. Recall from the previous chapter, where we have 
shown that all the LFSRp the implementations with 0 < p <  m  have equal hardware 
complexities and the computational latency is [ .

We begin this study with an illustration of the effects of varying p for 0 < p <  m. 

Consider the generator polynomial CRC-32, Figure 5.5 shows plots of the CPD versus 
p for some useful degrees of parallelism, i.e., 1 =  1, \m , \m, m, and 2m. Similar to 
the previous study, from this plots, the optimum p for a given l can be identified as 
the left-most point with a minimum CPD. Plots using other degrees of parallelism 
and/or generator polynomials can be constructed and they are similar.
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Figure 5.5: Plot of CPD versus p for some useful degrees of parallelism using CRC-32.
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a LFSR2 
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Figure 5.6: Plots of LFSR1, LFSR2, and LFSRp using CRC-32: (a) CPD versus 
degree of parallelism, (b) p versus degree of parallelism.

Next, using CRC-32, in Figures 5.6a and 5.6b, we show a plot of the A and p 

versus l for 1 < l < 2m, respectively using the LFSR1, LFSR2, and LFSRp Ar
chitectures with the optimum p for 0 <  p <  m. We note that for CRC-32 and 
the other frequently referenced generator polynomials, in terms of A, LFSRp is as 
good or better than LFSR1 for 1 <  l <  2m. Also, the latency of LFSRp is less 
than or equal to that of LFSRl. Thus, from our earlier discussion, one can con
clude that LFSRp matches/outperforms LFSRl in terms of time complexity, and it 
matches/outperforms LFSR2 as well.

Now, we provide the optimum p values for 0 <  p <  m  with degrees of paral
lelism that are multiples of the generator polynomial degree in Table 5.4, and the 
corresponding A comparison is shown in Table 5.5. We first observe that there are 
only three instances where LFSRl matches the performance of LFSRyy namely when
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Table 5.4: LFSRjd Architecture optimum p for 0 < p <  m  for frequently referenced 
generator polynomials with useful degrees of parallelism.

G { x ) \ l 1 \m m 2771
CRC-12 2 4 6 7 0
CRC-16 2 2 2 16 14

CCITT-16 1 15 12 0 0
CRCl6f 1 4 8 16 0

CCITT-16| 1 16 13 0 12
CRC-32 1 7 7 4 0

Table 5.5: LFSR hardware architecture critical path delay comparison for frequently 
referenced generator polynomials with useful degrees of parallelism.

l 1 \m ______ m 2m
G (x) \ LFSR 1 2 P 1 2 V 1 2 V i 2 P 1 2 P

CRC-12 1 2 1 2 3 2 3 4 3 4 5 4 5 5 5
CRC-16 1 2 1 3 4 3 4 5 4 4 5 4 5 6 5

CCITT-16 1 2 1 1 2 1 2 3 2 4 4 4 5 5 5
CRC-16f 1 2 1 3 3 2 4 4 3 4 5 4 5 5 5

CCITT-16f 1 2 1 1 2 1 2 3 2 4 4 4 4 5 4
CRC-32 1 2 1 3 4 3 4 5 4 5 6 5 6 6 6

p =  m. Also, there are six instances where LFSR2 matches the performance of 
LFSRp, namely when p =  0. However, this result is not significant, the difference 
in terms of the number of cycles between LFSRl and LFSR2 is rather small, and 
there are two cases in Table 5.5 where the A of LFSRp is less than that of LFSRl. 
Therefore, in most cases, LFSRp marginally improves upon LFSRl by reducing the 
latency from to cycles.

Comparison: State-Space Transformed Architecture

Here, we present the results contained in our conference paper [53]. From the state- 
space transformed coupling matrices (3.27) obtained using the trivial and optimum 
bmxi vectors, the number of XOR gates, FFs, and PSs are calculated. As noted in 
[24], the XOR gate count of an implementation can be obtained by summing the 
number of Is in the rows of the coupling matrices and subtracting 1 from each row 
subtotal, plus the m  additional XOR gates required to perform the addition

x' \ i  +  1] =  A ! m x m  • xj„xl [i] +  B ^ x, • ulxl [j]. (5.1)
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Figure 5.7: Pipelining blocks used in our implementations of the State-Space Trans
formed Architecture.

Recalling that A!mxrn is a companion matrix, the best CPD of the pipelined trans
formed system that one can obtain is 2-Tx . In other words, the maximum delay of the 
output wires from the A.'mxm • x^ xl [z] block is Tx , and another level of XOR gates is 
required to perform the addition (5.1) to form x(nxl [i +  1]. This results in wires with 
delays of 2 • Tx . Thus, to pipeline the logic in the B 'mxl • u;xi [z] and C'mxm • 5clmxl [z] 
blocks, one can use a combination of the pipelining blocks shown in Figure 5.7. We 
note that this pipelining approach is slightly different than the one reported in [24],

Tables 5.6a and 5.6b give the number of XOR gates, FFs, and PSs required to 
realize each of the transformed coupling matrices generated from the simple b ^ xl 
compared to an optimum b^ xl, respectively. Also, Table 5.7 shows the total hardware 
complexity comparison. The optimum b ^ xl values that correspond to results in 
Tables 5.6 and 5.7 are marked with asterisks in Table 3.4. There is a case where 
multiple b ^ xl vectors result in optimum implementations when ranked by our metrics, 
and both vectors are marked. One observes significant reduction in the number of 
XOR gates and FFs when an optimum b*rexl is used to construct the transformation 
matrix T mxm for all the frequently referenced generator polynomials. Finally, for all 
of these cases the number of PSs are equal for each generator polynomial.

Also, experimenting with other input sizes, we found that for small degrees of 
parallelism with the frequently referenced generator polynomials, it is possible to 
obtain transformed systems with B ^ ,. matrices which have an entire row of zeros. 
In other words, the transformed system has states that are not coupled to the inputs. 
Those cases are advantageous because they reduce the number of retiming FFs and 
eliminate an XOR gate from the implementation of the addition in (5.1). An example 
of this instance is CRC-12 with l =  6 and b*2xl =  [0x255]T, where the states Xi [z] 
and xio [z] are not coupled to any input. However, since the columns of T mxm are 
linearly independent and C mxm =  Imxm, all of the outputs are always coupled to a 
state. In other words, it is not possible to have an entire row of zeros in C'mxm.
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Table 5.6: State-Space Transformed Architecture coupling matrix logic hardware 
requirements for frequently referenced generator polynomials when l =  m  with: (a)

b^x! =  [ 1 0 0 • . .  o f , (b) optimum b ^ xl =  

(a)

h *umx 1-

l =  m A ' c fv mxm
G {x ) XOR FF PS XOR FF PS XOR FF PS

CRC-12 46 40 2 8 12 1 46 39 2
CRC-16 76 53 2 2 16 1 92 62 2

CCITT-16 88 68 2 2 16 1 100 68 2
CRC-16f 86 57 2 2 16 1 114 66 2

CCITT-16t 102 70 2 2 16 1 96 69 2
CRC-32 466 281 3 13 32 1 456 249 3

(b)
l =  m TVD mXl A'^mxm C f

mxm
G (x) XOR FF PS XOR FF PS XOR FF PS

CRC-12 42 41 2 8 12 1 34 31 2
CRC-16 64 53 2 2 16 1 74 56 2

CCITT-16 90 65 2 2 16 1 86 58 2
CRC-16f 64 52 2 2 16 1 76 57 2

CCITT-16f 90 65 2 2 16 1 86 58 2
CRC-32 404 214 3 13 32 1 416 226 3

Table 5.7: State-Space Transformed Architecture hardware comparison for frequently 
referenced generator polynomials when l =  m.

l =  m  

G {x) 1
h*unx 1

XOR FF PS 1
h*unx 1

XOR FF PS

CRC-12 136 112 91 5 120 96 84 5
CRC-16 218 186 131 5 188 156 125 5

CCITT-16 238 206 152 5 226 194 139 5
CRC-16f 250 218 139 5 190 158 125 5

CCITT-16f 248 216 155 5 226 194 139 5
CRC-32 1031 967 562 7 929 865 472 7
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Table 5.8: Two-Step Architecture hardware comparisons for frequently referenced 
generator polynomials when 1 =  8.

Stage
G (x) XOR

First
FF PS XOR

Second
FF PS XOR

Total
FF PS

CRC-12 32 56 1 182 213 5 214 269 6
CRC-16 48 76 1 290 347 6 338 423 7

CCITT-16 32 48 1 218 260 5 250 308 6
CRC-16f 48 76 1 558 661 6 606 687 7

CCITT-16f 32 48 1 192 216 4 224 264 5
CRC-32 56 123 1 1353 1444 6 1409 1567 7

Comparison: Two-Step Architecture

The hardware requirements of the Two-Step Architecture determined by simulation 
are listed in Table 5.8. Observing the results, one notices the large amount of hard
ware required to achieve a parallel implementation with Tx  delay. Even though the 
theoretical CPD is less than that of the State-Space Transformed Architecture, the 
degree of parallelism is smaller and implementation of architectures this large are 
expected to have poor performance due to the wiring complexity. For these reasons, 
we felt that it was not necessary to implement this architecture in VHDL and it is 
excluded from our hardware implementations.

5.2.2 Implementations

Here, we present the data that was gathered through our hardware implementations. 
We opted to complete all of our implementations using VHDL and performed deploy
ments on both ASIC and FPGA platforms. The State-Space Transformed Architec
ture implementations were completed on ASIC, while we compared the non-pipelined 
architectures on FPGA. Some examples of very-large-scale-integration (VLSI) imple
mentations of the CRC computation found in the literature include [71], [72], [73], 
and [74]. Two examples of published works of FPGA implementations include [47], 
and [75].

We note that excluding the Cascade and Look-Ahead Architectures, all the other 
architectures in this thesis require XOR trees for their implementations. Describing 
these XOR trees in VHDL for all the implementations by hand would be a difficult, 
error prone, and tiresome task. Even more challenging is the pipelining of the State- 
Space Transformed Architecture. Therefore, we wrote C ++ software that generates 
complete VHDL files, which describe an architecture for a given generator polynomial
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and degree of parallelism. The generated VHDL files with XOR trees tended to 
be quite large ~  60 KB, and demonstrate the advantage of the Cascade [23] and 
Look-Ahead [25] Architectures, both of which are easily expressed with a hardware 
description language (HDL).

Proper care is taken to ensure that all of the inputs and outputs of an architecture 
are clocked. All the non-pipelined architectures have no logic between their CRC 
registers and outputs, therefore the output wires are clocked by default. However, all 
the architectures require their input wires to be clocked, which increases the hardware 
cost by l FFs. Finally, we note that the logic in the output coupling matrix of the 
State-Space Transformed Architecture was pipelined in such a manner that its output 
wires were clocked (see Figure 3.14).

ASIC: State-Space Transformed Architecture

To investigate how an optimum b ^ xl vector affects the physical characteristics of the 
State-Space Transform Architecture, ASIC implementations are performed. The gen
erated VHDL files are deployed on 0.18¡i complementary metal-oxide semiconductor 
(CMOS) ASIC technology using the Synopsys® Design Analyzer®. The optimiza
tion effort is set to medium with a target period of 5.0 ns, and the area {¡im2) and 
timing (ns) are obtained for each of the designs.

The results of our ASIC experiments are summarized in Table 5.9. These results 
verify the expected reduction in area and also demonstrate improvements in timing. 
The improvements in timing could be attributed to the reduction in area, which 
reduces the wiring complexity and shortens the length of global wires in the design.

Table 5.9: State-Space Transformed Architecture ASIC implementation results for 
frequently referenced polynomials when l =  m.

1 — m 
G (x)

h*unxl
area (¿¿m2) delay (ns)

h*unxl
area (/¿m2) delay (ns)

CRC-12 11107 2.79 10156 2.79
CRC-16 16811 2.93 15299 2.72

CCITT-16 17905 2.73 17458 2.64
CRC-16f 18751 2.87 15445 2.71

CCITT-16t 18616 2.73 17470 2.49
CRC-32 72917 4.23 66469 3.20
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Table 5.10: Non-pipelined architecture FPGA implementation results for frequently 
referenced polynomials when / =  m.

G {x)
Arch

CRC-12
#  slices delay (ns)

CRC-16
#  slices delay (ns)

CCITT-16 
#  slices delay (ns)

[22] 11 1.756 17 2.072 20 1.816
[40] 24 1.280 15 1.619 18 1.315
[23] 12 1.706 18 1.752 14 1.868
[25] 10 1.543 15 1.865 16 1.971
Ar 9 1.684 15 1.743 16 1.815

G (x)
Arch

CRC-16f
#  slices delay (ns)

CCITT-16t
#  slices delay (ns)

CRC-32
#  slices delay (ns)

[22] 29 2.143 16 1.617 73 2.940
[40] 21 1.905 15 1.678 74 2.605
[23] 25 1.946 19 1.818 97 2.888
[25[ 26 2.148 15 1.942 76 2.756
Ar 30 2.053 17 2.002 70 3.446

FPGA: Non-Pipelined Architectures

For this study, we choose to perform FPGA experiments for the non-pipelined archi
tectures. The generated VHDL files are deployed on a Virtex®-5 FPGA. The target 
device is xc5vlx30-3ff324 using Xilinx® USE Design Suite 10.1.02 - Web PACK with 
a design goal of balanced. The speed value is set to -3 and the synthesis tool is CST.

Table 5.10 shows the results of our FPGA experiments. One observes a weak 
correlation between the theoretical results in Table 5.1, and there is no clear cut 
winner amongst them. These results suggest that if designer wishes to realize the 
CRC computation on an FPGA, then they should select an architecture that is well 
understood and easily implemented. Because these experiments demonstrate that 
there is little to choose between them in terms of the performance on FPGA.

5.3 Software Experiments

In this section, we present the results of our software experiments. Before beginning 
our discussion, we remind the reader to recall the assumptions made in Chapter 3, 
which concern the properties of the datapath. The assumptions simply our analysis 
and allow the reader to better predict the performance of these algorithms on their 
datapath.
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To properly interpret the simulation data, the most important assumption made 
is that all operations in these algorithms take equal processing time. We justify this 
assumption by noting that all the algorithms use similar operations and the memory 
accesses tend not to be slow. This is because the maximum LUT has 1024 words. 
Therefore, all the LUTs can fit inside the cache of a typical modern processor [7]. 
Moreover, for the implementation data, during the early stages of this study, we 
attempted to generalize the existing algorithms and investigate their performance 
by varying the degree of parallelism. We determined that each algorithm has an 
optimum degree of parallelism, and implemented the ones found to be optimal for 
our datapath. For instance, comparing the performance of CRCT(8) to CRCT(16), 
it is clear that CRCT(16) requires half of the number of LUT accesses, but the 
implementation performance is actually worse, due to slower LUT access times [61]. 
Finally, we note the program sizes and code complexities of all these algorithms are 
comparable when they are implemented using C++, and we expect similar results for 
assembly language implementations. For these reasons, we omit the code size from 
our memory comparison.

5.3.1 Simulations

The software simulation results consist of memory and time requirements of a given 
algorithm. The memory requirements are well defined for each algorithm regardless of 
the platform and they are reported in terms of the number of memory words required 
to store the look-up tables. We note that different packing schemes are possible for 
storing LUTs in memory. In our experiments, we have chosen to store one LUT entry 
per memory word, regardless of its length. In other words, on our 32-bit datapath, it 
is possible to store multiple LUT entries for degrees 12 and 16 generator polynomials 
in one memory word, and consequently reduce the LUT size. However, the trade-off is 
that the implementation becomes more complex and the execution time is increased.

For the theoretical results, the time requirement is defined to be the number of 
instructions necessary to process one word of the message, and can be identified from 
the algorithms presented throughout the thesis. Note that, we do not consider the 
message length in this case, therefore the values reported are normalized. Now, con
sider how one would obtain the execution time for CRCB(l) with CRC-32. Referring 
back to its implementation in Algorithm 3.1, we count the number of operations as 
follows: lx  (word fetch, loop initialization, pointer increment) +  32x (loop compari
son, loop increment) +  32 x (condition test) +  16 x (condition true) +  16 x (condition
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false) +  32x(shift operation) =  1 x 3  +  32x2 +  32 x3  +  16x2 +  16x1 +  32x1 =  243 
operations. Here, we assume an equal branch probability, and the results for the other 
existing algorithms can be obtained similarly. We note that, none of the determined 
time requirements for the existing algorithms depend on the degree or coefficients of 
the generator polynomial.

For CRCAr(32), we obtain the closed form operation count as,

time (CRCAF (32)) =  6 +  |A| x 4 +  |r| x 4 +  {1 }

=  6+(|A| + |r|) x 4  + { l } ,

where the 1 in braces is required when m <  w. The memory requirements of this 
approach is found to be

memory (CRCAr (32)) =  |A| +  |r|.

We note that unlike the existing algorithms, the performance of CRCAr(Z) depends 
on the sizes of the sets A and T, which are fixed for a given generator polynomial and 
degree of parallelism.

The determined memory and timing values for the existing algorithms and the pro
posed CRCAr(32) using the frequently referenced generator polynomials are given 
in Tables 5.11a and 5.11b, respectively. Examining the results, one observes that 
CRCAr(32) is expected to outperform CRCR(32), with equal or less memory. We 
note that there is a strong correlation between the order of LUT size and timing per
formance in these results. That is, algorithms that have larger memory requirements 
generally deliver better speed performance until caching becomes and issue.

Table 5.11: Theoretical software algorithm comparison, memory in words and loop 
instruction counts: (a) existing algorithms, (b) CRCAr(32).

(a)

Algorithm CRCB(l) CRCR(32) CRCT(8) CRCS4(32)
Memory 1 32 256 1024
Timing 274 180 34 11

(b)
CRCAr CRC-12 CRC-16 CCITT-16 CRC-16f CCITT-16f CRC-32
Memory 28 32 14 19 16 27
Timing 119 135 63 83 71 114
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5.3.2 Implementations

Here, we outline our software benchmarking system and then provide our measured 
implementation results.

Benchmarking System

The software algorithms are benchmarked using a desktop PC with 2 GB RAM, In
tel®  0x86 32-bit Pentium® IV processor operating at 1.5 GHz, running Microsoft® 
Windows® XP Professional, version 2002, and Service Pack 3. The implementations 
were completed using C ++  and compiled under Microsoft® Visual Studio® 2005, 
version 8.0.50727.762, as a WIN32 console application with no optimization options 
selected. Finally, we note that all the implementations closely resemble the C++ 
code snippets presented throughout this thesis.

To obtain the timing results of the algorithms, we used a high-resolution counter 
class [76]. The counter class wraps the Pentium® specific time stamp counter, en
abled one to measure the number of processor clock ticks (PCLKS) between two 
execution points in a program. When beginning the benchmarking experiments, we 
use the program EndltAll version 2.0.0.0 [77] to terminate many of the Windows® 
running processes, with the goal of reducing the amount of resource contention. We 
note that we cannot measure the percentage of CPU time that is consumed by other 
processes while our algorithms are being benchmarked. To combat this problem, we 
process relatively short messages and discard the fastest and slowest measured run 
times.

Results

We examine the impact that the message length, k, has on the speed of the algorithms 
for generator polynomials with different degrees. Figures 5.8a, 5.8b, and 5.8c, show 
the timing results for the generator polynomials CRC-12, CRC-16, and CRC-32, 
respectively, for message lengths k =  1024, 2048, 4096, and 8192 bits. In these 
figures, each point on a timing plot represents the average number of PCLKS for 12 
runs, with each of the fastest and slowest measured times discarded. After the discard, 
87.5% of the fastest and slowest remaining times are within 2.0 standard deviations of 
the mean time. Furthermore, 80% of the standard deviations are less than 1% of their 
respective means, with an overall average of 0.56%. These statistics demonstrate an 
acceptable amount of variance between run times. We note that we have selected 
CRC-16, which is predicted to have the worst case CRCAr(32) performance amongst
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the degree 16 generator polynomials. These plots verify the simulation performance 
results presented in Tables 5.11a and 5.11b. Finally, we conclude that CRCAT(32) 
outperforms the existing low-memory CRCR(32) on our system.
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Figure 5.8: Algorithm timing plots for: (a) CRC-12, (b) CRC-16, (c) CRC-32.
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5.4 Summary

In this chapter, we presented our simulation and implementation results for the hard
ware architectures and software algorithms contained in the thesis. The hardware 
simulation data was gathered from C ++ software that was written by the author 
over the course of the study. To obtain the hardware implementation data, the sim
ulation software was extended to generate full VHDL files, and some of these files 
were deployed on the ASIC and FPGA platforms. The software algorithms were the
oretically analyzed by counting both the number of operations required to process a 
message word and the memory required to represent their LUTs. Actual algorithm 
run times were measured on a desktop PC with a high-resolution counter class.

For the hardware results, we compared our proposed Lambda Gamma Architec
ture against the non-pipelined architectures, and found for CRC-32 it achieves the 
best area performance of all the approaches, also in terms of time complexity it 
matches/outperforms the systematic approaches for all the frequently referenced gen
erator polynomials. The study of the optimum degrees of parallelism for the parallel 
LFSR2 Architecture determined that the time-area product tracks the CPD delay 
plot, therefore one achieves diminishing time-area returns as the degree of parallelism 
is increased. The optimum p values were obtained for the LFSRp Architecture. How
ever, we note that the improvements of this approach over LFSR1 are minor. Our 
pipelining strategy for the State-Space Transformed Architecture was outlined, and 
we found for optimum transformations improvements are observed in the number of 
XOR gates and FFs. The area complexity of the Two-Step Architecture was investi
gated, and we found it to be quite large for small degrees of parallelism. The ASIC 
implementations of the State-Space Transformed Architecture verified the expected 
reduction in area and showed improvements in timing. The FPGA implementations 
of the non-pipelined architectures demonstrated that there is little difference amongst 
them and suggest that a designer should implement a systematic architecture.

For the theoretical software results, we investigated the performance of the pro
posed CRCAr(32) algorithm for the frequently referenced generator polynomials. 
CRCAr(32) was shown to outperform CRCR(32) in terms of time complexity and 
requires equal or less LUT memory space. We neglected to study the program sizes, 
since they are all comparable in C + + . Finally, benchmarking experiments were per
formed on a desktop PC. These experiments validated the theoretical timing values 
and we concluded that CRCAr outperforms CRCR when the degree of the generator 
polynomial is less than or equal to the bus width.
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Chapter 6

Contributions and Future W ork

6.1 Preview

T HE Cyclic Redundancy Check, is an EDC first proposed by Peterson and Brown 
in 1961 [1]. The two major areas of ongoing research concerning CRCs consists 

of developing new approaches to realize the computation and further investigations 
into its error detection properties. This thesis has focused exclusively on studying ap
proaches to realize the CRC computation as an architecture or algorithm, in hardware 
or software, respectively.

In this final chapter, we review the contributions contained in this thesis and 
present potential directions for future work. As this thesis has shown, most of the 
realizations of the CRC computation are proposed from a presented formulation. 
Formulations are typically expressed using binary polynomials or a state-space rep
resentations. The existing formulations are derived by considering the computation 
of the CRC equation (2.2), reproduced here for convenience,

(xm - U  (x)) mod G  (x),

as either the reduction of the augmented (xm ■ U (x)) or extended (U (x) =  xm • 

U (x)) message by the generator polynomial, called LFSR2 and LFSR1 formulations, 
respectively. All software algorithms are based on LFSR2 formulations, however 
realizing an LFSR1 formulation in hardware can result in an architecture that has 
lower a CPD, when compared to its LFSR2 counterpart. It is noted that a small 
increase in latency is incurred for architectures based on LFSR1 formulations.
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6.1.1 Organization

The remainder of this chapter is organized as follows. In Section 6.2, the contri
butions contained in this thesis are reviewed. Our contributions are summarized in 
a chapter-by-chapter format for easy cross-referencing. In Section 6.3, some ideas 
for potential future studies are given and the section is divided into hardware and 
software subsections.

6.2 Contributions

This thesis has examined a wide range of aspects surrounding the CRC computation. 
We have generalized many of the existing formulations and derived some new ones. 
These new formulations have been utilized to propose novel CRC computation ap
proaches that are realized as hardware architectures and software algorithms. These 
proposed approaches offer some improvement over the existing architectures and al
gorithms in terms of either computation time or area/memory requirements. Of the 
newly proposed schemes, we feel the most significant contribution is the software al
gorithm CRCAT derived from Lambda Gamma formulation. This high-performance 
algorithm achieves good timing results with low memory usage and is easily imple
mented on most systems. In the following subsections, we provide a chapter-by
chapter summary of all the contributions contained in this thesis.

6.2.1 Chapter 3

In Chapter 3, many of the existing parallel CRC formulations were developed from 
first principles, generalized, and some minor contributions were presented.

We began by developing a rigorous binary polynomial derivation for partition
ing the message into blocks. Afterward, we derived generalized binary polynomial 
and state-space formulations of the parallel CRC computation using both LFSR2 
and LFSR1 approaches. Unlike the previous approaches, our formulations were con
structed for all three cases of different degree of parallelism and generator polynomial 
degree. These generalized formulations form the foundation which allow us to derive 
all the approaches contained in the thesis.

The existing hardware architectures were examined next, each was derived and 
some minor extensions were performed. For the Two-Step Architecture, we presented 
a search methodology to find multiple polynomials and we found them for the fre
quently referenced generator polynomials. Also, we noted that it is possible to pipeline
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the second stage of the architecture and obtain a CPD of 1 • Tx- For the Cascade 
Architecture, we showed that the LFSR1 formulation could be applied and result in 
an architecture with less CPD. For the State-Space Transformed Architecture, we 
performed an exhaustive search to obtain the optimum transformation, which results 
in a system with reduced hardware complexity. Finally, this chapter examined the ex
isting software algorithms. We presented a straightforward derivation for the Slicing 
Algorithms which showed that this approach is a combination of the Table Look-up 
and Reduced Table Look-up Algorithms.

6.2.2 Chapter 4

In Chapter 4, some novel computation approaches were presented. The first ma
jor contribution of this thesis concerned the development of a binary polynomial to 
matrix-based formulation. Afterward, we investigated the detailed design of the par
allel LFSR2 Architecture when the degree of parallelism is greater than the generator 
polynomial degree, and presented some optimizations specific to that case. Next, the 
matrix-based formulation was extended and a novel matrix decomposition was pre
sented. We consider this decomposition, we call the Lambda Gamma decomposition, 
to be the central contribution of our study. The decomposition gave rise to a novel 
software algorithm and hardware architecture. Next, we generalized the CRC formu
lation introducing the parameter p. This formulation allows one to derive both the 
existing LFSR formulations from a common starting point. Finally, we investigated 
the Message Splitting Architecture and found that it may have promise for some 
cases.

6.2.3 Chapter 5

In Chapter 5, the simulation and implementation results of the various architectures 
and algorithms were gathered. Hardware experiments were performed first, followed 
by software experiments.

Our first hardware simulation compared all the non-pipelined architectures. The 
proposed approach outperformed the systematic approaches in terms of CPD, however 
at the cost of additional hardware. Next, we presented a study which obtains the opti
mum degrees of parallelism in terms of critical path delay for the LFSR2 Architecture. 
We also performed searches for the optimum p values for the LFSRp architecture that 
reduce the computation time. LFSRp was shown to match/outperform both LFSR2 
and LFSR1, however most of the results offered only small improvements in the overall
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computation time. The results of the state-space transformation simulations showed 
modest reductions in the number of XOR gates and FFs, when the optimum transform 
was selected over the trivial one. We found for the Two-Step Architecture, obtaining 
a circuit with 1 • Tx  delay requires a large amount of hardware and is likely not prac
tical for implementations. Next, ASIC and FPGA implementations were performed 
for some selected architectures. We chose to verify our state-space transformation re
sult in ASIC, and the implementations demonstrated improvement in both area and 
timing. FPGA implementations were performed for the non-pipelined architectures, 
and we concluded that it is best to implement a systematic architecture on FPGA, 
since there is little difference between the performance of these approaches.

For the software algorithms, we first conducted a theoretical analysis to obtain 
the expected performance. We determined that our proposed CRCAr requires less or 
equal LUT memory compared to the existing low-memory CRCR algorithm, and offers 
better computation times. Finally, we performed software benchmarking experiments 
for all the algorithms and found that our measured results validated our predicted 
ones. We concluded that the Lambda Gamma Algorithm outperforms the Reduced 
Table Look-up Algorithm when the degree of the generator polynomial is less than 
or equal to the bus width, which is the case in many systems.

6.3 Future Work

In this final section of the thesis, we present possible future work and some open 
research questions surrounding the realization of the CRC computation in hardware 
and software.

6.3.1 Hardware Architectures

After completing this study, it is clear to us that the best CPD that can be achieved by 
retiming techniques for a CRC computation architecture is bounded by the complexity 
in its feedback loop. As the degree of parallelism is increased, inherently, the feedback 
loop complexity increases. Consequently, increasing the degree of parallelism does not 
always result in timing improvements. An interesting challenge would be to derive a 
systematic approach to obtain an architecture with CPD 1 • Tx , which does not rely 
on any assumptions that limit its ability to be deployed.

Currently, the fastest retimed architecture is the Two-Step Architecture, and it has 
a best-case CPD oi l - T x . However, one must find appropriate multiple polynomials,
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which can be difficult. We suggested methods to shorten the search times from 
a naive method of testing every polynomial, but they are not suitable for larger 
degrees of parallelism. So we pose the following question: in addition to the Two- 
Step Architecture, are there any another approaches to obtain parallel CRC hardware 
realization of the CRC computation with 1 • Tx  delay?

As mentioned in Chapter 3, there is an approach based on manipulating the 
serial LFSR2 Architecture by unfolding, pipelining, and retiming it to obtain a fast 
parallel CRC architecture. It would be interesting to try to develop a mathematical 
approach to describe these manipulations. By taking this approach, one may have 
more flexibility and possibly be able to improve on the results in that paper. We note 
that other than [24], this is the only paper with an architecture that has a CPD that 
is less than CPD in the feedback loop of its primitive counterpart.

Generally, there has been little work attempted to the application of CRC onto 
higher order fields, i.e., G F {q ). Investigations into the extension of the Lambda 
Gamma decomposition onto G F  (q) could be performed, as the decomposition should 
also be valid in those fields.

Finally, simulations could be performed to determine if it is possible to outper
form the parallel LFSR Architectures by using the Message Splitting Architecture. 
However, we note that this approach is also bounded by delays in its feedback loop.

6.3.2 Software Algorithms

This study verified that the speed performance of a given software algorithms is 
strongly influenced by the properties of datapath that it will be deployed on. Factors 
such as cache size, instruction set, memory access times, etc., will dictate the perfor
mance of an algorithm. With the recent rise in popularity of multicore processors, 
a future study could be undertaken on the performance of the existing algorithms 
when deployed on these systems. That is, investigations into the influence of different 
shared memory schemes for representing the message and the LUTs.

Finally, the desktop benchmarking experiments that were performed in this thesis 
could be followed up on a microcontroller that has build-in benchmarking utilities. 
We noted that the instruction counts provided in Chapter 5 were based on C++ 
implementations of the algorithms, consequently they will be compiled differently on 
different systems. Even though the variance was low between measured run times 
on our system, a more accurate result would likely be observed through assembly 
language implementations on a microcontroller.
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A ppendix A

C R C -32 Hardware Architecture  

Equations

IN this appendix, the hardware architecture equations for some implementations 
of the CRC computation using the generator polynomial CRC-32, G  (x) =  1 +  

x  +  x 2 +  x4 +  x 5 +  x 7 +  x 8 +  x10 +  x11 +  x12 +  x16 +  x22 +  x23 +  x26 +  x32 [4] are 
presented. For the parallel LFSR2 and LFSR1, Lambda Gamma, State-Space Trans
formed, and Two-Step Architectures, we list the complete set of equations required 
for their implementation. The Cascade and Look-Ahead Architectures are based on 
the serial LFSR2 Architecture, therefore their implementation equations are trivial 
and are not provided.

Since we are discussing implementations, the iteration number in the formulation 
has no impact on the architecture. Therefore, we drop it from the equations. However, 
since all these formulations are recursive, we mark the next terms using primes. In 
other words, the primes denote terms which input to a storage element.

We note that, all of the equations in this appendix were obtained using modified 
versions of the LUT generation algorithms presented in this thesis. Therefore, the 
content contained in this appendix can be used by a hardware designer who wishes 
to realize the CRC-32 computation as an architecture and/or verify the correctness 
their equation generation code.

The remainder of this appendix is organized as follows. In Section A.l, the equa
tions for the parallel LFSR2 and LFSR1 Architectures are presented. In Section A.2, 
the equations for the Lambda Gamma Architecture are presented. In Section A.3, 
the equations for the State-Space Transformed Architecture are presented. In Section 
A.4, the equations for the Two-Step Architecture are presented.
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A .l  Parallel LFSR Architectures

An illustration of the parallel LFSR2 and LFSR1 Architectures are shown in Figures 
3.5 and 3.6, respectively. Here, the implementation equations are provided for l — 32. 
We note that for LFSR2, £* =  Sj +  tq see (3.5). Figures A.l and A.2, display the logic 
equations for the parallel LFSR2 and LFSR1 Architectures, respectively.

*0 = A) "*■ 6̂ + h  "*■ to 1̂2 2̂4 "*■ hs "*■ A  ■*“ hi 2̂9 to 3̂1
5 1 =  A '*’  A A A A Al A2 A3 A 6 A 7 "*̂ 24 A? As
52 = A **" A A A A A A A3 1̂4 Afi 1̂7 1̂8 2̂4 Afi Ao Al
53 — + A + ¿3 + ¿7 + ¿g + ¿9 + Ao + A 4 + A5 A 7 A 8 1̂9 2̂5 2̂7 Al
54 “  A A  A A A A Al K l  A5 A 8 1̂9 ’*’ 20 *̂ 24 *25 2̂9 Ao "*" Al
5 5 =  A A A A A A + A Ao A3 A 9 Al 2̂4 2̂8 2̂9
*̂ 6 = A A A A A A A Al 1̂4 Ao Al A2 "*" A5 2̂9 Ao
S 1 “  A A A A A A ¿1Q + /15 + t lfi + ¿21 2̂2 2̂3 2̂4 2̂5 2̂8 2̂9

8̂ = *0 ■*" ̂1 3̂ "*" h 8̂ “*■ ̂10 1̂1  ̂̂12 A7 2̂2 2̂3 ̂ 28 3̂1
9̂ = A **2 4̂ 5̂ 9̂ Al 1̂2 1̂3 1̂8 ^ 2̂3 2̂4 2̂9

5 10 =  ^0 “*" ^2 **" h  ^5 "*" ^9 "*" ^13 A 4 ^16 "*" ^19 "*" ^26 "*" ^28 "*" ^29 ^31

1̂1 ~ **o ¿j + ¿3 + ¿4 + ¿9 + ¿12 + 1̂4 + ^5 ^  1̂7 2̂0 "*" 2̂4 2̂5 "*" 2̂6 "*" 2̂7 2̂8 "*" 3̂1
512 = ̂ 0 1̂ ■*" ̂2 4̂ 5̂ ”*" ̂ 6 h "** ̂12 1̂3 1̂5 1̂7  ̂̂18 2̂1 2̂4 + ̂27 3̂0 3̂1
^13 =  ¿1 ¿2 3̂ 5̂ “t  ^6 ^7 A o ”*" **13 ^  1̂4 1̂6 ”*" 1̂8 1̂9 ^22 ”*" ^25 "*" ^28 3̂1

^14 =  ^2 **" ^3 U  ^6 h  *  h  ■*" 1̂1 1̂4 A 5 A 7 **19 "*" ^20 ^23 +  ^26 "*" 2̂9

^15 =  3̂ "*" ^4 "*" 5̂ "*" *7 “** 8̂ 9̂ "*" ^\2  "*" 1̂5 1̂6 ^18 "*" ^20 "*" ^21 **” ^24 "*" ^27 "*" ^30

516 = ̂ 0 "*" ̂ 4 h "*■ ̂8 “*■ ̂12 ■*" ̂13 1̂7 "*" ̂19 2̂1 2̂2 + ̂24 2̂6 "*" ̂29 "*" ̂30
51? = ¿i + t s + ¿6 + ¿9 + ¿t3 + ¿14 + ¿lg + ¿20 + ¿22 + 2̂3 "*" 2̂5 2̂7 3̂0 "*" 3̂1
518 = 2̂ 6̂ 7̂ Ao 1̂4 1̂5 1̂9 2̂1 "*" 2̂3 2̂4 2̂6 2̂8 3̂1
*̂ 19 ^ ¿3 + ¿7 + 8̂ + 1̂1 1̂5 "*" Afi ■*" 2̂0 + 2̂2 2̂4 2̂5 2̂7 "*" 2̂9
2̂0 = ̂ 4 8̂ ̂  ̂9 "*" A 2 1̂6 "*" ̂17 2̂1  ̂̂23 2̂5 2̂6 2̂8 3̂0
2̂1 = 5̂ "*" 9̂ "*■ Ao "** 1̂3 "*■ 1̂7 1̂8 2̂2 2̂4 "*" 2̂6 2̂7 "*" 2̂9 "*" 3̂1
2̂2 = 0̂ ■*" 9̂ "*" 1̂1 1̂2 “*■ 1̂4 ■*" 1̂6 ^ 1̂8 1̂9 ^ **23 2̂4 "*" 2̂6 ^  2̂7 2̂9 3̂1
*̂23 = ̂ 0 ~*~ t\ "*" ̂6 9̂ 1̂3 “*■ As "*" A6  ̂A7 "*" A9 2̂0 2̂6 2̂7 2̂9 3̂1

■̂24 — ¿1 + ¿2 + A Ao ”*■ A4 A6 A7 As "*" Ao “*" All A7 2̂8 "*" Ao
2̂5 = A "*" A A "*" Ai As "*" A 7 As A9 '*’ Ai A2 As A9 "*" Ai
2̂6= A "*" A A A Ao "*" As "*" A9 ^  Ao "*" A2 "*" A3 "** A4 As "*" Ai "*" As ^  Ai

■ 2̂7 = A "*" A  "** A "*" A "*" Ai "*" A9 "*" Ao Ai "*" A3 "*" A4 As "*" Ae A7 A9

*̂ 28 = A A A A A2 Ao ■*" Ai A2 ^ A4 "*" As "*" 2̂6 A7 "*" As ”*" Ao
2̂9 = A “*" A A "*" A "*" A3 "*" Ai A2 A 3 "*" As A6 A7 "*" As **“ A9 “*" A 1

3̂o — ¿4 + ¿7 + A Ao "*" A4 **" A2 “*" A3 A4 A& A7 "*" As A9 "** Ao
53i = A A A Ai As A3 "*■ A4 "*■ As A 7 “*■ As "*" A9 Ao ■*■ Ai

Figure A.l: Parallel LFSR2 Architecture G 32X 32 equations.
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5q =  «0  ^0 ^6 S9 "*■ 510 512 1̂6 "*" S24 ^25 "*" 2̂6 ^28 "*" S29 "*" ̂ 30 "*" 531

5, = W, + 50 + 5, + S6 + S7 + S9 + 5, i + 5,2 + 5,3 + 5,6 + 5,? + S2 4 + S27 + 52g
5"2 =  W2 +  +  5j +  ^  ̂  57 58 *̂ 9 *̂ 13 ̂ 14 ^  ̂ 16 1̂7 "*~ SIZ 524 "*" ̂ 26 ^30 "*" ̂ 31

5 3 =  « 3  ^1 "*" ^ 2  "*" ^3 ^7  "̂ ~ ^8  "*" ^9  ~*~ ^10 ̂ 14 *̂ 15 "*" ^17 "*" ^18 ̂ 19 ^25 "*" ^27 ~*~ ^31
54 =  W4 +  Sq +  S2 +  53 +  54 +  5 6 +  5g +  5 ,, +  5 ,2 +  5 ,5 +  5 ,g +  5 ,9 +  S2q +  S24 +  525 *̂ 29 *̂ 30 "̂ ~ *̂ 31

5 j =  « 5  ~*~ ^0 *̂ 1 *̂ 3 "*" ^4 ^5 ^6 ~̂~ ^7 ̂ 10 "̂ ~ *̂ 13 *̂ 19 ~̂ " *̂ 21 “̂ 24 ~̂~ *̂ 28 ~̂ " ^29

=  W6 ^2 "̂ " *̂4 "̂ " *̂ 5 ^6 "*" ^7 "*" ^8 *̂11 ~*~ 1̂4 "*" *̂ 20 ^21 *̂ 22 "*" *̂ 25 "*" ^29 *̂ 30

5? =  M? +  SQ +  S2 +  £3 +  S5 +  5? +  5g +  5,0 +  5,5 +  5,6 +  521 +  S22 +  ̂ 23 ^24 *̂ 25 "*" “̂ 28 2̂9

8̂ = W8 "*" 0̂ "*~ 51 "*"̂ 3 ^  4̂ +58+510+5ll+ 1̂2 1̂7 ^^22 "*" 523 ̂ 28 "*"̂ 31
Sg = U g  + 5 ,  + s 2 + s4 + s5 + S g  +  5, j +  5j 2 +  Sj 3 +  5j 8 + 5 23 + 5 24 + 5 29

510 =  W10 50 ■*" ^2 +  53 ■*" 5̂ S9 "*" S13 +  ̂ 14 +  516 ^  S19 +  S26 +  S2S "*" 529 +  ̂ 31

511 = uu + s0 + s i + s2 + s4 + s9 + sn + sH + s ls + s16 + s l7 + s20 + s24 + s 25 + s 26 + i 27 +528 + s31
*̂ 12 ”  Wj2 +  5*0 +  *$1 +  S2 +  S4 +  S5 +  S6 +  Sg +  5 I2 +  5,3 +  5 ,s +  5 ,7 +  5 ]g +  5 2, + 5 24 +  527 +  5 30 +  53,

_.» 1<T Ir. If If _l_ f _L f _1_ f _l_ f _l_f _L_ a _l_ c _l_ c _1_ c _L o J_c
5Ì3 =  W13 +  5, +  5 2 +  53 +  55 +  ^6 +  5? +  S10 +  5,3 +  5M +  ^.6 +  Sl& +  5 ,9 +  522 +  5 25 "*"^28

=  W14 +  52 +  53 +  i 4 +  ^6 +  5 ? +  5 g +  5 „ +  5,4 +  5 ,5 +  5 n +  5,9 +  520 *  ^23 +  S26 +  5 29

5Ì5 =  wI5 +  53 +  54 +  5 5 +  5 ? +  5 g +  Sg 1̂2 +  5,5 +  ^16 +  5 18 *  S20 +  5 2I +  5 24 +  5 27 +  530

4 =  W16 +  50 +  ^4 +  5 5 +  5 g +  5 , :, + 5 , 3 + 5 ] ,7 + 5 ,19 + s :2! + f 22 + 5 2 4 + 5 26 +  S2 9 + 5 30

5Ì7 =  W]7 +  5, +  55 +  *6 +  Sg +  5,3 +  5,4 + 5 ,g + 5 20 + 5 .12 + S 2 3 +^ 25 +  S2 7 + 5 30 ~^S31

v'
1̂8 =  «18 +  52 ■ ^ ó +  5? +  5,0 +  5,4 +  5,5 +  5,9 +  52, +  523 +  524 +  526 +  52g +  53,

1̂9 “  ̂ 19 +  53 +  5? +  5g +  5,, +  5,5 +  5,6 +  520 +  522 +  524 +  525 +  527 + 5 29

S20 =  W20 "*" 54 5g +  59 +  5,2 +  516 +  5,7 +  521 +  523 +  S25 +  S26 +  52g +  530

52, =  W2, +  55 + S9 +  5,0 +5 ,3  +  517 +  5,g +  522 +  524 +  526 +  S27 +  S29 +  53,

“̂22 = ̂ 22 + “̂9 *̂11 *̂12 *̂14 *̂16 *̂18 *̂19 "*" ̂ 23 “̂24 "*" ̂ 26 2̂7 2̂9 *̂3
5-,i =  W23 + 5 q + 5 ,  +  5 A + 5 Q+  5 , , +  5 ]S + 5 , A + 5 , 7 + 5 ,  Q +  S jn +  5 9ft +  5 ?7 +  5 79 +  513 1 J 15 1 J 16 ' °17 ' ^19 ‘ °20 1 ^26 ' °27 ' °29 ' ^31

5 24 = W24 +  5, +  s 2 +  s 7 +  510 +  5 n +  5 ,6 +  5 ,7 +  5 18 ^  S20 ■*"̂21+  5 2? +  5 2g +  530

^25 = W25 +  5 2 +  5 3 +  5 g +  5 „ +  5 ]5 +  5n  +  5 ,g +  5,9 +  5 2, +  522 ^28 +  5 29 +  53,

5 26 = M26 +  5 q +  5 3 +  5 4 +  *̂ 6 ■*■ ^10 +  5 ,g + 5 ]9 +  520 +  S22 +  5 23 +  5 24 +  S25 +  5 26 +  5 2g

527 = W27 +  5, +  54 +  5 5 +  5 ? +  5 ji +  5 ,9 +  5 20 +  5 21 +  S23 +  524 +  5 26 ■*" ‘̂ 27 +  ^29

^28 = w2g +  5 2 +  5 S +  ^6 +  5 g +  5,2 +  5 20 +  5 2, +  5 22 +  5 24 +  1?26 +  S27 +  5 2g +  530

S2g = U2g +  53 +  ^6 +  5 ? +  Sg +  5,3 +  5 2, +  S22 +  523 +  S25 +  *̂ 26 +  5 27 +  528 + 5 29 + 5 3,

530 = W30 +  54 +  5 7 +  5 g +  51C +  5^ +  S22 +  523 +  S24 +  5 26 +  S27 +  5 2g +  5 29 +  5 30

^31 = «31 +  55 +  5g +  Sg +  5 „ +  515 +  523 +  S24 "*"5 25 +  5 2? +  52g +  5 25 +  5 30 +  53,

Figure A.2: Parallel LFSR1 Architecture G 32 X 32 equations.
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A .2 Lambda Gamma Architecture

An illustration of the Lambda Gamma Architecture is shown in Figure 4.5. Here, 
the implementation equations are provided for l =  32, and similar to the parallel 
LFSR2 equations, U =  Si +  Ui. Figures A.3 and A.4 display the logic equations for 
the Lambda and Gamma matrices, respectively.

A = * 0 + * 6 + * 9 + * 1 0  +  *12 "*" h e  "*" *24 "*" *25 "*" *26 *28 *29 *30 "*" *31

A  ~  *1 +  *7 +  *10 "*"*11 "*~ *13 “*~ *17 "*" *25 "*" *26 "*" *27 "*" *29 "*" *30 "*" *31

A  =  *2 +  *8 +  *11 +  *12 “*“ *14 "*" *18 "*" *26 "*" *27 "*" *28 "*" *30 "*" *31

^ 3  =  *3 *9 "*" *12 "*" *13 "*" *15 "*" *19 "*" *27 "*" *28 "*" *29 "** *31

A  =  *4 ^  *10 "*" *13 *14 "*" *16 "*" *20 "*" *28 "*" *29 "*" *30

.Ag =  ¿5 +  *n +  *14 +  *15 +  *17 +  *21 +  *29 *30 “*" *31

A  =  *6 +  *12 *15 +  *16 "*" *18 "*" *22 "*" *30 "*" *31

A

A
A
Ao
Ai
Ai
As
A4
As

Ae
a 7
A b
a 9
Ao
Ai
A i
A3

A4
As
Ae
A?
As
A 9
Ao 
A 1

—  *7 +  ¿13 +  ¿] 6 + ¿17 + ¿] 9 + ¿23+ ¿31

~  *8 “*" *14 ~*" *17 "** *18 ~*" *20 "*" *24 

=  *9 +  t 15 +  /18 +  ¿]9 +  ¿2i +  *25

II 0 +  *16 +  *19 "*■ *20 "*■ *22 "*" *26

II

"*"*17 +  *2o -*" *21 "*■ *23 "*"*27

“  *12 ■*"*18 +  *2i +  *22 +  *24 +  *28

II +  *19 "*■*22 +  *23 +  *25 +  *29

II +  *2o +  ¿23 "*■*24 "*■ *26 +  *30

“  *15 +  *2i +  ¿24 +  *25 "*" *27 "*■*31

=  ¿16 +  ¿22 +  ¿25 "*" *26 "*" *28 

— ¿17 +  ¿23 +  *26 "*" *27 *29

=  ¿18 +  ¿24 +  ¿27 +  ¿28 +  *30

= ti9 + ¿25 + ¿28 + ¿29 + ¿31 
= ¿20 + ¿26 + t 29 + ¿30
“  *21 "*" *27 "*" *30 +  *31 

=  ¿22 +  *28 "*" *31

= ¿23 +129

= ¿24 + ¿30 
= *25 + ¿3 j 
=  *26 

=  *27 

=  *28

Figure A.3: Lambda Gamma Architecture A 3 2X32 equations.
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*0 = 4)
■*i= K + K 
S2= A) + A +¿2

= ^ + / ^ + ^ 3
54 ==A0 + A 2 + A 3 + A 4 

=  Aq +  A, +  Aj +  A 4 +  A 5 
s$ — Aj +  ¿2 +  A 4 +  A 5 +  A 6
.Ŝ  =  ^ +  ^ 2 + ^ 3 + ^ + ^ + ^

5 g — Aq +  Aj +  A3 +  +  Ag +  Ay H~ Ag
^9= A i -i " A 2 + A 4 +  A 5+ A y + A g + A 9

5io = A + ̂ 2 + h  + ̂ 5+ K + K + K + ̂ 10

Jjj = A0+Aj+A3+A4-)-Ag+A7+A9 + Aj0 + Aj t
1̂2 =  A0 +  A1 + A 1 + A 4 + A 5+ A 7 + A s +  A[0 +  A jj +  A[2 

^13 =  A1 +  A 2 + A 3 + A 5 +  A 6 + A 8 + A 9 + A 11 +  A|2 +  A|3

514 = ̂ 2 + A3 + ̂ 4 + ̂ 6 + ̂ 7 + ̂ 9 + ̂ 10 + ̂ 12 + \l + ̂ 4
^ 5  =  A3 +  A 4 +  A 5 +  A? +  Ag +  Aio +  A i  +  A13 +  A,4 +  Al 5

SÌ7 “ Aj+A^Ag 
1̂8 = ¿2 + \  "*" ¿i A "*" ̂ 10 "*" ̂ 11 "*" ̂ 3 1̂4 *̂16 "*" ̂ 7 1̂8

■S1 9 = A 3 + A 7 + A 8 + A 9 +  A jj +  A12 +  A j4 +  A j5 +  Aj-y +  A1g +  A j9

2̂0 = ̂ 4 + K + ̂  + ̂ 10 + Kl + ̂ 13 + ̂ 15 + ̂ 16 + ̂ 18 + ̂ 19 + ̂ 20
2̂1 =  Ag +  A  ̂ +  A 10 +  A11 +  A13 +  Aj4 +  A16 +  A]7 +  A j9 +  A20 +  A ^
2̂2 =  Aq +  Ag “H Ajq +  Ajj +  Aj2 +  Aj4 +  A jj +  Aj7 +  Ajg +  A jq + A 71 +^22 

¿23 =  Aq + A j + A y  + A jj + A j2 + A j3 + A j5 + A j6 + A j8 + A j 9 +A2J +A22 +¿21

^24 ~  Aj +  A2 +  Ag +  Aj2 +  t̂j3 I '*14 > ' 46 
*̂ 25 — A2 “t- A3 “t- Ap “I" Aj3 “H Aj4 “I” Aj 5 "1" Aj 7 
•s2 6 = At)+ A 3 + A 4 + A t0 + A 14 , .35 , , n6 .
5 27 =  Aj + A 4 + A 5 + A jj + A j5 + A j6 + A j 7 + A j9 

*̂ 28 =  A7 +  A 5 +  Ag +  Aj2 +
^29 =  A3 +  Ag +

^30 “  A 4
5 31 = A 54 - A 8 + A 9 + A j5 +

Figure A.4: Lambda Gamma Architecture r 3 2 X 32  equations.
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A .3 State-Space Transformed Architecture

An illustration of the State-Space Transformed Architecture is shown in Figure 3.14. 
Here, the implementation equations are provided for the state-space transformed

1 T
with l =  32. Figuressystem when it is constructed using b 32xl =  |̂ 1 0 0 ••• 0 

A.5, A.6, and A.7 display the logic equations of the input, state, and output coupling 
matrices, respectively.

«0 =  Ai a 2 = x7 + x 31
° 1 6

— x15 +  x31 ^24 x23
«1 = A + A l a 9 = A = * 1 6 a 25

11

° 2
= x, +  x31 a xo

= x9 + x 31 a is = xI7 ° 2 6
-  x25 + x31

= A a xx
= x10+ x 31 a \9 =  x lt a 27 = X 26

a A = x3 +  x31 a \2 = xu + x 3. a 20 = x19 a 2%

II -j

U 5 =  x 4  + x 3l att = X i2 a 2\

II o a 29

II 00

=  x s °XA
= x13 a 22 = X 2 1 + X 3 1 a 30 — x29

A = A + A i < h s
= X i4 f l 23 = x22 +  x3I a 3[ II

& ©

Figure A.5: State-Space Transformed Architecture A 32x32 equations.
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b0 ~  4  W9 4 Wjj + Wjj 4  W]7 4- Wjq + W21 4 W22 4 W23 4 W24 4 W23 4 W29 4 W30 4 U3l

¿>3 =W04Wj4M54M64W74Wg +  W]0 4 W12 4  WJ3 4 W14 4 W15 4 W]6 4M]? 4 W,8 4  M20 4  M2] 4 M22 4W23 + W24 + w 25 + W 27

b2 = W2 4 1/5 4 W8 4 Wj j 4  W13 4  W35 4 W16 4 W17 4 W18 4 W20 4 W23 4 W24 4 U25 4  W26 4 W27 4 W29 4 W30

¿>3 =M,4M34M54M64 M13 4 W14 4 W15 4 W17 4 U20 4 W21 4  W22 4 U23 4  W24 4 W29 4 W30 4 W31 

¿>4 = W3 4 W4 4 W6 4 W7 4 W9 4 W10 + W12 4 W13 4 W18 4 W20 4 W22 4 W24 4 W26 4 W27 4  W28 4 W29

¿5 = «! 4 « 3 4tt5 4tfg 4  w7 4 w9 4 « 10 4 Mu  4 « 13 4  W15 4 Ul7 4  W]8 4  W19 4 W20 4 W21 4 W22 4 W23 4 W25 4 W26 4 U21 4  W28 4  W29 

b6 = w3 4 W4 4 W5 4 u 6 4  u 7 4  U% 4 W1(J 4 W12 4  W16 4 W23 4 W24 4 W25 4  W31 

¿>7 = w2 4 W3 4 U9 4  M12 4 w13 4  W]8 4  W19 4 W20 4 W21 4 W23 4 U25 4  W26

¿>8 = W6 4W7 4 w9 4 W14 4 W17 4  Wj8 4 W19 4 W21 4  W25 4 W26 4 W27 4 W31

¿>9 = Wj 4 W2 4 W3 4  W4 4 W5 4 W7 4 WJ4 4 W15 4 WI6 4 W19 4 W20 4 U2i 4  W2g 4 W29

Z>jO = W6 4 U-j 4  W9 4 W10 + Wjj 4  W]2 4  W]4 4  W16 4 W]7 4 W19 4  W20 4 W21 4 W22 4 W23 4 W26 4 W27 4 W29 4 W30 4 W31

= Wj 4 M10 4 W12 4 W13 4 W16 4 W20 4 W21 4 W24 4 W2g 4 W31 

b\2 = W2 4 W7 4 W9 4 W|Q 4 W31 4  W13 4 W22 4 W23 4 W30 4 W31

bn  = W2 4 W4 4 Wg 4  W10 4 W]2 4  W]? 4 Wlg 4 W19 4 W2, 4 W23 4 W25 4 W27 4 W28 4 W29

¿>¡4 = W, 4 W3 4 W4 4 W7 4 W9 4 WI3 4 WJg 4 W20 + W22 4 W23 4 W25 4 W26 4 W27

b\5 = w2 4 w5 4w6 4 w7 4Wg 4 w9 4W10 4 Wjj 4W12 4W13 4W14 4W15 4 W16 4 W17 4 W,9 4 W20 4 W22 4 W23 4 W27 4 W31

¿>16 = W3 4 W4 4 W5 4 W7 4 W8 4 W9 4 W10 4 Wjj 4  W12 4 W14 4  W15 4 W17 4 W18 4 W19 4 W25 4 W26 4 W2? 4  W28 4 W30 4 W31 

1̂7 ~ W2 4 W8 4 Wj2 4  W15 4 W18 4  W20 4 W21 4 W24 4 W25 4 W26 4 W28 4 W29 4M3,

¿>]g = Wj 4W3 4 w7 4W]0 4 Wjj 4W]3 +W]4 4W]5 4W29 4W30

¿>19 = Wj 4 W4 4 W6 4 W? 4 W8 4 W9 4 W,j 4  W12 4 WJ3 4 W14 4 W]6 4 W18 4 W20 4 W21 4 W22 4 W23 4 W24 4 W26 4 W28

¿>20 = Wj 4 W2 4 W3 4 W4 4 W7 4 W12 4 W14 4 W15 4  Wlg 4 W19 4 W21 4 W26 4 W27 4 W28 4 W29 4 W30

¿>2i — W6 4 W7 4 W9 4 Wj0 4 Wjj 4  W12 4 W13 4 W16 4 W22 4 W24 4 W27 4 W29 4 W30

b22 = w2 +W3 4w6 4 Wg 4 w9 4 W10 4W,2 4W,3 4W14 4 Wj6 4W19 4W20 4 W2] 4 W25 4W26 4W27 4W31

Z?23 = Wj 4 W2 4 W3 4 W5 4 W6 4 W? 4 W8 4 W,j 4  Wj7 4 W20 4 W22 4 W23 4 W27 4 W30

Z>24 = W3 4 W6 4 W7 4 W9 4 W13 4 W14 4 W]5 4 W1? 4  Wlg 4 W19 4 W20 4 W2] 4 W24 4 W26 4 W27 4 W28 4 W30 

¿>23 = Wj 4 w2 4 w5 4  w7 4 Wg 4 W14 4 W15 4 W]g 4 W19 4 W20 4  W21 4 W22 4 W24 4 W27 4 W28 4 W29 

¿̂ 26 = Wj 4 W3 4 W5 4  W7 4 Wg 4 W10 4 W13 4 W15 4 W17 4 W18 4 W19 4 W22 4 W23 4 W25 4  W26 4 W30

Z>27 =W4 4W5 4W? 4W9 4W10 4Wjj 4 w12 4Wj3 4W14 4W15 4W16 4W1? 4 w20 4W21 4 W23 4 W24 4 W25 4 W27 4W28 4W31 

¿>2g = W2 4W3 4 w5 4W6 4W? 4 W8 4Wjj 4W13 4W14 4Wj5 4Wj6 4W,g 4W19 4 W20 4 w21 4W25 4 w27 4W3)

¿>29 = w2 4w3 4w4 4w5 4w6 4 w7 4w9 4 Wjj 4Wj6 4Wj7 4 Wlg 4  W19 4 W21 4 W22 4 W25 +W26 4w2? 4W2g4W29 

3̂0 = W2 4 Wjj 4  W15 4 W16 4 W18 4 W]9 4 W22 4 W23 4 W24 4 W26 + W29 + W30 4 W3]

¿>3j — W2 4 W4 4 Wj 4 Wg 4 W9 4  Wjj 4  Wj7 4 W2q 4  W22 4 W23 4 W27 4 W28 4 W29 4  W39

Figure A.6: State-Space Transformed Architecture B 3 2x32 equations.
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c0 = X q + X ì + X 2 + X a + X s + X 1 + X g +  X l 0  +  Xj J 4- x 14 +  x 15 4- xl6 +  xl7 +  JC21 +  x 22 4- x 23 4- x 24 4- x 26 +  x 27 4- x 29 +  x 31

C\ =  X( 4" X3 4" Xg 4“ X9 4“ XJ4 +  -£¡5 4" Xj9 +  X20 +  X21 4- X22 +  X23 4" X24 + X25 +  X26 4- X27 + X2g +  X29

c2 =  X y  4- x 2 +  x 3 +  x 4 4- x 5 4- x 6 +  x 7 +  x8 4- x 9 4- x 10 +  Xj j +  x 15 +  x 17 +  Xjg +  x 21 +  x 24 +  x 25 4- x 27 4- x 28 +  x 29 +  x 31

c3 =x2 +  x 5 + x 6 +  x 9 +  xn +  x 12 + x 13 + x 14 +  x 18 +  x 19+ x 26 +  x 29

c4 =  X j +  x 5 +  x 7 4- x8 +  x 9 4- xu 4- x13 4- x 14 4- x 16 4- x 17 4- x 25 4- x 27

c5 =  Xj +  x 3 +  x 7 +  Xg +  x 10 +  x 12 +  x 13 +  x 19 +  x 20 4- x 23 +  x 24 +  x 25 +  x 26 4- x 29 4- x3

c 7 =  Xj +  x 2 +  x 7 +  Xg +  x 10 4- x12 +  x 14 4- x 15 +  x 19 4- x 20 4- x 21 4- x 24 +  x 25 +  x 26 +  x 27 4- x 28 +  x 29 +  x 31

C 8 =  *1 4 - X 2 4" X j +  X 6 '

Cg =  X 2 4 - X 3 4 - X 4 + x $

C 10 =  X l 4 - X 2 +  x 4 +  X 6 '

C » =  X l 4 - X 3 +  x 6 +  x n

C,2 =  X 1 +  x 4 +  X j 4" X~j ■

C 13

II +  x 3 +  x 5 4 -X 9 ■

C 1 4 =  X 2 +  x 4 +  x 6 4 - X ?

C,5 =  x 3 +  x 6 +  x 9 + f 6

'9 1 *12 ' *\6 1 -*18 ' *21 1 *22 ' *24 ' *25 1 *21 1 3̂0
C g  +  x 13 4- x 14 4- x 15 +  x 16 4- x 23 +  x 26 +  x 27 4- x 29 +  x 30

:7 +  Xg +  x 9 +  x 15 4- x 17 +  x 20 4- x21 4- x 22 4- x 24 +  x 26 +  x 27 4- x 28 +  x 31

xl2 +  X13 +  x 14 4- x 15 4- x 16 +  x 18 4- x 22 4- x 23 + x 24 4- x 26 4- x 31

: 9  +  Xj j 4- x 13 4- x14 4- x 18 +  x 21 4- x 22 4- x 23 4- x 30 4- x 31

c l 2  +  X14 +  x 18 +  x 19 4- x 24 4- x 26 4- x 27 4- X2g +  x 29 +  x 30 +  x 31

Cg +  x M +  x 14 4- x 15 4- x 17 4- x 18 +  x 21 +  x 23 4- x 25 4- x 26 4- x 27 4- x31

Xi9 +  x 20 4- x 21 4- x 22 +  x 24 4- x 25 4- x 26 4- x27 +  x2g +  x 31

C16 =  X l  +  x 2 +  x 5 +  x 6 +  X10 +  Xji 4- x 13 +  x 14 +  x 18 +  x 19 4- x 24 4- x 27 +  x 29 +  x 31

C17 =  ^5 +  ^8 *̂ 10 **1 1 *̂ 13 *̂ 14 *̂ i6 *̂ 18 *̂ 20 *̂ 21 *̂ 22 *̂ 25 ^26 ^27 ^28 ^31

Cig =  x 2 +  x 4 +  x 7 +  Xg +  x 10 +  x 13 +  Xj4 +  Xj9 +  x 23 +  x 26 +  x 27 4- x 28 +  x 30 +  x 31

Cj9 =  x 2 +  x6 +  x 7 +  Xg +  X12 +  X13 +  x 14 4- x l7 +  X20 4- X22 4- X24 4- X29 4- X30 4- X31

c20 =  X5 4- x 6 +  Xg +  X10 +  x u 4- X12 4- x 14 4- X15 4- XI8 4- X19 4- X20 4- X21 4- X29

c21 = x 4 4- x 6 +  Xg +  X12 4- X13 +  x 14 +  x 16 +  x 17 4 -x 18 4- X21 4- X23 4- X25 4- X31

C22 =  Xj +  X5 +  X9 4- Xj J +  X13 4- X15 4- X21 4- X22 4- X23 4- X24 4- X25 4- X2? +  X29 4- X30

C23 =  Xj 4- x 4 4- x5 +  x 6 4- x 7 4- Xg +  X10 4- X14 4- X17 4- X,9 4- X21 4- X22 4- X23 4- X27 4- X29 +  X30

C24 — X2 4“ X3 4- X6 4- X7 4“ Xg 4" X9 4" Xj3 4" Xj7 4- Xj9 4” X2q 4- X24 4- X23

c25 =  X3 4- X5 4- Xg 4- X10 4- X13 4- X15 4- X16 4- X17 4- X19 4- X22 4- X25 4- X26 4- X27 4- X2g +  X3Q 4- X31

C26 =  +  X5 +  X6 4- X? 4- Xg 4- X10 4- X12 4- X13 4- XJ4 4- X16 4- X1? 4- X21 4- X23 4- X24 4- X25 +  X26 4- X29 4- X30

c27 =  X2 4” X4 4" X7 4~ X9 4” X12 4~ Xjg 4~ X2q 4” X24 4” X27 4- X28 4- X29 4- X3q
C28 — X3 4- Xj 4- X8 4- x 10 4- XJ3 4- X15 +  X17 4- X19 4- X20 4“ X21 4- X23 4- X24 4- X26 4- X28 4- X29

C29 =  X3 4- X4 4- X8 4- X9 4* X13 4- X14 4- X16 4- X20 4- X22 +  X23 4- X26 4- X27 +  X2g 4- X29 4- X30

C30 =  X2 4- X3 4- X4 4- X6 4- X7 4- Xg 4- X10 4- X( 1 4- X13 +  X14 4- X y 5 4- X16 4- Xj 7 4- X19 4~ X20 4- X21 4- X22 4- X26 4- X27 4- X29

C3i =  X3 +  X4 4- X6 +  X7 4- X9 4- Xn 4- X12 4- X15 4- X,6 4- X18 4- X20 4- X22 +  X25 +  X29

Figure A.7: State-Space Transformed Architecture C ' 3 2 x 3 2  equations.
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A .4 Two-Step Architecture

An illustration of the Two-Step Architecture is shown in Figure 3.7. Here, the im
plementation equations are given for l =  8 using the CRC-32 multiple polynomial 
M (x) = 1 +  x 23 +  x46 +  x64 +  x84 +  x92 +  x111 +  x123. Figure A.8 displays the first step 
equations, and Figures A.9, A.10, A .ll, and A.12 display the second step equations.

m'0 =u 0+m n5 " * 3 2 =  " * 24 " * 6 4 =  " * 5 6 " * 9 6 =  " * 8 8  + " * 1 1 9

m[ ~u x +m n6 "4 =  " * 2 5 " * 6 5 =  " * 5 7 " * 9 7 =  " * 8 9  +  " * 1 2 0

m2 - u 2 +  mni " * 3 4 =  " * 2 6 " * 6 6 =  " * 5 8 " * 9 8 =  " * 9 0 + " * 1 2 1

m[ = w 3 + w 118 "4 =  " * 2 7 " * 6 7 =  " * 5 9 " * 9 9 =  w 91  +  / w 122

rriA =  u4 + mu9 " * 3 6 =  " * 2 8 " * 6 8 =  " * 6 0 " * 1 0 0 =  " * 9 2

" * s  =u 5+ mno " * 3 7 =  " * 2 9 " * 6 9 =  " * 6 1 " * l 'o i =  " * 9 3

m'6 =u 6+m ni "4 =  " * 3 0 " * 7 0 =  " * 6 2 " * 1 0 2 =  " * 9 4

m!j =  w 7  +  mn2 "4 =  " * 3 1 " * 7 1 =  " * 6 3 " * 1 0 3 =  " * 9 5

" * s  = " * o " * i o =  " * 3 2 "4 =  " * 6 4 " * 1 0 4 =  " * 9 6

m9 -m x "4 =  " * 3 3 "4 =  " * 6 5 " * 1 0 5 =  " * 9 7

m[0 =m 2 " * ; 2 =  " * 3 4 " * 7 4 =  " * 6 6 " * 1 0 6 =  " * 9 8

" * i i  =  " * 3 m \ 3 =  " * 3 5 "4 =  " * 6 7 " * 1 0 7 =  " * 9 9

m[2 =  m4 " * ¡ 4 =  " * 3 6 " * 7 6 =  " * 6 8 " * 1 0 8 =  " * 1 0 0

mn -  m5 " * ¡ 5 =  " * 3 7 "4 =  " * 6 9 " * 1 0 9 =  " * 1 0 1

m[4 =  m6 " * 4 6 =  " * 3 8  + " * 1 1 5 "4 =  " * 7 0 " * l'lO =  " * 1 0 2

m is =  m - " * ¡ 7 =  " * 3 9  + " * 1 1 6 " * 7 9 =  " * 7 1 " * i l l =  " * 1 0 3  + " * 1 1 5

m[6 =  m% " * 4 8 =  " * 4 0  + " * 1 1 7 " * 8 0 =  " * 7 2 " * 1 1 2 =  " * 1 0 4  + " * 1 1 6

rrixl =  m9 " * 4 9 =  " * 4 1 + " * 1 1 8 "4 =  " * 7 3 " * 1 1 3 =  " * 1 0 5  + " * 1 1 7

" * i'8 = " * i o " * 5 0 =  " * 4 2 + " * 1 1 9 " * 8 2 =  " * 7 4 " * i  14 =  " * 1 0 6  + " * 1 1 8

m[9 =m u " * 5 1 =  " * 4 3 + " * 1 2 0 "4 =  " * 7 5 " * 1 1 5 =  " * 1 0 7  + " * 1 1 9

" * 2 0  =  mn "4 =  " * 4 4  + " * 1 2 1 " * 8 4 =  " * 7 6  + " * 1 1 5 " * 1 1 6 =  " * 1 0 8  + " * 1 2 0

m ’2 1 = " * 1 3 "4 =  " * 4 5 + " * 1 2 2 " * 8 5 =  " * 7 7 + " * 1 1 6 " * 1 1 7 =  " * 1 0 9 + " * 1 2 1

" * 2 2  =  " * > 4 "4 =  " * 4 6 " * 8 6 =  " * 7 8  + " * 1 1 7 " * 1 1 8 =  " * 1 1 0 + " * 1 2 2

"4 = " * i 5 + " * n 5 "4 =  " * 4 7 " * 8 7 =  W 7 9  +  W n 8 " * 1 1 9 =  " * 1 1 1

" 4 = " * i 6 + " * . i 6 " * 5 6 =  " * 4 8 " * 8 8 =  " * 8 0 + " * 1 1 9 " * 1 2 0 =  " * 1 1 2

" * 2 5  =  m \l  +  " * 1 1 7 " * 5 7 =  " * 4 9 " * 8 9 =  " * 8 1 + " * 1 2 0 " * 1 2 1 =  " * 1 1 3

"4 = " * 1 8 + " * 1 1 8 " 4 =  " * 5 0 " * 9 0 =  " * 8 2  + " * 1 2 1 " * 1 2 2 =  " * 1 1 4

" * 2 7  =  " * 1 9  + " * 1 1 9 " * 5 9 =  " * 5 1 " * 9 1 =  " * 8 3 + " * 1 2 2

"4 = " * 2 0 + " * 1 2 0 "*60 =  " * 5 2 "4 =  " * 8 4  + " * 1 1 5

" * 2 9 =  " * 2 1 + " * 1 2 1 " * 6 1 =  " * 5 3 " * 9 3 =  " * 8 5  + " * 1 1 6

" * 3 0  =  " * 2 2  +  " * 1 2 2 " * 6 2 =  " * 5 4 " * 9 4 =  " * 8 6  + " * 1 1 7

" * 3 1  = " * 2 3 "4 =  "*55 " * 9 5 =  " * 8 7  +  " * 1 1 8

Figure A.8: Two-Step Architecture first step equations.
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s'0 = m 0 +  m:n +  m3i +  w 41 + mA1 + w 44 + m4f, + m56 +  m51 +  m5S +  mm + m6l + m61 +  m63 + m (A+  m66 

+m69 +  m16 +  mv  + m19 +  m80 + mH2 +  mK + /ng6 + m%1 +  m90 +  m92 +  mgi +  m95 +  m91 +  m9i +  m99

+^100 +m i04 +m i05 + m\n+ m \n+ m \ u + m\\5 + m \\e + m\\i +  m\\9
s[ =  mx + m32 + ml3 + m38 + m39 +  m4X + m43 + +  m45+ m 48+ m 49 +  m56+ m S9 +  m60 + m65 +  m66

+m67 + m69 + m10 + m16 + m18 + m19 + m8x + m82 + m%% + m85 + m8S + w 90 + w 91 + m92 + w 94 + m95

+ m96 W104 + /W106 + + ̂ 112 + ̂ 113 "*"̂ 118 "*"̂ 119 1̂20

s2 ~ m 1 +  m32 + ra33 + m34 + /m38 +/w39 + m40 +/w41 + /w45 +m 46 + m48 +m 49 + w 50 + m56 + ra58 +m 62 

+W763 + m64 +  tn61 + m68 + w 69 + /?i70 + wiix + /w76 + w 83 + tn84 + m85 + m81 + m89 + /w90 + m9X + tn96

+/W99 + mioo +/WjQ2 + 1̂04 "*” 1̂07 "*"̂ 111 W112 "*"̂ 115 1̂16 1̂17 ~*“W120 "*"̂ 121

53 = m3 + mi3 + t?734 + /w35 + A7739 + m40 + m4X + m42 + m46 + w 47 + m49 + m50 + m5X + m51 + m59 + m63 

+m M + m65 + m68 + m69 + w 70 + mlx -f m72 + /w77 + m84 + /w85 + mS6 + w 88 + /w90 + m9x + m92 + m97

+/W100 +W 101 "̂ W103 "*"̂ 105 "*“ 1̂08 "*"̂ 112 "*"̂ *113 "*"W116 ^^117 "*"̂ 118 "*"̂ 121 W122

s ,4 = m 4 +  m32 + m 34+  m35 + m36 + m38 + m40 + w 43 + m 44+  m41 + m50 + m5X + m52 + w 56 + m51 + m61 

+m62 + m63 + w 65 + m1{) + m71 + m12 + m73 + w 76 + m77 + w 78 + m19 + w 80 + w 82 + m89 + m90 + /w91

+W95 W97 W99 +^100 ^101 W102 1̂05 W106 1̂09 ^111 1̂15 W116 1̂18 "*"^122

s ’5 =  m5 + m32 + W33 + m25 + m36 + m31 + w 38 + m3g + w 42 + /w45 + w 5l + mS2 + w 53 + m56 + w 60 + w 61 + m69 

+w71 + m12 + m13 + /w74 + m76 + m7g + w 81 + m82 + w 83 + m85 + m86 + /m87 + m9X + m93 + m95 + m96 +

+7W97 + W799 +7W101 + W102 1̂03 m\04 W105 ~*"W106 "̂ 1̂07 W110 "*"^11 W112 "*"̂ 113 W114 “̂ 1̂15

.s-; =  mb +  W33 + w 34 + w 36 + w 37 + m38 + m39 + m40 + m43 + m46 + m52 + m53 + m54 + /w57 + m61 + m62 + m70 

+w72 + m73 + m14 + w 75 + m11 + w 79 + ̂ 2  + w 83 + m84 + m86 + m87 + mg8 + m92 + m94 + m96 + m91

+^98 + W 100 "*"^102 "*"̂ 103 "*"̂ 104 W105 “̂ 1̂06 "*"̂ 107 "*“ 1̂08 m\\ 1 ^ W112 W113 ^ W114 "*” 1̂15 "*"^16

s r7 -  m1 + m32 + m34 + w 35 + w 37 + m39 + w 40 + m42 + m41 + w 48 + mS3 + m54 + m55 + m56 + m51 + m60

+m 6l + W64 + W66 + W69 + W71 + W73 + W74 + W75 + W77 + ̂ 78 + W79 + ™82 + W83 + W84 + W86 + W88 

+77789 +Wî90 +/7292 +W7100 W101 "̂ 1̂03 m\06 1̂07 "*"W108 "*“ 1̂09 "^^112 W119

Figure A.9: Two-Step Architecture second step equations (1 of 4).
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S's = «8  + «32 + «33 + «35 +  «36 + «40 + «42 + 172 43 + «44 +  «49 + «54 + «55 + «60 + «63 + «64 + «65 + «66 + «67
+m69 + w 70 +  tt272 + m14 + »z75 + m77 +  w 78 + w82 + mn +  mH4 + tt286 + mg9 + m9t + m92 + m9s +  m91 + m9i + m99 

+ « 1 0 0  + « 1 0 1  + mia2 + m l05 + m l01 + m m  + m m  + m u o+ m lu + m U2 + mn4 + mns + mni + mni + mn9 + m no 

s9 = m 9 + mri + mM + m}6 + w 37 + w 41 + w 43 + m 44+ m 45 + m S0+ m 5S + m 56 +m 6] + tm64 +m K + m 66 + m 61 + tm68

+ « 7 0 +  « 7 . +  m n +  m 75 +  « 76 +  m l t +  m 19 +  7 2 2 ,3 +  « 8 4 +  « 8 5 +  « 8 7 +  « 9 0
+  m 92 +  7?293 +  « 9 6 +  m 9% + m 9 9  +  m ]

+ « i o i + « i o 2 + « i o 3 + « 1 0 6  ^ 1 0 8  ^ 1 0 9  + « 1 1 0  + - » * 1 1 1  - * - « H 2
+  / ? 2 „ 3 +  m U 5  +  m v 1 6 + « : 117 " * " ^ 1 1 8  " * " ^ 1 2 0  " * " ^ 1 2 1

J 10 =  « i o +  m 32 +  m 34 +  « 3 5 +  « 3 7 +  m 4 l +  m 45 +  « 4 6 +  « 4 8 +  « s i
+  t? 2 5 8 +  « 6 0 +  « 6 1 +  « 6 3 +  « 6 4 +  « 6 5

+ m 67 +  « 6 8 +  « 7 1 +  m i2 +  « 7 4 +  « 82 +  m u
+  « 8 7 +  « 8 8 +  m 90 +  7729 , +  7729 2 +  « 9 4 +  « 9 5 +  « 9 8 +  « 1 0 1

+ « 1 0 2 + « 1 0 3 + « 1 0 5 + « 1 0 7  ^ 1 0 9  W 1 1 0 « 1 1 2  + ‘ « I I S ' +  « 1 1 8 +  7 7 2 ,2 , +  « 1 2 2

* i l =  « n +  m 32 +  m 33 +  « 3 5 +  m 3 6 +  « 4 i +  m 44 +  « 4 6 +  m 47 +  m 4 i +  « 4 9 +  « 5 2 +  « 5 6 +  « 5 7 +  « 5 8 +  « 5 9  + « 6 0

+ « 6 3 +  « 6 5 +  « 6 8 +  m n +  m 73 +  m 75 +  m 76 +  «77 +  m 19 +  « 8 0 +  « 8 2 +  « 8 3 +  « 8 6 +  « 8 7 +  « 8 8 +  « 8 9  + « 9 0

+ m g i +  m 96 +  m 97 +  m 9 i +  « 1 0 0  + « 1 0 2  + « 1 0 3 + « 1 0 5  ^ 1 0 6  ^ 1 0 8 « H O  + - « 1 1 4 - +  « 1 1 5 +  « 1 1 7 +  7 7 2 ,2 2

512 = «12 + «32 +  W233 + «34 +  «36 + « 3 7 + «38 + «41 +  «44 + «45 +  «47 + «49 + «50 + «53 + «56 + «59

+«62 + «63 + m13 + «74 +  «78 + « 7 9 +  «81 + «82 + «83 + «84 + «85 + «86 + «88 + «89 + «91 + «93

+«95 + «100 +«101 + « 1 0 3 + « 105 m\06 + 1̂07 + «109 + «113 -+ «114 + «117 + « „ 8  + « 1 19
= 772,3 + «33 + «34 + «35 +  /w37 + «38 + 77239 + «42 +  «45 + «46 + «48 + «50 + «51 + «54 + «57 + «60

+«63 + «64 +  «74 + «75 +/W79 + «80 + «82 + «83 + «84 + «85 + « 8 6 + «87 + «89 + «90 + «92 + «94

+«96 + « 1 0 1 1 + « 1 0 2  + « 1 0 4 + « 106 +  m\07 +772108 + « 1 1 0  +-«114 + «115 + «1181 +«119 +«120

*.4 = «14 + «34 + «35 + «36 +  «38 + m39 + «40 + «43 + «46 + «47 + «49 + «51 + «52 + W55 + «58 + «61

+«64 + «65 +  «75 + «76 +  «80 + W8 1 + «83 + «84 + «85 + « 8 6 + «87 + « 8 8 + «90 + m9x + «93 + «95

+«97 + «102 +«103 + « 1 0 5 + « i 07 ^108 '«109 + « 1 1 1  + «115 + «116 + «119■ + « 1 2 0  + « 1 2 1

^5 = «15 + «35 + «36 + m37 + /w39 + «40 + «41 + «44 + «47 +  «48 + «50 + «52 + «53 + ^56 + «59 + «62

+«65 + « 6 6 + «76 + ™77 + w 81 + «82 + «84 + «85 + « 8 6 + «87 + « 8 8 + «89 + «91 + m92 + «94 + «96

+«98 + «103 +  «104 + «106 + «108 + «109 + «110 + «112 + «116 + «117 + «120 + «121 + «122

Figure A. 10: Two-Step Architecture second step equations (2 of 4).
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î« =  « 1 6  +  « 3 2  +  « 3 6  +  « 3 7  +  « 4 0  +  « 4 4  +  « 4 5  +  « 4 9  +  « 5 1  +  « 5 3  +  "*54 +  « 5 6  +  « 5 8  +  "*61 +  "*62 +  "*64

+ " * 6 7  +  "*69 +  "*76 +  "*78 +  "*79 +  "*80 +  "*83 +  "*88 +  "*89 +  "*98 +  "*100 +  "*107 +  "*109 +  "*110 +  "*114

+ "*115  +"*1 1 6+"*118+"*1 19 + "* 1 2 1  + " * 1 2 2
s;7 = mI7+m33 + m37 + m3S + mM + + w46 + mm + m52 + w54 + m55 + w57 + ffî59 + m62 + m63 + m65

+"*68 +  " * 70 +  "*77 +  "*79 +  "*80 +  "*81 +  "*84 +  "*89 +  "*90 +  "*99 +  "*101 +  "*108 +  "*110 +  "*111 +  "*115

+ "*116  + " * 1 1 7  + " * 1 1 9  + " * 1 2 0  + " * 1 2 2

S ’ig  =  "*18 +  "*34 +  "*38 +  "*39 +  "*42 +  "*46 +  « 4 7  +  "*51 +  "*53 +  "*55 +  "*56 +  "*58 +  "*60 +  "*63 + " * 6 4 +  "*66

+ " * 6 9  +  "*71 +  "*78 +  "*80 +  "*81 +  "*82 +  "*85 +  "*90 +  "*91 +  "*100 +  "*102 +  "*109 +  "*111 +  "*112 +  "*116

+ "*117  + " * 1 1 8  + " * 1 2 0  + "* 1 2 1

5 19 =  « 1 9  +  « 3 5  +  « 3 9  +  « 4 0  +  « 4 3  +  « 4 7  +  « 4 8  +  « 5 2  +  "*54 +  "*56 +  "*57 +  "*59 +  "*61 + " * 6 4 +  "*65 +  "*67

+ «7 0 + «72 + «79 + «81 +  «82 + "*83 + "*86 +  "*91 + "*92 + "*101 +«103 + "*110 + «112 + "*113 + "*117 

+"*118 +"*119 +«121 +«122

520 =  «20 +  «36 + «40 + «41 +  «44 + «48 + «49 + «53 + «55 + «57 + «58 +  «60 + «62 + «65 +  «66 + «68

+ « 71 + « 7 3  + «80 +«82 + «83 + «84 + «87 + «92 + «93 + «102 +  «104 + «111 + «113 + «114 + «118

+«119 +«120 +«122

521 = «21 +  «37 + «41 +  «42 +  «45 + «49 + «50 + «54 + «56 + «58 + «59 + «61 +  «63 + «66 + «67 + «69
+ « 72 + m74 + m81 + m %3 + w 84 + m85 + mHH +  m93 +  m94+ m m + m ]05 + mU2+ m U4+ m U5 + m n9

+«120 +«121
s'22 = m22 +  m32 +  m4l + m43 +  mu +  m46 +  m4t + m 50+ m 51+  m5S +  m56 +  m5H +  m59 +  m6l +  m63 +  m66

+m 67 +  m6S +  m69 +  m70 +  m7î + m15 + m76 +  m77 + m19 + mw +  mM +  mH1 + mm +  m90 +  m92 + m93

+ « 9 4  +«97 +«98 + « 9 9  +«100 +«105 +«106 +«111 +«114 +«117 +«119 +«120 +«121 +«122 

S23 = «23 + «32 + «33 + «38 +  «41 + «45 + «47 + «48 + « 4 9  + « 5 1  + « 52 + « 5 8  + «59 + «61 + «63 + « 6 6  + «67
+/w6g + m10 +  mn +  m14 + m7i +  m79 + mtl + m82 + w g6 + mi7 +  + m9l + m91 + w 94 + m91 + tw101

+«104 +«105 +«106 +«107 +«111 +«112 +«113 +«114 +«116 +«117 + «118 + «119 + «120 +«121 +«122

Figure A. 11: Two-Step Architecture second step equations (3 of 4).
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*24 = "*24 + "*33 + ***34+ m39 + "*42 + "*46 + "*48 + "*49 + "*50 + "*52 + "*53 + "*59 + "*60 + "*62 + "*64 + "*67
+"*68 + m69 + m7l + "*72 + "*75 + "*79 + "*80+ "*82 + "*83 + "*87 + "*88 + "*89 + m92 + "*9 3+ 77*95+ "*,8

-m m + m l06+m 307 12 + "*113 ‘ "*114 '+ "*115 + "*11-r+»118+»l 19+ 773120 + W121
s ’J25 w-><NsII + mM + mK + "*40 + "*43 + "*47 + "*49 + "*50+ "*51 + "*53 + "*54 + "*60 + "*61 + "*63 + "*65 + "*68

+m 69 + m10 + m12 + "*73 + "*76 + "*80 + "*81 + "*83 + "*84 + "*88 + "*89+ "*90 + "*93+ "*94 + 77*96+ 777,,
+"*103+"*106+"*107+"*108 +"*109+"*! 13 + »H4 + "*115 + "*116 + »US,+  77̂119 + W2120+ 7«121 W122

•*26 = "*26 + mn + "*35 + "*36 + "*38 + w42+ "*50 + "*51 + »52 + "*54 + "*55 + "*56 +  m57 + "*58+ "*60 + 77*63
+m 10 + m-n + m73 + "*74 + "*76 +  m19 + "*80 + "*81 + "*84 + "*86 + "*87 + "*89 +  mgx + "*92 + 777,3+ 777,4
+"*98 + m99 + mm + ml01+ m m + m 109+ "*110 +"*111 + "*1134' m i20 '+ "*121 + "*122

4 = m21 + /7J33+ "*36 + m37 + m39+ "*43 + »51 + "*52 + "*53 + "*55 + "*56 + "*57 + W58+ /M59+ "*61 + "*64
+m n + m12 + "*74 + m15 + m17 + "*80 + »81 + "*82 + "*85 + "*87 + "*88 + "*90 + m92 + "*93 + "i,4 + 77*95
+m 99 + "*100 +***106 +"*108+***109 +"*110 +"*111 + "*H2 4-"*114-+ »121 + "*122

2̂8 = WI28+ 77*34+ m37 + w38+ "*40 + "*44 + 77*52+ 77*53+ "*54 + "*56 + 77*5* + "*58 + "*59 + "*60 + 77*62+ "*65
+w72+ 77*73+  m75 + m ie + 77*78+ 77*81 + 77*82+ "*83 + "*86 + "*88 + "*89 + 77*9, + 77*93+ "*,4 + 777,5+ "*96
+"*ioo+"*io, +777107 +  m109 ■*“ 1̂10 + 1̂11 + »112 +-77*113 -|-77*ii5 + 7?ii22

2̂9 = 77*39+ "*35 + 77*33+ m39 + "*41 + 7?*45+ 77*53+ "*54 +  » 55+ 77*5, + 77*58+ "*59 + "*60 + "*61 + 77*53+ "*66
+77*73 + 77*74+ "*76 + m77 + 777,9+ 77*82+ 77*83+ 77*84+ 77*87 + "*89 + 77*90+ TTi,* + 77*94+ 77*95+ "*,6 + 77*9,
+"*10, + 77*io2 +77*io8 + mno + »m  + tt*112 + "*113 + »114 -*"»116

3̂0 = 77*30+ 77*36+ /W39+ ™40 + 77*42+ "*46 + 77*54+ 77*55+ »56 + "*58 + 77*59+ "*60 + "*61 + 77*62+ "*64 + "*67
+7M74 + 77*75+  m n + ™78 + "*80+ 77*83+ 77*84+ 77*85+ "*88 + 77*90+ "*91 + 77*93+ "J,5 + "*96+ 77*9, + 77*98
+"*io2, + /«103 + ffll09 + m111 + wn2 +/wn3 + "*„4 + »115 -*-"*„ 7

3̂1 = »31 + "*37 + "*4o + m41 + 77*43+ "*47 + "*55 + "*56 + »57 + "*59 + "*60 + »61 + 77*62+ "*63 + "*65+ "*68
+77*75 + "*76 + 77*73+ m79 + 77*8, + 77*84+ 7?i85+ "*86 + 77*89+ 77*9, + 77*,2 + 77*94+ "*,6 + 77*9, + 77*98+ 77*,,
+77*103,+77*104 + 77*110+  m112 + W113 m \\A + "*115 + "*116-+ "*118

Figure A .12: Two-Step Architecture second step equations (4 of 4).
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A ppendix B

C R C -32 Software A lgorithm  D ata

IN this appendix, the software algorithm data for the various implementations of 
the CRC computation using the generator polynomial CRC-32 G (x) =  1 +  x +  

x 2 +  x4 +  x 5 +  x 7 +  x 8 +  x 10 +  x11 +  x12 +  x16 +  x22 +  x23 +  x26 +  x32 [4] are presented. 
For each of the look-up based software algorithms studied in this thesis, we list the 
complete LUTs in hexadecimal notation. In addition, we provide the CRCF equations 
in a form similar to what is shown in [13] for CRC-16.

Many of the assumptions stated in Chapter 3 concerning the bit ordering of the 
software CRC computation are maintained, the two most important being

• the leading xm term of the generator polynomial is considered implicit; and

• reverse Endianness convention is employed.

Since our datapath is 32-bit, i.e., w =  32, the CRC-32 LUT entries each occupy a 
single memory word. However, the LUT entries contained in this appendix are easily 
generalized for use on smaller datapaths.

We note that, all of the LUT entries were obtained using the generation algorithms 
presented in this thesis. Therefore, the content contained in this appendix can be used 
by a designer who wishes to realize the CRC-32 computation as a software algorithm 
and/or to verify the correctness of their LUT generation code.

The remainder of this appendix is organized as follows. In Section B.l, the LUT 
entries of CRCT(8) are listed. In Section B.2, the LUT entries of CRCR(32) are 
listed. In Section B.3, the LUT entries of CRCS4(32) are listed. In Section B.4, 
the LUT entries of CRCAr(32) are listed. Finally, in Section B.5, the equations for 
CRCF(8) are illustrated.
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B .l Table Look-up Algorithm

An implementation of the Table Look-up Algorithm (CRCT) is shown in Algorithm 
3.2. Figures B.l and B.2 display the LUT contents generated by Algorithm 3.5.

lut [0x00] =  0x00000000 
lut [0x01] =  0x77073096 
lut [0x02] =  0xee0e612c 
lut [0x03] =  0x990951ba 
lut [0x04] =  0x076dc419 
lut [0x05] =  0x706af 48f 
lut [0x06] =  0xe963a535 
lut [0x07] =  0x9e6495a3

lut [0x08] =  0x0edb8832 
lut [0x09] =  0x79dcb8a4 
lut [0x0a] =  0xe0d5e91e 
lut [0x0b] =  0x97d2d988 
lut [0x0c] =  0x09b64c2b 
lut [OxOd] =  0x7ebl7cbd 
lut [0x0e] =  0xe7b82d07 
lut [OxOf] —  0x90bf ld91

lut [0x10] =  0xldb71064 
lut [Oxll] =  0x6ab020f 2 
lut [0x12] =  0xf3b97148 
lut [0x13] =  0x84be41de 
lut [0x14] =  0xladad47d 
lut [0x15] =  0x6ddde4eb 
lut [0x16] =  0xf4d4b551 
lut [0x17] =  0x83d385c7

lut [0x18] =  0xl36c9856 
lut [0x19] =  0x646ba8c0 
lut [Oxla] =  0xfd62f97a 
lut [Oxlb] =  0x8a65c9ec 
lut [Oxlc] =  0xl4015c4f 
lut [Oxld] =  0x63066cd9 
lut [Oxle] =  Oxf aOf 3d63 
lut [Oxlf] =  0x8d080df 5

lut [0x20] =  0x3b6e20c8 
lut [0x21] =  0x4c69105e 
lut [0x22] =  0xd56041e4 
lut [0x23] =  0xa2677172 
lut [0x24] =  0x3c03e4dl 
lut [0x25] =  0x4b04d447 
lut [0x26] =  0xd20d85fd 
lut [0x27] =  0xa50ab56b

lut [0x28] =  0x35b5a8fa 
lut [0x29] =  0x42b2986c 
lut [0x2a] =  0xdbbbc9d6 
lut [0x2b] =  0xacbcf940 
lut [0x2c] =  0x32d86ce3 
lut [0x2d] =  0x45df5c75 
lut [0x2e] =  0xdcd60dcf 
lut [0x2f] =  0xabdl3d59

lut [0x30] =  0x26d930ac 
lut [0x31] =  0x51de003a 
lut [0x32] =  0xc8d75180 
lut [0x33] =  0xbfd06116 
lut [0x34] =  0x21b4f4b5 
lut [0x35] =  0x56b3c423 
lut [0x36] =  0xcfba9599 
lut [0x37] =  0xb8bda50f

lut [0x38] =  0x2802b89e 
lut [0x39] =  0x5f 058808 
lut [0x3a] =  0xc60cd9b2 
lut [0x3b] =  0xbl0be924 
lut [0x3c] =  0x2f6f 7c87 
lut [0x3d] =  0x58684cll 
lut [0x3e] =  0xcl611dab 
lut [0x3f] =  0xb6662d3d

lut [0x40] =  0x76dc4190 
lut [0x41] =  0x01db7106 
lut [0x42] =  0x98d220bc 
lut [0x43] —  0xefd5102a 
lut [0x44] -  0x71bl8589 
lut [0x45] =  0x06b6b51f 
lut [0x46] =  0x9fbfe4a5 
lut [0x47] =  0xe8b8d433

lut [0x48] =  0x7807c9a2 
lut [0x49] =  OxOfOOf 934 
lut [0x4a] =  0x9609a88e 
lut [0x4b] =  0xel0e9818 
lut [0x4c] =  0x7f6a0dbb 
lut [0x4d] =  0x086d3d2d 
lut [0x4e] =  0x91646c97 
lut [0x4f] =  0xe6635c01

lut [0x50] =  0x6b6b51f 4 
lut [0x51] =  0xlc6c6162 
lut [0x52] =  0x856530d8 
lut [0x53] =  Oxf 262004e 
lut [0x54] =  0x6c0695ed 
lut [0x55] =  0xlb01a57b 
lut [0x56] =  0x8208f4cl 
lut [0x57] =  0xf50fc457

lut [0x58] =  0x65b0d9c6 
lut [0x59] =  0xl2b7e950 
lut [0x5a] =  0x8bbeb8ea 
lut [0x5b] =  Oxf cb9887c 
lut [0x5c] =  0x62ddlddf 
lut [0x5d] =  0xl5da2d49 
lut [0x5e] =  0x8cd37cf3 
lut [0x5f] =  0xfbd44c65

lut [0x60] =  0x4db26158 
lut [0x61] =  0x3ab551ce 
lut [0x62] =  0xa3bc0074 
lut [0x63] =  0xd4bb30e2 
lut [0x64] =  0x4adfa541 
lut [0x65] =  0x3dd895d7 
lut [0x66] =  0xa4dlc46d 
lut [0x67] =  0xd3d6f 4fb

lut [0x68] =  0x4369e96a 
lut [0x69] —  0x346ed9f c 
lut [0x6a] =  0xad678846 
lut [0x6b] =  0xda60b8d0 
lut [0x6c] =  0x44042d73 
lut [0x6d] =  0x3303 lde5 
lut [0x6e] =  0xaa0a4c5f 
lut [0x6f] =  0xdd0d7cc9

lut [0x70] =  0x5005713c 
lut [0x71] =  0x270241aa 
lut [0x72] =  OxbeOblOlO 
lut [0x73] =  0xc90c2086 
lut [0x74] =  0x5768b525 
lut [0x75] =  0x206f85b3 
lut [0x76] =  0xb966d409 
lut [0x77] =  0xce61e49f

lut [0x78] =  0x5edef90e 
lut [0x79] =  0x29d9c998 
lut [0x7a] =  0xb0d09822 
lut [0x7b] =  0xc7d7a8b4 
lut [0x7c] =  0x59b33dl7 
lut [0x7d] =  0x2eb40d81 
lut [0x7e] =  0xb7bd5c3b 
lut [0x7f] =  0xc0ba6cad

Figure B.l: CRCT(8) LUT entries (1 of 2).



lut [0x80] = 0xedb88320 lut [OxaO] = 0xd6d6a3e8 lut [OxcO] = 0x9b64c2b0 lut [OxeO]
lut [0x81] 0x9abfb3b6 lut [Oxal] = 0xaldl937e lut [Oxcl] = 0xec63f226 lut [Oxel]
lut [0x82] = 0x03b6e20c lut [0xa2] = 0x38d8c2c4 lut [0xc2] = 0x756aa39c lut [0xe2]
lut [0x83] = 0x74bld29a lut [0xa3] = 0x4fdff252 lut [0xc3] = 0x026d930a lut [0xe3]
lut [0x84] = 0xead54739 lut [0xa4] = 0xdlbb67f1 lut [0xc4] = 0x9c0906a9 lut [0xe4]
lut [0x85] = 0x9dd277af lut [0xa5] = 0xa6bc5767 lut [0xc5] = 0xeb0e363f lut [0xe5]
lut [0x86] = 0x04db2615 lut [0xa6] = 0x3fb506dd lut [0xc6] 0x72076785 lut [0xe6]
lut [0x87] 0x73dcl683 lut [0xa7] = 0x48b2364b lut [0xc7] =r 0x05005713 lut [0xe7]

lut [0x88] — 0xe3630bl2 lut [0xa8] — 0xd80d2bda lut [0xc8] = 0x95bf4a82 lut [0xe8]
lut [0x89] 0x94643b84 lut [0xa9] = Oxaf0alb4c lut [0xc9] = 0xe2b87al4 lut [0xe9]
lut [0x8a] = 0x0d6d6a3e lut [Oxaa] = 0x36034af6 lut [Oxea] = 0x7bbl2bae lut [Oxea]
lut [0x8b] = 0x7a6a5aa8 lut [Oxab] 0x41047a60 lut [Oxcb] = 0x0cb61b38 lut [Oxeb]
lut [0x8c] = 0xe40ecf0b lut [Oxac] = 0xdf60efc3 lut [Oxee] = 0x92d28e9b lut [Oxee]
lut [0x8d] — 0x9309ff9d lut [Oxad] = 0xa867df55 lut [Oxcd] = 0xe5d5be0d lut [Oxed]
lut [0x8e] = 0x0a00ae27 lut [Oxae] = 0x316e8eef lut [Oxee] = 0x7cdcefb7 lut [Oxee]
lut [0x8f] 0x7d079ebl lut [Oxaf] = 0x4669be79 lut [Oxcf] = OxObdbdf21 lut [Oxef]

lut [0x90] — OxfOOf9344 lut [OxbO] — 0xcb61b38c lut [OxdO] — 0x86d3d2d4 lut [OxfO]
lut [0x91] = 0x8708a3d2 lut [Oxbl] = 0xbc66831a lut [Oxdl] = OxfId4e242 lut [Oxf l]
lut [0x92] = OxleOlf268 lut 0xb2 = 0x256fd2a0 lut [0xd2] = 0x68ddb3f8 lut [Oxf 2]
lut [0x93] = 0x6906c2fe lut coXo = 0x5268e236 lut [0xd3] = Oxlfda836e lut [Oxf 3]
lut [0x94] = Oxf762575d lut [0xb4] = 0xcc0c7795 lut [0xd4] = 0x81bel6cd lut [Oxf 4]
lut [0x95] = 0x806567cb lut [0xb5] — 0xbb0b4703 lut [0xd5] = Oxf6b9265b lut [Oxf 5]
lut [0x96] 0xl96c3671 lut [0xb6] = 0x220216b9 lut [0xd6] =z 0x6fb077el lut [Oxf 6]
lut [0x97] 0x6e6b06e7 lut [0xb7] = 0x5505262f lut [0xd7] = 0xl8b74777 lut [Oxf 7]

lut [0x98] — Oxfed41b76 lut [0xb8] — 0xc5ba3bbe lut [0xd8] 0x88085ae6 lut [Oxf 8]
lut [0x99] = 0x89d32be0 lut [0xb9] = 0xb2bd0b28 lut [0xd9] = OxffOf6a70 lut [Oxf 9]
lut [0x9a] = 0xl0da7a5a lut [Oxba] = 0x2bb45a92 lut [Oxda] = 0x66063bca lut [Oxf a]
lut [0x9b] = 0x67dd4acc lut [Oxbb] = 0x5cb36a04 lut [Oxdb] = 0xll010b5c lut [Oxfb]
lut [0x9c] 0xf9b9df6f lut [Oxbc] = 0xc2d7ffa7 lut [Oxdcj = 0x8f659eff lut [Oxf c]
lut [0x9d] = 0x8ebeeff9 lut [Oxbd] = 0xb5d0cf31 lut [Oxdd] = 0xf862ae69 lut [Oxf d]
lut [0x9e] = 0xl7b7be43 lut [Oxbe] = 0x2cd99e8b lut [Oxde] 0x616bffd3 lut [Oxf e]
lut [0x9f ]= 0x60b08ed5 lut [Oxbf] 0x5bdeaeld lut [Oxdf] = 0xl66ccf45 lut [Oxff]

Figure B.2: CRCT(8) LUT entries (2 of 2).

0xa0Qae278 
0xd70dd2ee 
0x4e048354 
0x3903b3c2 
0xa7672661 
0xd06016f7 
0x4969474d 
0x3e6e77db

0xaedl6a4a 
0xd9d65adc 
0x40df0b66 
0x37d83bf0 
0xa9bcae53 
0xdebb9ec5 
0x47b2cf7f 
0x30b5ffe9

0xbdbdf21c
0xcabac28a
0x53b39330
0x24b4a3a6
0xbad03605
0xcdd70693
0x54de5729
0x23d967bf

0xb3667a2e 
0xc4614ab8 
0x5d681b02 
0x2a6f2b94 
0xb40bbe37 
0xc30c8eal 
0x5a05dfIb 
0x2d02ef8d



B.2 Reduced Table Look-up Algorithm

An implementation of the Reduced Table Look-up Algorithm (CRCR) is shown in 
Algorithm 3.3. Figure B.3 displays the LUT contents generated by Algorithm 3.6.

lut [0x00] =  0xedb88320 
lut [0x01] =  0x76dc4190 
lut [0x02] =  0x3b6e20c8 
lut [0x03] =  0xldb71064 
lut [0x04] =  0x0edb8832 
lut [0x05] =  0x076dc419 
lut [0x06] =  0xee0e612c 
lut [0x07] =  0x77073096

lut [0x08] =  0x3b83984b 
lut [0x09] =  0xf0794f05 
lut [0x0a] =  0x958424a2 
lut [0x0b] =  0x4ac21251 
lut [0x0c] =  0xc8d98a08 
lut [0x0d] =  0x646cc504 
lut [0x0e] =  0x32366282 
lut [0x0f] =  0xl91b3141

lut [0x10] =  0xel351b80 
lut [0x11] =  0x709a8dc0 
lut [0x12] =  0x384d46e0 
lut [0x13] =  0xlc26a370 
lut [0x14] =  0x0el351b8 
lut [0x15] =  0x0709a8dc 
lut [0x16] =  0x0384d46e 
lut [0x17] =0x01c26a37

lut [0x18] =  0xed59b63b 
lut [0x19] =  0x9bl4583d 
lut [Oxla] =  0xa032af 3e 
lut [Oxlb] =  0x5019579f 
lut [0x1c] =  0xc5b428ef 
lut [Oxld] =  0x8f 629757 
lut [Oxle] =  0xaa09c88b 
lut [Oxlf] =  0xb8bc6765

Figure B.3: CRCR(32) LUT entries.
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B.3 Slicing-by-4 Algorithm

An implementation of the Slicing-by-4 Algorithm (CRCS4) is shown in Algorithm 
3.4. Figures B.4, B.5, B.6, B.7, B.8, and B.9 display the LUT contents for LUT_56, 
LUT_48, and LUT_40, all generated by Algorithm 3.7. The entries for LUT_32 can 
be found in Figures B.l and B.2.

lut [0x00] =  0x00000000 
lut [0x01] =  0xb8bc6765 
lut [0x02] =  0xaa09c88b 
lut [0x03] =  0xl2b5afee 
lut [0x04] =  0x8f629757 
lut [0x05] =  0x37def032 
lut [0x06] =  0x256b5fdc 
lut [0x07] =  0x9dd738b9

lut [0x08] =  0xc5b428ef 
lut [0x09] =  0x7d084f8a 
lut [0x0a] =  0x6fbde064 
lut [0x0b] =  0xd7018701 
lut [0x0c] =  0x4ad6bfb8 
lut [0x0d] =  Oxf 26ad8dd 
lut [OxOe] =  0xe0df7733 
lut [OxOf] =  0x58631056

lut [0x10] =  0x5019579f 
lut [Oxll] =  0xe8a530fa 
lut [0x12] =  Oxf al09f 14 
lut [0x13] =  0x42acf871 
lut [0x14] =  Oxdf 7bc0c8 
lut [0x15] =  0x67c7a7ad 
lut [0x16] =  0x75720843 
lut [0x17] =  0xcdce6f 26

lut [0x18] =  0x95ad7f70 
lut [0x19] =  0x2dlll815 
lut [Oxla] =  0x3fa4b7fb 
lut [Ox lb] =  0x8718d09e 
lut [Oxlc] =  0xlacfe827 
lut [OxId] =  0xa2738f42 
lut [Oxlej =  0xb0c620ac 
lut [Oxlf] =  0x087a47c9

lut [0x20] =  0xa032af 3e 
lut [0x21] =  0xl88ec85b 
lut [0x22] =  0x0a3b67b5 
lut [0x23] =  0xb28700d0 
lut [0x24] =  0x2f503869 
lut [0x25] =  0x97ec5f0c 
lut [0x26] =  0x8559f0e2 
lut [0x27] =  0x3de59787

lut [0x28] =  0x658687dl 
lut [0x29] =  0xdd3ae0b4 
lut [0x2a] =  Oxcf 8f4f5a 
lut [0x2b] =  0x7733283f 
lut [0x2cj =  0xeae41086 
lut [0x2d] =  0x525877e3 
lut [0x2e] =  0x40edd80d 
lut [0x2f] =  0xf851bf 68

lut [0x30] =  0xf02bf 8al 
lut [0x31] =  0x48979f c4 
lut [0x32] =  0x5a22302a 
lut [0x33] =  0xe29e574f 
lut [0x34] =  0x7f496f f 6 
lut [0x35] =  0xc7f50893 
lut [0x36] =  0xd540a77d 
lut [0x37] =  0x6df cc018

lut [0x38] =  0x359f d04e 
lut [0x39] =  0x8d23b72b 
lut [0x3a] =  0x9f9618c5 
lut [0x3b] =  0x272a7f aO 
lut [0x3c] =  0xbafd4719 
lut [0x3d] =  0x0241207c 
lut [0x3e] =  0xl0f48f 92

lut [0x40] =  0x9b 14583d 
lut [0x41] =  0x23a83f58 
lut [0x42] =  0x311d90b6 
lut [0x43] =  0x89alf 7d3 
lut [0x44] =  0xl476cf6a 
lut [0x45] =  0xaccaa80f 
lut [0x46] =  0xbe7f07el 
lut [0x47] =  0x06c36084

lut [0x48] =  0x5ea070d2 
lut [0x49] =  0xe61cl7b7 
lut [0x4a] =  0xf4a9b859 
lut [0x4b] =  0x4cl5df3c 
lut [0x4c] =  0xdlc2e785 
lut [0x4d] =  0x697e80e0 
lut [0x4e] =  0x7bcb2f0e 
lut [0x4f] =  0xc377486b

lut [0x50] =  0xcb0d0fa2 
lut [0x51] =  0x73bl68c7 
lut [0x52] =  0x6104c729 
lut [0x53] =  0xd9b8a04c 
lut [0x54] =  0x446f98f5 
lut [0x55] =  Oxf cd3ff90 
lut [0x56] =  0xee66507e 
lut [0x57] =  0x56da371b

lut [0x58] =  0x0eb9274d 
lut [0x59] =  0xb6054028 
lut [0x5a] =  0xa4b0efc6 
lut [0x5b] =  0xlc0c88a3 
lut [0x5c] =  0x81dbb01a 
lut [0x5d] =  0x3967d77f 
lut [0x5e] =  0x2bd27891 
lut [0x5f] =  0x936elff4

lut [0x60] =  0x3b26f 703 
lut [0x61] =  0x839a9066 
lut [0x62] =  0x912f 3f88 
lut [0x63] =  0x299358ed 
lut [0x64] =  0xb4446054 
lut [0x65] =  OxOcf80731 
lut [0x66] =  0xle4da8df 
lut [0x67] =  0xa6f lcfba

lut [0x68] =  0xfe92df ec 
lut [0x69] =  0x462eb889 
lut [0x6a] =  0x549bl767 
lut [0x6b] =  0xec277002 
lut [0x6c] =  0x71f048bb 
lut [0x6d] =  0xc94c2fde 
lut [0x6e] =  Oxdbf98030 
lut [0x6f] =  0x6345e755

lut [0x70] =  0x6b3fa09c 
lut [0x71] =  0xd383c7f 9 
lut [0x72] =  0xcl366817 
lut [0x73] =  0x798a0f 72 
lut [0x74] =  0xe45d37cb 
lut ¡0x75] =  0x5cel50ae 
lut [0x76] =  0x4e54ff40 
lut [0x77] =  Oxf 6e89825

lut [0x78] =  0xae8b8873 
lut [0x79] =  0xl637ef 16 
lut [0x7a] =  0x048240f 8 
lut [0x7b] =  0xbc3e279d 
lut [0x7c] =  0x21e91f24 
lut [0x7d] =  0x99557841 
lut ¡0x7e] =  0x8be0d7af 
lut [0x7f j =  0x335cb0calut [0x3f] =  0xa848e8f7

Figure B.4: CRCS4(32) LUT_56 entries (1 of 2).
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lut [0x80] =  0xed59b63b 
lut [0x81] =  0x55e5dl5e 
lut [0x82] =  0x47507eb0 
lut [0x83] =  0xffecl9d5 
lut [0x84] =  0x623b216c 
lut [0x85] =  0xda874609 
lut [0x86] =  0xc832e9e7 
lut [0x87] =  0x708e8e82

lut [0x88] =  0x28ed9ed4 
lut [0x89] =  0x9051f 9bl 
lut [0x8a] =  0x82e4565f 
lut [0x8b] =  0x3a58313a 
lut [0x8c] =  0xa78f 0983 
lut [0x8d] =  0xlf336ee6 
lut [0x8e] =  0x0d86cl08 
lut [0x8f] =  0xb53aa66d

lut [0x90] =  0xbd40ela4 
lut [0x91] —  0x05f c86cl 
lut [0x92] =  0xl749292f 
lut [0x93] =  0xaff54e4a 
lut [0x94] =  0x322276f 3 
lut [0x95] =  0x8a9ell96 
lut [0x96] =  0x982bbe78 
lut [0x97] =  0x2097d91d

lut [0x98] —  0x78f4c94b 
lut [0x99] =  0xc048ae2e 
lut [0x9a] =  0xd2fd01c0 
lut [0x9b] =  0x6a4166a5 
lut [0x9c] =  0xf7965elc 
lut [0x9d] =  0x4f 2a3979 
lut [0x9e] =  0x5d9f9697 
lut [0x9f] =  0xe523flf2

lut [OxaO] =  0x4d6bl905 
lut [Oxal] =  Oxf 5d77e60 
lut [0xa2] =  0xe762dl8e 
lut [0xa3] —  0x5fdeb6eb 
lut [0xa4] =  0xc2098e52 
lut [0xa5] =  0x7ab5e937 
lut [0xa6] =  0x680046d9 
lut [0xa7] =  0xd0bc21bc

lut [0xa8] =  0x88df31ea 
lut [0xa9] =  0x3063568f 
lut [Oxaa] =  0x22d6f961 
lut [Oxab] =  0x9a6a9e04 
lut [Oxac] =  0x07bda6bd 
lut [Oxad] =  0xbf01cld8 
lut [Oxae] =  0xadb46e36 
lut [Oxaf ] =  0x15080953

lut [OxbO] =  0xld724e9a 
lut [Oxblj —  0xa5ce29ff 
lut [0xb2] =  0xb77b8611 
lut [0xb3] =  OxOf c7el74 
lut [Oxb4] =  0x9210d9cd 
lut [0xb5] =  0x2aacbea8 
lut [0xb6] =  0x38191146 
lut [0xb7] =  0x80a57623

lut [0xb8] =  0xd8c66675 
lut [0xb9] =  0x607a0110 
lut [Oxba] =  0x72cfaefe 
lut [Oxbb] =  0xca73c99b 
lut [Oxbc] =  0x57a4f122 
lut [Oxbd] =  Oxef 189647 
lut [Oxbe] =  0xfdad39a9 
lut [Oxbf] =  0x45115ecc

lut [OxcO] =  0x764dee06 
lut [Oxcl] —  Oxcef 18963 
lut [0xc2] =  0xdc44268d 
lut [0xc3] =  0x64f841e8 
lut [0xc4] =  Oxf 92f 7951 
lut [0xc5] =  0x41931e34 
lut [0xc6] =  0x5326blda 
lut [0xc7] =  0xeb9ad6bf

lut [0xc8] =  0xb3f 9c6e9 
lut [0xc9] =  0x0b45al8c 
lut [Oxea] —  0xl9f00e62 
lut [Oxcbj =  0xal4c6907 
lut [Oxee] =  0x3c9b51be 
lut [Oxcd] =  0x842736db 
lut [Oxee] =  0x96929935 
lut [Oxef] =  0x2e2efe50

lut [OxdO] =  0x2654b999 
lut [Oxdl] =  0x9ee8def c 
lut [0xd2] =  0x8c5d7112 
lut [0xd3] =  0x34ell677 
lut [0xd4] =  0xa9362ece 
lut [0xd5] =  0xll8a49ab 
lut [0xd6] =  0x033fe645 
lut [0xd7] =  0xbb838120

lut [0xd8] =  0xe3e09176 
lut [0xd9] =  0x5b5cf 613 
lut [Oxda] =  0x49e959fd 
lut [Oxdb] =  Oxf 1553e98 
lut [Oxdc] =  0x6c820621 
lut [Oxdd] =  0xd43e6144 
lut [Oxde] =  0xc68bceaa 
lut [Oxdfj =  0x7e37a9cf

lut [OxeO] =  0xd67f4138 
lut [Oxel] =  0x6ec3265d 
lut [0xe2] =  0x7c7689b3 
lut [0xe3] —  0xc4caeed6 
lut [0xe4] =  0x591dd66f 
lut [0xe5] =  OxelalblOa 
lut [0xe6] =  0xf3141ee4 
lut [0xe7] =  0x4ba87981

lut [0xe8] =  0xl3cb69d7 
lut [0xe9] —  0xab770eb2 
lut [Oxea] =  0xb9c2al5c 
lut [Oxeb] =  0x017ec639 
lut [Oxee] =  0x9ca9fe80 
lut [Oxed] =  0x241599e5 
lut [Oxee] =  0x36a0360b 
lut [Oxef] =  0x8elc516e

lut [Oxf 0] =  0x866616a7 
lut [Oxf 1] =  0x3eda71c2 
lut [Oxf 2] =  0x2c6fde2c 
lut [Oxf 3] =  0x94d3b949 
lut [Oxf 4] =  0x090481f O 
lut [Oxf 5] =  0xblb8e695 
lut [Oxf 6] =  0xa30d497b 
lut [Oxf7] =  0xlbbl2ele

lut [Oxf 8] =  0x43d23e48 
lut [Oxf9] =  0xfb6e592d 
lut [Oxf a] =  0xe9dbf6c3 
lut [Oxfb] =  0x51679 la6 
lut [Oxf c] =  0xccb0a91f 
lut [Oxfd] =  0x740cce7a 
lut [Oxf e] =  0x66b96194 
lut [Oxf f] =  0xde0506f 1

Figure B.5: CRCS4(32) LUT_56 entries (2 of 2).
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lut [0x00] =  0x00000000 
lut [0x01] =  0x01c26a37 
lut [0x02] =  0x0384d46e 
lut [0x03] =  0x0246be59 
lut [0x04] =  0x0709a8dc 
lut [0x05] =  0x06cbc2eb 
lut [0x06] =  0x048d7cb2 
lut [0x07] =  0x054f 1685

lut [0x08] =  0x0el351b8 
lut [0x09] =  OxOf dl3b8f 
lut [0x0a] =  0x0d9785d6 
lut [OxOb] =  0x0c55ef el 
lut [0x0c] =  0x091af 964 
lut [OxOd] =  0x08d89353 
lut [OxOe] =  0x0a9e2d0a 
lut [OxOf] =  0x0b5c473d

lut [0x10] =  0xlc26a370 
lut [Oxll] =  0xlde4c947 
lut [0x12] =  0xlfa2771e 
lut [0x13] =  0xle601d29 
lut [0x14] =  0xlb2f Obac 
lut [0x15] =  0xlaed619b 
lut [0x16] =  0xl8abdfc2 
lut [0x17] =  0xl969b5f5

lut [0x18] =  0xl235f 2c8 
lut [0x19] =  0x13f798ff 
lut [Oxla] =  0xllbl26a6 
lut [Oxlb] =  0xl0734c91 
lut [Oxlc] =  0xl53c5al4 
lut [Oxld] =  0xl4f e3023 
lut [Oxle] =  0xl6b88e7a 
lut [Oxlf] =  0xl77ae44d

lut [0x20] =  Ox384d46eO 
lut [0x21] =  0x398f2cd7 
lut [0x22] =  0x3bc9928e 
lut [0x23] =  0x3a0bf 8b9 
lut [0x24] =  0x3f44ee3c 
lut [0x25] =  0x3e86840b 
lut [0x26] =  0x3cc03a52 
lut [0x27] =  0x3d025065

lut [0x28] =  0x365el758 
lut [0x29] =  0x379c7d6f 
lut [0x2a] =  0x35dac336 
lut [0x2b] =  0x3418a901 
lut [0x2c] =  0x3157bf84 
lut [0x2d] =  0x3095d5b3 
lut [0x2e] =  0x32d36bea 
lut [0x2f] =  0x33110 ldd

lut [0x30] =  0x246be590 
lut [0x31] =  0x25a98fa7 
lut [0x32] =  0x27ef 31f e 
lut [0x33] =  0x262d5bc9 
lut [0x34] =  0x23624d4c 
lut [0x35] =  0x22a0277b 
lut [0x36] =  0x20e69922 
lut [0x37] =  0x2124f 315

lut [0x38] =  0x2a78b428 
lut [0x39] =  0x2bbadelf 
lut [0x3a] =  0x29f c6046 
lut [0x3b] =  0x283e0a71 
lut [0x3c] =  0x2d711cf4 
lut [0x3d] =  0x2cb376c3 
lut [0x3e] =  0x2ef5c89a 
lut [0x3f] =  0x2f37a2ad

lut [0x40] =  0x709a8dc0 
lut [0x41] =  0x7158e7f 7 
lut [0x42] =  0x731e59ae 
lut [0x43] =  0x72dc3399 
lut [0x44] =  0x7793251c 
lut [0x45] =  0x76514f 2b 
lut [0x46] =  0x7417f 172 
lut [0x47] =  0x75d59b45

lut [0x48] =  0x7e89dc78 
lut [0x49] =  0x7f4bb64f 
lut [0x4a] =  0x7d0d0816 
lut [0x4b] =  0x7ccf6221 
lut [0x4c] =  0x798074a4 
lut [0x4d] =  0x78421e93 
lut [0x4e] =  0x7a04a0ca 
lut [0x4f] =  0x7bc6cafd

lut [0x50] =  0x6cbc2eb0 
lut [0x51] =  0x6d7e4487 
lut [0x52] =  0x6f 38f ade 
lut [0x53] =  0x6efa90e9 
lut [0x54] =  0x6bb5866c 
lut [0x55] =  0x6a77ec5b 
lut [0x56] =  0x68315202 
lut [0x57] =  0x69f33835

lut [0x58] =  0x62af 7f08 
lut [0x59] =  0x636dl53f 
lut [0x5a] =  0x612bab66 
lut [0x5b] =  0x60e9cl51 
lut [0x5c] =  0x65a6d7d4 
lut [0x5d] =  0x6464bde3 
lut [0x5e] =  0x662203ba 
lut [0x5f] =  0x67e0698d

lut [0x60] =  0x48d7cb20 
lut [0x61] =  0x4915all7 
lut [0x62] =  0x4b531f4e 
lut [0x63] =  0x4a917579 
lut [0x64] =  0x4fde63f c 
lut [0x65] =  0x4elc09cb 
lut [0x66] =  0x4c5ab792 
lut [0x67] =  0x4d98dda5

lut [0x68] =  0x46c49a98 
lut [0x69] =  0x4706f0af 
lut [0x6a] =  0x45404ef 6 
lut [0x6b] =  0x448224cl 
lut [0x6c] =  0x41cd3244 
lut [0x6d] =  0x400f 5873 
lut [0x6e] =  0x4249e62a 
lut [0x6f] =  0x438b8cld

lut [0x70] =  0x54f 16850 
lut [0x71] =  0x55330267 
lut [0x72] =  0x5775bc3e 
lut [0x73] =  0x56b7d609 
lut [0x74] =  0x53f8c08c 
lut [0x75] =  0x523aaabb 
lut [0x76] =  0x507cl4e2 
lut [0x77] =  0x51be7ed5

lut [0x78] =  0x5ae239e8 
lut [0x79] =  0x5b2053df 
lut [0x7a] =  0x5966ed86 
lut [0x7b] =  0x58a487bl 
lut [0x7c] =  0x5deb9134 
lut [0x7d] =  0x5c29fb03 
lut [0x7e] =  0x5e6f455a 
lut [0x7f] =  0x5fad2f6d

Figure B.6: CRCS4(32) LUT_48 entries (1 of 2).
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lut [0x80] =  0xel351b80 
lut [0x81] =  0xe0f771b7 
lut [0x82] —  0xe2blcfee 
lut [0x83] —  0xe373a5d9 
lut [0x84] =  0xe63cb35c 
lut [0x85] =  0xe7f ed96b 
lut [0x86] =  0xe5b86732 
lut [0x87] =  0xe47a0d05

lut [0x88] =  Oxef264a38 
lut [0x89] =  0xeee4200f 
lut [0x8a] =  0xeca29e56 
lut [0x8b] =  0xed60f461 
lut [0x8c] =  0xe82fe2e4 
lut [0x8d] =  0xe9ed88d3 
lut [0x8e] =  0xebab368a 
lut [0x8f] =  0xea695cbd

lut [0x90] =  Oxf dl3b8f0 
lut [0x91] =  Oxf cdld2c7 
lut [0x92] == 0xfe976c9e 
lut [0x93] =  0xff5506a9 
lut [0x94] =  0xfalal02c 
lut [0x95] =  0xfbd87alb 
lut [0x96] =  Oxf 99ec442 
lut [0x97] =  0xf85cae75

lut [0x98] =  Oxf 300e948 
lut [0x99] -  Oxf 2c2837f 
lut [0x9a] =  Oxf0843d26 
lut [0x9b] =  Oxf 1465711 
lut [0x9c] =  Oxf4094194 
lut [0x9d] =  Oxf 5cb2ba3 
lut [0x9e] =  Oxf 78d95f a 
lut [0x9f] =  0xf64fff cd

lut [OxaO] =  0xd9785d60 
lut [Oxal] =  0xd8ba3757 
lut [0xa2] =  Oxdaf c890e 
lut [0xa3] =  0xdb3ee339 
lut [0xa4] =  0xde71f5bc 
lut [0xa5] =  0xdfb39f8b 
lut [0xa6] =  Oxddf 521d2 
lut [0xa7] =  0xdc374be5

lut [0xa8] =  0xd76b0cd8 
lut [0xa9] =  0xd6a966ef 
lut [Oxaa] =  0xd4efd8b6 
lut [Oxab] =  0xd52db281 
lut [Oxac] —  0xd062a404 
lut [Oxad] =  0xdla0ce33 
lut [Oxae] =  0xd3e6706a 
lut [Oxaf] =  0xd2241a5d

lut [OxbO] =  0xc55efel0 
lut [Oxbl] =  0xc49c9427 
lut [0xb2] =  0xc6da2a7e 
lut [0xb3] =  0xc7184049 
lut [0xb4] =  0xc25756cc 
lut [0xb5] =  0xc3953cfb 
lut [0xb6] =  0xcld382a2 
lut [0xb7] =  0xc011e895

lut [0xb8] =  0xcb4dafa8 
lut [0xb9] —  0xca8f c59f 
lut [Oxba] =  0xc8c97bc6 
lut [Oxbb] =  0xc90bllf 1 
lut [Oxbc] =  0xcc440774 
lut [Oxbd] =  0xcd866d43 
lut [Oxbe] =  Oxcf c0d31a 
lut [Oxbf] =  0xce02b92d

lut [OxcO] =  0x91af9640 
lut [Oxcl] —  0x906df c77 
lut [0xc2] =  0x922b422e 
lut [0xc3] =  0x93e92819 
lut [0xc4] =  0x96a63e9c 
lut [0xc5] =  0x976454ab 
lut [0xc6] =  0x9522eaf2 
lut [0xc7] =  0x94e080c5

lut [0xc8] =  0x9fbcc7f8 
lut [0xc9] =  0x9e7eadcf 
lut [Oxea] =  0x9c381396 
lut [Oxcb] =  0x9dfa79al 
lut [Oxee] =  0x98b56f 24 
lut [Oxcd] =  0x99770513 
lut [Oxee] =  0x9b31bb4a 
lut [Oxcf] =  0x9af 3dl7d

lut [OxdO] =  0x8d893530 
lut [Oxdl] =  0x8c4b5f07 
lut [0xd2] =  0x8e0del5e 
lut [0xd3] =  0x8fcf8b69 
lut [Oxd4] =  0x8a809dec 
lut [0xd5] =  0x8b42f7db 
lut [0xd6] =  0x89044982 
lut [0xd7] =  0x88c623b5

lut [0xd8] =  0x839a6488 
lut [0xd9] =  0x82580ebf 
lut [Oxdaj =  0x801eb0e6 
lut [Oxdb] =  0x81dcdadl 
lut [Oxdcj =  0x8493cc54 
lut [Oxdd] —  0x8551a663 
lut [Oxde] =  0x8717183a 
lut [Oxdf] =  0x86d5720d

lut [OxeO] =  0xa9e2d0a0 
lut [Oxel] =  0xa820ba97 
lut [0xe2] =  0xaa6604ce 
lut [0xe3] =  0xaba46ef9 
lut [0xe4] =  0xaeeb787c 
lut [0xe5] =  0xaf29124b 
lut [0xe6] =  0xad6facl2 
lut [0xe7] =  0xacadc625

lut [0xe8] =  0xa7f 18118 
lut [0xe9] =  0xa633eb2f 
lut [Oxea] =  0xa4755576 
lut [Oxeb] =  0xa5b73f41 
lut [Oxee] =  OxaOf829c4 
lut [Oxed] =  0xal3a43f 3 
lut [Oxee] =  0xa37cfdaa 
lut [Oxef] =  0xa2be979d

lut [Oxf 0] =  0xb5c473d0 
lut [Oxf 1] =  0xb40619e7 
lut [Oxf 2] =  0xb640a7be 
lut [Oxf 3] =  0xb782cd89 
lut [Oxf 4] =  0xb2cddb0c 
lut [Oxf5] =  0xb30fbl3b 
lut [Oxf 6] =  0xbl490f 62 
lut [Oxf 7] =  0xb08b6555

lut [Oxf 8] =  0xbbd72268 
lut [Oxf 9] =  0xbal5485f 
lut [Oxf a] =  0xb853f 606 
lut [Oxfb] =  0xb9919c31 
lut [Oxf cj =  0xbcde8ab4 
lut [Oxfd] =  0xbdlce083 
lut [Oxfe] =  0xbf5a5eda 
lut [Oxff] =  0xbe9834ed

Figure B.7: CRCS4(32) LUT_48 entries (2 of 2).
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lut [0x00] =  0x00000000 
lut [0x01] =  0xl91b3141 
lut [0x02] =  0x32366282 
lut [0x03] =  0x2b2d53c3 
lut [0x04] =  0x646cc504 
lut [0x05] =  0x7d77f 445 
lut [0x06] =  0x565aa786 
lut [0x07] =  0x4f4196c7

lut [0x08] =  0xc8d98a08 
lut [0x09] =  0xdlc2bb49 
lut [0x0a] =  Oxfaefe88a 
lut [OxOb] =  0xe3f4d9cb 
lut [OxOcj =  0xacb54f0c 
lut [OxOd] =  0xb5ae7e4d 
lut [0x0e] =  0x9e832d8e 
lut [OxOf] —  0x87981ccf

lut [0x10] =  0x4ac21251 
lut [0x11] =  0x53d92310 
lut [0x12] =  0x78f470d3 
lut [0x13] =  0x61ef4192 
lut [0x14] =  0x2eaed755 
lut [0x15] =  0x37b5e614 
lut [0x16] =  0xlc98b5d7 
lut [0x17] =  0x05838496

lut [0x18] =  0x821b9859 
lut [0x19] =  0x9b00a918 
lut [Oxla] =  0xb02df adb 
lut [Oxlb] =  0xa936cb9a 
lut [Oxlc] =  0xe6775d5d 
lut [Oxldj =  0xff6c6clc 
lut [Oxle] =  0xd4413fdf

lut [0x20] =  0x958424a2 
lut [0x21] =  0x8c9f 15e3 
lut [0x22] =  0xa7b24620 
lut [0x23] =  0xbea97761 
lut [0x24] =  Oxf Ie8ela6 
lut [0x25] =  0xe8f3d0e7 
lut [0x26] =  0xc3de8324 
lut [0x27] =  0xdac5b265

lut [0x28] —  0x5d5daeaa 
lut [0x29] =  0x44469f eb 
lut [0x2a] =  0x6f 6bcc28 
lut [0x2b] =  0x7670fd69 
lut [0x2c] =  0x39316bae 
lut [0x2d] =  0x202a5aef 
lut [0x2e] =  0x0b07092c 
lut [0x2f ] =  0xl21c386d

lut [0x30] =  0xdf4636f 3 
lut [0x31] =  0xc65d07b2 
lut [0x32] =  0xed705471 
lut [0x33] =  Oxf 46b6530 
lut [0x34] =  0xbb2af 3f 7 
lut [0x35] =  0xa231c2b6 
lut [0x36] =  0x891c9175 
lut [0x37] =  0x9007a034

lut [0x38] =  0xl79fbcfb 
lut [0x39] =  0x0e848dba 
lut [0x3a] =  0x25a9de79 
lut [0x3b] =  0x3cb2ef38 
lut [0x3c] =  0x73f 379f f 
lut [0x3d] =  0x6ae848be 
lut [0x3e] =  0x41c51b7d 
lut [0x3f] —  0x58de2a3c

lut [0x40] =  0xf0794f05 
lut [0x41] =  0xe9627e44 
lut [0x42] =  0xc24f 2d87 
lut [0x43] =  0xdb541cc6 
lut [0x44] =  0x94158a01 
lut [0x45] =  0x8d0ebb40 
lut [0x46] =  0xa623e883 
lut [0x47] =  0xbf38d9c2

lut [0x48] =  0x38a0c50d 
lut [0x49] =  0x21bbf44c 
lut [0x4a] —  0x0a96a78f 
lut [0x4b] =  0xl38d96ce 
lut [0x4c] =  0x5ccc0009 
lut [0x4d] =  0x45d73148 
lut [0x4e] =  0x6ef a628b 
lut [0x4f] =  0x77el53ca

lut [0x50] =  0xbabb5d54 
lut [0x51] =  0xa3a06cl5 
lut [0x52] =  0x888d3fd6 
lut [0x53] =  0x91960e97 
lut [0x54] =  0xded79850 
lut [0x55] =  0xc7cca911 
lut [0x56] =  0xecelfad2 
lut [0x57] =  Oxf 5f acb93

lut [0x58] =  0x7262d75c 
lut [0x59] =  0x6b79e61d 
lut [0x5a] =  0x4054b5de 
lut [0x5b] =  0x594f849f 
lut [0x5c] =  0xl60el258 
lut [0x5d] =  OxOf 152319 
lut [0x5e] =  0x243870da 
lut [0x5f] =  0x3d23419b

lut [0x60] =  0x65fd6ba7 
lut [0x61] =  0x7ce65ae6 
lut [0x62] =  0x57cb0925 
lut [0x63] =  0x4ed03864 
lut [0x64] =  0x0191aea3 
lut [0x65] =  0xl88a9fe2 
lut [0x66] =  0x33a7cc21 
lut [0x67] =  0x2abcf d60

lut [0x68] =  0xad24elaf 
lut [0x69] =  0xb43fd0ee 
lut [0x6a] =0x9fl2832d 
lut [0x6b] =  0x8609b26c 
lut [0x6c] =  0xc94824ab 
lut [0x6d] =  0xd05315ea 
lut [0x6e] =  0xfb7e4629 
lut [0x6f] =  0xe2657768

lut [0x70] =  0x2f 3f 79f6 
lut [0x71] =  0x362448b7 
lut [0x72] =  0xld091b74 
lut [0x73] =  0x04122a35 
lut [0x74] =  0x4b53bcf2 
lut [0x75] =  0x52488db3 
lut [0x76] =  0x7965de70 
lut [0x77] =  0x607eef31

lut [0x78] =  0xe7e6f3fe 
lut [0x79] =  0xfefdc2bf 
lut [0x7a] =  0xd5d0917c 
lut [0x7b] =  0xcccba03d 
lut [0x7c] =  0x838a36fa 
lut [0x7d] =  0x9a9107bb 
lut [0x7e] =  0xblbc5478 
lut [0x7f] =  0xa8a76539lut [Oxlf] =  0xcd5a0e9e

Figure B.8: CRCS4(32) LUT_40 entries (1 of 2).
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lut [0x80j = 0x3b83984b lut [OxaO] 0xae07bce9 lut [OxcO] = 0xcbfad74e lut [OxeO] — 0x5e7ef3ec
lut [0x81] = 0x2298a90a lut [Oxal] = 0xb71c8da8 lut [Oxcl] — 0xd2ele60f lut [Oxel] = 0x4765c2ad
lut [0x82] = 0x09b5fac9 lut [0xa2] = 0x9c31de6b lut [0xc2] = Oxf9ccb5cc lut [0xe2] — 0x6c48916e
lut [0x83] = 0xl0aecb88 lut [0xa3] = 0x852aef2a lut [0xc3] = 0xe0d7848d lut [0xe3] = 0x7553a02f
lut [0x84] = 0x5fef5d4f lut [0xa4] = 0xca6b79ed lut [0xc4] = 0xaf96124a lut [0xe4] = 0x3al236e8
lut [0x85] = 0x46f46c0e lut [0xa5] = 0xd37048ac lut [0xc5] = 0xb68d230b lut [0xe5] = 0x230907a9
lut [0x86] = 0x6dd93fcd lut [0xa6] = Oxf85dlb6f lut [0xc6] = 0x9da070c8 lut [0xe6] = 0x0824546a
lut [0x87] = 0x74c20e8c lut [0xa7] = 0xel462a2e lut [0xc7] 0x84bb4189 lut [0xe7] = 0xll3f652b

lut [0x88] — Oxf35al243 lut [0xa8] — 0x66de36el lut [0xc8] = 0x03235d46 lut [0xe8] — 0x96a779e4
lut [0x89] — 0xea412302 lut [0xa9] = 0x7fc507a0 lut [0xc9] 0xla386c07 lut [0xe9¡ — 0x8fbc48a5
lut [0x8a] = 0xcl6c70cl lut [Oxaa] = 0x54e85463 lut [Oxea] = 0x31153fc4 lut [Oxea] = 0xa4911b66
lut [0x8b] = 0xd8774180 lut [Oxab] = 0x4df36522 lut [Oxcb] = 0x280e0e85 lut [Oxeb] = 0xbd8a2a27
lut [0x8c] = 0x9736d747 lut [Oxac] = 0x02b2f3e5 lut [Oxee] = 0x674f9842 lut [Oxee] = Oxf 2cbbce0
lut [0x8d] = 0x8e2de606 lut [Oxad] = 0xlba9c2a4 lut [Oxcd] = 0x7e54a903 lut [Oxed] 0xebd08dal
lut [0x8e] = 0xa500b5c5 lut [Oxae] = 0x30849167 lut [Oxee] = 0x5579facO lut [Oxee] = 0xc0fdde62
lut [0x8f] = 0xbclb8484 lut [Oxaf] = 0x299fa026 lut [Oxcf] __ 0x4c62cb81 lut [Oxef] = 0xd9e6ef23

lut [0x90] = 0x71418ala lut [OxbO] = 0xe4c5aeb8 lut [OxdO] = 0x8138c51f lut [OxfO] = 0xl4bcelbd
lut [0x91] = 0x685abb5b lut [Oxbl] = 0xfdde9ff9 lut [Oxdl] = 0x9823f45e lut [Oxf 1] = 0x0da7d0fc
lut [0x92] = 0x4377e898 lut [0xb2] = 0xd6f3cc3a lut [0xd2] = 0xb30ea79d lut [Oxf 2] = 0x268a833f
lut [0x93] = 0x5a6cd9d9 lut [0xb3] = Oxcfe8fd7b lut [0xd3] = 0xaal596dc lut [Oxf 3] = 0x3f91b27e
lut [0x94] = 0xl52d4fle lut [0xb4] = 0x80a96bbc lut [0xd4] = 0xe554001b lut [Oxf 4] = 0x70d024b9
lut [0x95] = 0x0c367e5f lut [0xb5] = 0x99b25afd lut [0xd5] = 0xfc4f315a lut [Oxf 5] = 0x69cbl5f8
lut [0x96] = 0x271b2d9c lut [0xb6] 0xb29f093e lut [0xd6] = 0xd7626299 lut [Oxf 6] = 0x42e6463b
lut [0x97] = 0x3e001cdd lut [0xb7] = 0xab84387f lut [0xd7] = 0xce7953d8 lut [0xf7] 0x5bfd777a

lut [0x98] = 0xb9980012 lut [0xb8] — 0x2clc24b0 lut [0xd8] — 0x49el4f17 lut [Oxf 8] — 0xdc656bb5
lut [0x99] = 0xa0833153 lut [0xb9] = 0x350715f1 lut [0xd9] = 0x50fa7e56 lut [Oxf 9] = 0xc57e5af4
lut [0x9a] = 0x8bae6290 lut [Oxba] = 0xle2a4632 lut [Oxda] — 0x7bd72d95 lut [Oxf a] = 0xee530937
lut [0x9b] 0x92b553dl lut [Oxbb] = 0x07317773 lut [Oxdb] = 0x62cclcd4 lut [Oxf b] Oxf7483876
lut [0x9c] = 0xddf4c516 lut [Oxbc] = 0x4870elb4 lut [Oxdc] = 0x2d8d8al3 lut [Oxfc] = 0xb809aebl
lut [0x9d] = 0xc4eff457 lut [Oxbd] = 0x516bd0f5 lut [Oxdd] = 0x3496bb52 lut [Oxfd] = 0xall29ff0
lut [0x9e] = Oxefc2a794 lut [Oxbe] = 0x7a468336 lut [Oxde] = 0xlfbbe891 lut [Oxf e] 0x8a3fcc33
lut [0x9f] = Oxf6d996d5 lut [Oxbf] = 0x635db277 lut [Oxdf] = 0x06a0d9d0 lut [Oxff] 0x9324fd72

Figure B.9: CRCS4(32) LUT_40 entries (2 of 2).
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B.4 Lambda Gamma Algorithm

An implementation of the Lambda Gamma Algorithm (CRCAr) is shown in Algo
rithm 4.1. Figures B.lOa and B.lOa display the Lambda LUT and Gamma LUT 
contents, respectively. The Lambda LUT entries are generated by Algorithm 4.2, 
whereas the Gamma LUT entries are obtained directly from the coefficients of the 
generator polynomial.

lut [0x00] =  0x00 lut [0x00] =  0x00
lut [0x01] =  0x06 lut [0x01] =  0x01
lut [0x02] =  0x09 lut [0x02] =  0x02
lut [0x03] =  0x0a lut [0x03] =  0x04
lut [0x04] =  0x0c lut [0x04] =  0x05
lut [0x05] =  0x10 lut [0x05] =  0x07
lut [0x06] =  0x18 lut [0x06] =  0x08
lut [0x07] =  0x19 lut [0x07] =  0x0a
lut [0x08] =  Oxla lut [0x08] =  0x0b
lut [0x09] =  Oxlc lut [0x09] =  OxOc
lut [0x0a] =  Oxld lut [0x0a] =  0x10
lut [0x0b] =  Oxle lut [0x0b] =  0x16
lut [OxOc] =  Oxlf lut [OxOc] =  0x17 

lut [OxOd] =  Oxla

( a ) ( b )

Figure B.10: CRCAr(32) LUT entries: (a) A LUT, (b) T LUT.

B.5 On-the-Fly Algorithm

To implement the On-the-Fly Algorithm (CRCF), the designer must use bit opera
tions to realize the parallel expressions in software. Figure B .ll illustrates the parallel 
expressions for CRCF(8).

so b' s'2 *3 4 4 s '6s'l s'%4 S10 b'i S\2 b '3 b\ b '5 4 s'm*̂ 18 si9 S20 *̂ 21 *̂ 22 2̂3 *̂ 24 *̂ 25 *̂ 26 2̂7 *̂ 29 *̂ 30 3̂1

so b 2̂ b b b b b b b 1̂0 b l S\2 b 3 b4 bs b« b 7 1̂8 *̂ 19 *̂ 20 2̂1 2̂2 2̂3

0̂ b h b b b b b b b b 0̂ b b h b 0̂ b b b b b b 0̂ b b b b 2̂ b b
b b b h 2̂ b b ¿2 A h h b h h b b h h t7 b 2̂ b h b 5̂ 6̂ 7̂

h b h h h b h h h b h 2̂ h b h h h 7̂ b /? h 5̂ 6̂ 7̂

b h h b b b 5̂ b b b b b h b h b b
b b h b h *5 h b

b b b b
b

Figure B .ll: CRCF(8) equations.
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A ppendix C

z-Transform  Approach

In this appendix, we review the approach taken in [21] to obtain parallel LFSR2 
equations. It consists of first modeling the serial LFSR2 Architecture (see Figure 
2.3b) as a discrete-time system to obtain the serial-input/serial-output transfer func
tion using ^-transforms. Then the serial-input/multiple-output transfer functions are 
obtained. The serial-input/multiple-output transfer functions are then generalized 
to solve for the multiple-input/multiple-output transfer functions and the parallel 
LFSR2 expressions are subsequently extracted.

The derivation presented in this section takes a slightly different approach than 
the one presented by the authors of [21]. They introduce a parallel architecture 
and some additional notations that we have found not to be necessary and tend to 
distract the reader. By omitting this parallel architecture, we feel the presentation of 
this approach is more straightforward and easily understood.

Serial Input/Serial Output Transfer Function

In Figure C.l we reproduce the discrete-time representation of the serial LFSR2 
Architecture that is illustrated in Figure 2 in [21] with some small notational changes. 
In this case, i denotes the iteration number, gj for 0 < j  <  m — 1 are the coefficients of 
the generator polynomial, and x [i] and y  [z] represent the input, and output sequences,

Figure C.l: Discrete-time system illustration of the serial LFSR2 Architecture.
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respectively.

From the Figure C.l, one can write equations for the outputs of the delay elements 
Uj [f] for 0 <  j  <  m  — 1, as

2/o [¿] =  9 o - y [ i ~ l ]

2/1 [*] =  g o - y [ i - 2 ] + g i - y [ i -  l]

ym-2 [i] =  90 ■ y[i  -  (m -  1)] +  91 ■ y[i  -  (m -  2)] -\------ h gm - 2 ■ 2/ [* -  1 ]
2/m-i [*] =  9o ■ y [i -  m] +  gi ■ y [i -  (m -  1)] H------- h gm - 1 - y [ i -  1],

(C.l)

which can be generalized as1

3
Vi {i\ =  ^ 9 k - y [ i -  (j  +  1) +  k}.

k= 0

Observing that
y[i] =  x [*] +  ym - 1 [¿],

and the difference equation of the system is obtained as

y H +  9m- 1 - y [ i — l \ +  gm- 2 • y [i — 2] H------- \-go ■ y[i -  m] =  x [ i ] . (C.2)

After obtaining the difference equation of the serial LFSR2 Architecture in [21], 
the authors then proceed to show that the system is linear time-invariant (LTI), and 
they note that LTI systems can be completely described by their impulse response 
h [¿]. The modulo-2 convolution and z-transform operations are then defined as

O O

x  [z] * h [i] =  n[i] ■ h[i — k]
k=—00

and
O O

Z  { h  [z]} =  H ( z )  =  ^  h [¿] z~\
i=—OO

respectively.

1A similar equation in [21] on page 66 is developed using a different approach and has a typo. It 
should be (n) =  YX=o 9k j  ( n - i - l  + k).



141

Now, taking the 2 -transform of (C.2), and one obtains

Z  { y  [i] +  gm - 1  • y [« -  1] +  gm-2  ■ y[i -  2] +  • • • +  gQ ■ y[i -  m}}

y  (z) +  gm- i z - Y  (z) +  gm- 2Z~2 - Y ( z ) - i ------- h goz~m ■ Y  (z)

Y  (z) • (l +  gm- i z  1 +  gm—2z 2 +  • • • +  goz m)

z { x m

X { z )

X { z ) .

(C.3)

From (C.3), the transfer function of the system is obtained as

Y ( z )
H z  =

X ( z )

zm +  +  gm-2  Zm~ ‘  +  • • • + go
~ m

G ( z ) '

where G  (z) is the generator polynomial of the system.

(C.4)

Next, consider the Ar-bit input sequence, {x[i]}  =  {xo,Xi,  ■■■ ,Xk- i } 2, whose z- 

transform is

Z { x { i ] }  =  X ( z )

=  Xq -f- X\Z 1 -f- • • • +  Xk-lz ^

Assuming that the initial content of all the delay elements to be Os, then the output 
sequence of the system y [n] with the input x [n] applied is computed from (C.4) as,

Y ( z )  =  X ( z ) - H ( z )

z m ■ (x0 +  X i2_1 -1---- h x k- iZ ~ k+1)

=  G ( z )  ’

which is the quotient of zm ■ (x0 +  Xi2 _1 H------ h x k_ xz~k+l) divided by the generator
polynomial, and the remainder is stored in the delay elements [21].

2Note that x [z] corresponds to the message bit being inputted to the LFSR at the i-th iteration, 
i.e., the coefficient of the term of the message polynomial.
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Serial Input/Parallel Output Transfer Functions

Define Hj (z) for 0 < j  <  m  — 1 to be the group of transfer functions from the serial 
input x  [z] in Figure C.l to the output of the j-th delay element yj [z], i.e.,

g0z k’+1) • Y  (z) +  g\z b'+1)+1 • Y  (z) H-----+  gjz 1 - Y  (z)

X ( z )

=  (9»Z- U+1> +  9l* - ° +1)+I + ■ ■ • +  Si*'1) •
ym

=  (9 o z -{j+1) +  g i z ~ ^ +1 +  ■ ■ ■ +  gjZ~l) ■ (C.5)

where Yj (z) =  Z { y j [ i ] }  and yj[i] was defined in (C.l). To find the inverse z- 

transform of Hj (2 ), i.e., hj [«], one can perform the division in (C.5), and to illustrate 
this concept the authors of [21] provide an example for CRC-16 and j  =  2. For 
convenience we reproduce it here:

H 2 (z ) z 15 +  z 13
z 16 +  z 15 +  z2 +  1
z~x +  +  z~ 15 +  z~29 4----- .

Thus, the first 16 values of h2 [¿] are

{ h2 [i\} =  {0,1,1,0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0,1} ,

and later it will be shown that the first l values of the Hj (z) transfer functions for 
0 < j  <  m  — 1 are sufficient for finding the parallel CRC equations.

Parallel Input/Parallel Output Transfer Functions

Now that the transfer functions hj [i] have been obtained for the serial input x  [i] to 
the outputs of each delay element yj [z], the next step is to generalize those transfer 
functions after l input bits have been processed. Then, the parallel input/parallel 
output transfer functions can be obtained along with the desired parallel CRC equa
tions.

From the theory of recursive equations, the expression of the z-transform of yj [z]
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is

Yi{z)  =  ( X  (z) +  I  (z)) ■ Hj (z)

= W ( z ) -  Hi (z) , (C.6)

where I  (z ) represents the contribution due to the initial contents of the delay elements 
and W  (z) =  X  (z) +  I  (z). It can be determined by observing Figure C.l that

TO—1
1  (z)=  y [°] z ~ k •

fc= 0

Thus, one can obtain W  (z ) as3

TO—1 00

W (Z) =  (x +  i/m-l-fe [0]) 2 k +  ^ 2 x [k]z k,
k=m

and the inverse ^-transform of W  (z) can be computed as

Z  1 { W  (2 )} =  w[i

X [i] +  Vm-l-i [0] , i < m

x z 1 >  m.

Finally, the discrete-time convolution operation is used to compute the inverse 
^-transform of (C.6), and the following result is obtained

yj[i] =
00

=  ^ 2  w [ k } - h j [ i - k } .
k = —oo

Considering the fact that hj [z] =  0 for z < 0 (causality) and evaluating the case when 
i  =  1 — 1, the parallel CRC equations for degree of parallelism / can be obtained from

1

Vi il ~  !] =  ^ 2 W [k] ■ hi [l ~  k]-
k= 0

Note that hj [i] must be developed for 0 < i <  l — 1 using (C.5).

3A similar equation in [21] on page 66 is developed using a different approach and has a typo. It 
should be W  (z) =  lx (q) 0  yr- i - q (0)] z~q © Y^=r x (?) z~q•
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The approach in [21] does not place any restrictions on the degree of parallelism 
and results in primitive equations. It is conceivable that this approach could be 
developed for an LFSR1 formulation. One could go about this by modifying the 
discrete time system in Figure C.l for the serial LFSR1 Architecture by swapping 
the input to the left side and the output to the right side of the delay elements, and 
following similar steps to obtain the transfer functions.
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A ppendix D  

Literature Errata

In this appendix, we identify and correct the various errors and typos that we no
ticed in the literature throughout this research project. Most of these mistakes are 
rather trivial and do not warrant a comment to be published. They are ordered 
chronologically, with the most recently published articles first.

Complexity Reduction of Constant Matrix 
Computations

In [65], a complexity reduction reduction scheme is proposed. There exist two small 
typos in the provided example on page 109 of the paper. The formation of the set C3

should be

C 3 — C 2 U <

( 1 1 1 1 0  0 ), 
( 1 1 1 0  0  1 ), 
( 1 1 0  0  1 0 ), 
( 1 0  1 1 1 0 ) ,  
(0 0 1 1 1 1 ), 
(0 0 0 1 0 0)

( 1 1 1 0  1 0 )
(0 1 0 0 0 0) 

( 1 1 0  1 1 0 )
(0 1 1 1 1 0 ) ’ 
( 1 0  0  1 1 0 )

/
with the typos marked in boldface. The authors omitted the coordinate (0 0 0 1 0 0) 
which is formed from the addition of ( 0 0  1  1  1  0 ) G C 2 H R 2 and ( 0  0  1  0  1  0 ) G V3 . 
The coordinate ( 1 1 0  11 0 )  was included in the final position of C3 . However, to be 
consistent with the other Ci sets, it should appear in the marked position.
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High-Speed Parallel CRC Implementation Based on 
Unfolding, Pipelining, and Retiming

In [10], the claim is made in the introduction that the two parallel architectures, 
derived from LFSR1 [26] and LFSR2 [22] have equal CPD. We have shown in Chapter 
5 that this is not the case, and the CPD of the LFSR1 Architecture is less than or 
equal to the CPD of the LFSR2 Architecture.

Also, a comparison table is presented at the end of the paper (Table V), and the 
CPD entries for LFSR2 [2 2 ] using the CRC-1 2 , CRC-16, CRC-16 Reverse, and CRC- 
32 generator polynomials should be increased by one (see Table 5.1 for the correct 
CPD values). This effectively improves their results. Finally, the column reporting 
the CPD before applying the tree structure is misleading, because all the LFSR2 
wires have delay Tx , therefore all entries in that column should be reduced by one.

Parallel CRC Realization

In [26], the formulation does not match the illustration of the hardware architecture. 
This point is mentioned in our conference paper [41], and elaborated here. Recalling 
the example provided in [26]: P  =  { 1 ,0 ,0 ,1 ,1} <=$• G  (x) =  1  +  x 3 +  xA, and

" 0 1 1 1 ^3 X 3
1 1 0 0 Xo X 2 , D = d 2

F i = , X ' = 1 , x  =
1 1 1 0 x\ Xi d i

1 1 1 1 . x o . Xo do

From the formulation in the paper X ' =  F A ■ X  +  D , shown in (4), and one obtains,

X3 — X2 +  X\ +  Xq +  (¿3  

X*2 = X 3 + X 2 + (¿2

(D.l)

X 3  H-  X 2 d\

#3  +  x 2 +  X\ +  X q +  do?
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which is verified to be correct by our implementations. However, writing the parallel 
equations from the illustrated architecture (Figure 4 in the paper), one obtains

x o — eo,o • Xo +  eo,x • Xi +  eo,2 • ^ 2  +  0̂,3 • X3

x'i =  ei;o • Xq +  eip • X\ +  eij2 • £ 2 +  ei,3 ■ £ 3

x '2 =  62,0 • ri) +  e2,l • X\ +  e2,2 • X2 +  e2,3 ■ X3

x '3 =  ,0 • Xo +  e3ti • Xi +  e2,2 ■ X2 +  • X3, (D.2)

where eTyC is defined to correspond to the entry in F 4 at the r-th row and c-th column 
[26]. Substituting er;C into (D.2) and one obtains

x'o = X\ T X2 T 2-3 4“ do 

x\ =  xo +  xi +  di

x 2 =  Xo +  X\ +  x 2 +  £¿2

X3 =  Xo +  X\ +  x 2 +  X3 +  (¿3 . (D.3)

The set of equations obtained from the Figure 4 in [26] and shown in (D.3) are 
different than the set (D.l) obtained from the formulation. We note that Figure 4 in 
the paper can be used if one adopts our matrix G conventions, or one can vertically 
flip the coordinates in the F 4 matrix as well as the X ' , X ,  and D  vectors.

Generation of Parallel Circuits

In [23], an illustration error is made in Figure 3b. Here, in Figure D.l, we provide 
the error and its correction. Writing the equations from Figure 2b in [23] and one 
obtains,

s'2 =  Si +  (S2 +  U)

=  s 0

So =  s2 +  u.
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Combinational network Combinational network

Figure D.l: Cascade literature error: (a) typo, (b) correction.

However, writing the equations from Figure D.la and one obtains,

4  =  S2 +  i

4  =  so

4  =  S1 +  (s2 +  *) •

Therefore it is concluded that there exists a wiring typo in that Figure D.la, and it
is corrected in Figure D.lb. We note that the later figures in [23] are correct.

High-Speed CRC Computation Using State-Space 
Transformations

In [24], the inverse transformation matrix presented at the end of the paper is a typo. 
This is noted in our conference paper [53], and the correction is also provided in 
Figure D.2. The reader can easily verify this claim by inputting the coefficients of 
the matrices into a CAS and performing the matrix multiplication mod2.



1 1 0 0 0 1 0 1 1 1 1 0 1 0 1
0 0 1 0 0 1 1 0 1 1 0 1 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 1 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0 0 1 1 0 0 0
0 0 0 1 1 1 1 1 1 0 1 0 1 0 0
0 0 1 1 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
0 1 1 1 1 1 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0 1 0 1 0 1 0 0
0 1 0 1 1 0 0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 1 1 1 1 1
0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0 1 1 0 1 1
0 1 0 0 1 0 1 1 1 1 0 1 1 1 1
0 1 1 1 1 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 1 1 1 1 1 0
0 0 1 1 0 0 0 0 1 0 1 0 1 0 1
0 1 1 1 0 1 0 1 1 1 0 1 0 1 0
0 0 0 1 0 0 1 1 0 1 0 0 0 1 1
0 1 1 0 0 1 0 1 1 0 0 0 0 0 1
0 1 0 1 0 1 X 1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 1 0 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1 0 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 0

1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1
1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1
0 1 0 0 1 1 1 1 1 0 0 0 0 1 1 1
0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1
0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1
1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1
0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1
0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0
0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0
0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0
0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0
0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0
1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0
1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1
0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 0
0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0
0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1
1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1
1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1
1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0
1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1
0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1

0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
0
1
1
0
1
0
1
1
1
1
0
1
1
0
1
0
1

Figure D.2: State-Space Transformation literature correction: matrix T
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