
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2009

High-Performance Hardware and Software Implementations of High-Performance Hardware and Software Implementations of

the Cyclic Redundancy Check Computation the Cyclic Redundancy Check Computation

Christopher E. Kennedy

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Kennedy, Christopher E., "High-Performance Hardware and Software Implementations of the Cyclic
Redundancy Check Computation" (2009). Digitized Theses. 4161.
https://ir.lib.uwo.ca/digitizedtheses/4161

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4161?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4161&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

High-Performance Hardware and

Software Implementations of the

Cyclic Redundancy Check Computation

(S p in e T i t l e : H a r d w a r e a n d S o f t w a r e Im p l e m e n t a t i o n s

o f t h e CRC C o m p u t a t i o n)

(T h e s is F o r m a t : M o n o g r a p h)

by

Christopher E. Kennedy

Faculty of Engineering
Department Electrical and Computer Engineering

Submitted in partial fulfillment
of the requirements for the degree of

Master of Engineering Science

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada
April, 2009

© Christopher E. Kennedy 2009

Abstract

The Cyclic Redundancy Check (CRC) is an error detection code used in many digital
transmission and storage systems. The two major research areas surrounding CRCs
concern developing computation approaches and studying error detection properties.
This thesis aims to explore the various aspects of the CRC computation, with the
primary objective being to propose novel computation approaches which outperform
the existing ones. The work begins with a thorough examination of the formulations
found throughout the literature. Then, their subsequent realizations as hardware
architectures and software algorithms are investigated. During this investigation,
some improvements are presented including optimizations of the state-space trans
formed and primitive architectures. Afterward, novel formulations are derived and
the most significant contribution consists of a matrix decomposition that gives rise to
a high-performance software algorithm. Simulation and implementation results are
gathered for both hardware and software deployments of the investigated computa
tion approaches. The theoretical results obtained by simulations are validated with
implementation experiments. The proposed algorithm is shown to outperform the
existing comparable low-memory algorithm in terms of time complexity.

K eywords: Cyclic Redundancy Check (CRC), computer arithmetic, hardware ar
chitecture, software algorithm, field-programmable gate array (FPGA), application-
specific integrated circuit (ASIC).

in

Dedication

To my parents, Peter and Maureen, for their love, guidance, and everlasting support.

IV

Acknowledgements

This project would not have been possible without the thoughtful and creative insight
of my supervisor, Dr. Reyhani-Masoleh. His experience and encouragement kept me
motivated and focused throughout this thesis project. I wish to acknowledge our
research group for their positive feedback and constructive criticisms of the work.
The assistance which they provided with the various tools that were required to
complete the project was invaluable. The comments received from the anonymous
external reviewers of our journal manuscript and conference papers were quite helpful
in identifying weak areas of our work and giving praise to others. Finally, I cannot
fully express my gratitude towards my parents for all the assistance and guidance
that they have provided throughout my studies.

v

Contents

Certificate of Examination ii

Abstract iii

Dedication iv

Acknowledgements v

Contents vi

List of Tables x

List of Figures xi

List of Algorithms xiv

Nomenclature xv

Preface xvii

1 Introduction 1
1.1 P re v ie w ... 1

1.1.1 Organization ... 2
1.2 Cyclic Redundancy C h e c k ... 2
1.3 Motivation.. 3
1.4 Approach .. 3
1.5 O bjectives.. 4

2 Preliminaries 5
2.1 P re v ie w .. 5

2.1.1 Organization ... 5

vi

2.2 Binary Polynomial Arithm etic.. 6
2.2.1 Binary F ie ld s .. 6
2.2.2 Binary Polynomials... 7

2.3 CRC B a s ics ... 9
2.3.1 Mathematics .. 9
2.3.2 Generator Polynom ials... 11
2.3.3 Sample Computation.. 13
2.3.4 Serial Implementations... 14
2.3.5 Error D etection ... 15

2.4 Summary .. 18

3 Literature Analysis 19
3.1 P re v ie w ... 19

3.1.1 Organization ... 20
3.2 Parallel Formulation Fundamentals... 20

3.2.1 Binary Polynomial Approach .. 20
3.2.2 State-Space Approach ... 25

3.3 Hardware Architectures .. 28
3.3.1 Primitive Architectures... 29
3.3.2 Two-Step Architecture... 31
3.3.3 Cascade Architecture.. 35
3.3.4 Look-Ahead Architecture.. 37
3.3.5 State-Space Transformed Architecture 42
3.3.6 Retimed Architectures... 45

3.4 Software A lgorith m s... 45
3.4.1 Assumptions.. 46
3.4.2 Bit-wise A lgorithm ... 48
3.4.3 Table Look-up Algorithm .. 49
3.4.4 Reduced Table Look-up A lg or ith m ... 51
3.4.5 On-the-Fly Algorithm ... 52
3.4.6 Tea-Leaf Reader Algorithm ... 54
3.4.7 Joshi-Dubey-Kaplan A lgorith m ... 54
3.4.8 Slicing Algorithms ... 55
3.4.9 Distributed Table Look-up Algorithm ... 56
3.4.10 Look-up Table Generation.. 57

3.5 Summary .. 59

vii

4 Novel Computation Approaches 61
4.1 P re v ie w ... 61

4.1.1 Organization .. 61
4.2 Binary Polynomial to Matrix Approach... 62

4.2.1 Formulation.. 62
4.2.2 Realization .. 64

4.3 Lambda Gamma Approach... 68
4.3.1 Formulation.. 68
4.3.2 Matrix D ecom position... 70
4.3.3 Algorithm Realization ... 75
4.3.4 Architecture R ealization.. 77

4.4 Extended Binary Polynomial A rchitecture... 78
4.4.1 Formulation.. 78
4.4.2 Realization .. 83

4.5 Message Splitting Architecture... 86
4.5.1 Formulation.. 86
4.5.2 Realization .. 88

4.6 Summary .. 90

5 Simulations and Implementations 91
5.1 P re v ie w ... 91

5.1.1 Organization ... 92
5.2 Hardware Experiments.. 92

5.2.1 Sim ulations.. 93
5.2.2 Implementations ... 102

5.3 Software Experiments.. 104
5.3.1 Sim ulations.. 105
5.3.2 Implementations .. 107

5.4 Summary .. 109

6 Contributions and Future Work 110
6.1 P re v ie w ... 110

6.1.1 Organization ... I l l
6.2 Contributions... I l l

6.2.1 Chapter 3 ... I l l
6.2.2 Chapter 4 ... 112
6.2.3 Chapter 5 ... 112

viii

6.3 Future W ork .. 113
6.3.1 Hardware Architectures ... 113
6.3.2 Software A lgorith m s.. 114

A CRC-32 Hardware Architecture Equations 115
A .l Parallel LFSR Architectures.. 116
A.2 Lambda Gamma Architecture... 118
A.3 State-Space Transformed Architecture ... 120
A. 4 Two-Step A rchitecture.. 123

B CRC-32 Software Algorithm Data 128
B. l Table Look-up Algorithm... 129
B.2 Reduced Table Look-up Algorithm ... 131
B.3 Slicing-by-4 A lgorithm .. 132
B.4 Lambda Gamma A lgorith m .. 138
B.5 On-the-Fly Algorithm .. 138

C z-Transform Approach 139

D Literature Errata 145

Bibliography 150

Vita 157

List of Tables
2.1 CRC binary polynomials... 10
2.2 Generator polynomials........................ 12
2.3 Gamma s e ts ... 12

3.1 Two-Step Architecture multiple polynomials.. 32
3.2 Two-Step Architecture multiplicand polynomials..................................... 34
3.3 Look-Ahead Architecture polynomial relationships................................. 38
3.4 Optimum state-space transform vectors... 44
3.5 Optimum state-space transform comparison... 44
3.6 Hexadecimal representations of generator polynomials........................... 47

4.1 Lambda sets.. 77

5.1 Non-pipelined hardware architecture comparison..................................... 93
5.2 Optimum degrees of parallelism and hardware complexity..................... 95
5.3 Computation time for optimum degrees of parallelism............................ 96
5.4 Optimum ps for the CRC LFSRp Architecture... 99
5.5 LFSR hardware architecture delay comparison... 99
5.6 State-Space Transformed Architecture coupling matrix logic hardware

comparison... 101
5.7 State-Space Transformed Architecture hardware comparison................ 101
5.8 Two-Step Architecture hardware comparison.. 102
5.9 State-Space Transformed Architecture ASIC implementation results. . 103
5.10 Non-pipelined architecture FPGA implementation results..........................104
5.11 Software algorithm comparison.. 106

List of Figures
1.1 Different stages of the approach.. 4

2.1 Modulo-2 truth tables.. 7
2.2 Example CCITT-4 binary polynomial long division computation. . . . 13
2.3 Generalized serial LFSR Architectures... 15
2.4 Example CCITT-4 serial hardware computation...................................... 16

3.1 Illustration of the message polynomials.. 22
3.2 General state-space model.. 25
3.3 Delay diagram of the serial CRC LFSR2 Architecture............................ 26
3.4 Delay diagram of the serial CRC LFSRl Architecture............................ 27
3.5 Generalized parallel LFSR2 Architecture... 29
3.6 Generalized parallel LFSRl Architecture... 31
3.7 Generalized Two-Step Architecture... 34
3.8 Generalized Cascade Architecture... 36
3.9 Generalized cascade combinational logic blocks.. 37
3.10 Non-optimized parallel CRC computation architecture........................... 39
3.11 Generalized look-ahead combinational logic block................................... 41
3.12 Generalized Look-Ahead Architecture.. 41
3.13 Design of the Flexible Look-Ahead Architecture...................................... 42
3.14 Generalized State-Space Transformed Architecture................................. 45
3.15 Illustration of the message array.. 47
3.16 Illustration of CRCB Endianness.. 49

4.1 Matrix G 32X32 for CRC-32.. 64
4.2 Example DARC-8 XOR tree architecture.. 66
4.3 Generalized optimized parallel LFSR2 Architecture................................ 67
4.4 Illustration of the Lambda Gamma Algorithm... 76
4.5 Generalized Lambda Gamma Architecture.. 78

xi

4.6 Illustrations of the LFSRp overlapping polynomial situations............... 80
4.7 Illustrations of the LFSRp non-overlapping polynomial situations. . . 81
4.8 Generalized parallel LFSRp Architecture.. 83
4.9 Example DARC-6 dot notation for the parallel LFSRp Architecture. . 85
4.10 Generalized parallel Message Splitting Architecture................................ 88
4.11 Illustrations of the Message Splitting Architecture overlapping polyno

mial situations.. 89

5.1 Different quantitative comparison metrics... 92
5.2 LFSR2 Architecture plot of the delay and hardware complexity. . . . 95
5.3 LFSR2 Architecture plot of the delay and computation time................. 96
5.4 LFSR2 Architecture plot of the delay and time-area product................ 97
5.5 LFSRp Architecture plot of the delay versus latency................................ 97
5.6 LFSR Architecture plot of the delay and latency..................................... 98
5.7 State-Space Transformed Architecture pipelining blocks.............................100
5.8 Algorithm timing plots.. 108

A .l Parallel LFSR2 Architecture G 32X32 equations.. 116
A.2 Parallel LFSR1 Architecture G 32x32 equations.. 117
A.3 Lambda Gamma Architecture A32x32 equations...................................... 118
A.4 Lambda Gamma Architecture r 32X32 equations....................................... 119
A.5 State-Space Transformed Architecture equations......................... 120
A.6 State-Space Transformed Architecture B 32x32 equations................ 121
A.7 State-Space Transformed Architecture C 32x32 equations........................ 122
A.8 Two-Step Architecture first step equations.. 123
A.9 Two-Step Architecture second step equations (1 of 4)................... 124
A. 10 Two-Step Architecture second step equations (2 of 4)................... 125
A .11 Two-Step Architecture second step equations (3 of 4)................... 126
A. 12 Two-Step Architecture second step equations (4 of 4)................... 127

B. l CRCT(8) LUT entries (1 of 2)... 129
B.2 CRCT(8) LUT entries (2 of 2)... 130
B.3 CRCR(32) LUT entries... 131
B.4 CRCS4(32) LUT_56 entries (1 of 2)... 132
B.5 CRCS4(32) LUT_56 entries (2 of 2)... 133
B.6 CRCS4(32) LUT_48 entries (1 of 2)... 134
B.7 CRCS4(32) LUT_48 entries (2 of 2)... 135

xii

B.8 CRCS4(32) LUT_40 entries (1 of 2). ... 136
B.9 CRCS4(32) LUT_40 entries (2 of 2).. 137
B.10 CRCAr(32) LUT entries: (a) A LUT, (b) T LUT................................... 138
B. 11 CRCF(8) equations... 138

C. l Discrete-time system illustration of the serial LFSR2 Architecture. . . 139

D. l Cascade literature error.. 148
D.2 State-Space Transformation literature error.. 149

xiii

List of Algorithms
3.1 Bit-wise Algorithm.. 49
3.2 Table Look-up Algorithm... 51
3.3 Reduced Table Look-up Algorithm... 53
3.4 Slicing-by-4 Algorithm.. 56
3.5 Table Look-up LUT Generation Algorithm... 57
3.6 Reduced Table Look-up LUT Generation Algorithm................................ 58
3.7 Slicing LUT Generation Algorithm... 59
4.1 Lambda Gamma Algorithm... 76
4.2 Lambda LUT Generation Algorithm.. 77

xiv

List of Acronyms

A critical path delay of an architecture

computation time of an architecture

0 hardware cost of an architecture

CF hardware cost of a flip-flop

Cx hardware cost of a two-input XOR gate

Tx hardware delay of a two-input XOR gate

AND logical and

ARQ automatic repeat request

ASIC application-specific integrated circuit

ATM Asynchronous Transfer Mode

CMOS complementary metal-oxide semiconductor

CPD critical path delay

CRC Cyclic Redundancy Check

CRCAT Lambda Gamma Algorithm

CRCB Bit-wise Algorithm

CRCD Distrubuted Table Look-up Algorithm

CRCF On-the-Fly Algorithm

CRCJDK Joshi-Dubey-Kaplan Algorithm

xv

CRCR Reduced Table Look-up Algorithm

CRCS4 Slicing-by-4 Algorithm

CRCS8 Slicing-by-8 Algorithm

CRCT Table Look-up Algorithm

EDC error detection code

FCS frame check sequence

FEC forward error correction

FF flip-flop

FPGA field-programmable gate array

HDL hardware description language

IEEE Institute of Electrical and Electronics Engineers

IP intellectual property

LFSR linear feedback shift register

LSB least significant bit

LTI linear time-invariant

LUT look-up table

MSB most significant bit

PC personal computer

PCLKS processor clock ticks

PS pipeline stage

VLSI very-large-scale integration

XOR logical exclusive-or

XVI

Preface

T HIS thesis aims to provide the reader with an understanding of the principles of
the Cyclic Redundancy Check (CRC) computation. We assume that the reader

has minimal knowledge of CRCs and have made our best effort to present the material
accordingly. Many different conventions for describing the CRC computation exist in
the literature, and we have selected what we feel are the best set of notations. In our
presentation, we separate the formulations from the deployments, either in hardware
or software for this case. By taking this approach, we have found that the ideas are
more clearly conveyed to the non-expert reader.

Our experience has taught us that examples are an excellent tool for expressing
the various CRC computation approaches. However, providing completely worked
in-text examples would distract the reader from the further reaching concepts of a
given approach. To combat this problem, we have included two appendices which con
tain the implementation details for some useful hardware architectures and software
algorithms.

The preliminaries and literature analysis contained in this thesis provide the reader
with a solid foundation in CRCs, which allows them to understand our contributions
and the open research questions in this area. From the contributions contained in
this thesis, we have had two refereed conference papers accepted and are proceeding
with our second revised submission of a full journal manuscript. The comments
received from the reviewers of our first journal submission have helped us improve
our experimental methodology and gave us thoughtful advice on ways to clarify the
formulation.

Finally, we draw inspiration from Evariste Galois; the late French mathemati
cian who laid the foundations for Galois theory, which is the branch of mathematics
that CRCs are based on. Without his contributions, this work would not have been
possible.

XVII

Organization

The organization of the content contained in this thesis is as follows. In Chapter 1,
we provide the introduction. In Chapter 2, the preliminaries required to understand
the CRC computation are reviewed. In Chapter 3, our analysis of the literature is
presented. In Chapter 4, the novel CRC formulations and their resultant realiza
tions as hardware architectures and software algorithms are proposed. In Chapter
5, the simulation and implementation comparison of the studied architectures and
algorithms is presented. In Chapter 6, the conclusions and future work are discussed.
In Appendix A, hardware equations for some CRC-32 computation architectures are
listed. In Appendix B, software look-up table entries for some CRC-32 computation
algorithms are listed. In Appendix C, the z-Transform approach to obtain parallel
hardware equations is reviewed. In Appendix D, the identified technical errors in the
literature are corrected.

A portrait of Évariste Galois (1811 - 1832).

XVlll

1

Chapter 1

Introduction

1.1 Preview

A N increasing number of designers are utilizing wireless communication tech
nology in their systems. However, wireless networks are more susceptible to

transmission errors; some causes are random channel noise, fading of signals, and at
mospheric conditions. Due to the greater probability of transmission errors occurring
in these systems, it is necessary to verify the integrity of a received message using an
error detection code (EDC). Research for fast and flexible computation methods for
dependable EDCs is ongoing.

One of the more popular EDCs is the Cyclic Redundancy Check (CRC) [1]. From
a certain perspective, the CRC can be considered as an insecure hash function. In
other words, the CRC function maps a large variable length message to a small fixed
sized checksum. This checksum is appended to its message to form a codeword. The
redundancy in the codeword is typically used to verify the integrity of a message after
it has been transmitted or stored.

The two major research areas surrounding CRCs concern its error detection prop
erties and computation approaches. This thesis is primarily focused on the study of
the mathematics and performance of the various approaches that perform the CRC
computation. The existing formulations and their resulting realizations as hardware
architectures and software algorithms are extensively reviewed, and some novel com
putation approaches are proposed.

In this chapter, we briefly introduce CRCs to set the stage of our study. Afterward,
the motivation, approach, and objectives of this thesis are outlined.

2

1.1.1 Organization

The remainder of this chapter is organized as follows. In Section 1.2, the basic
concepts of the CRC are introduced. In Section 1.3, the motivation for this thesis is
presented. In Section 1.4, the approach taken in this thesis is explained. In Section
1.5, the objectives of our work are stated.

1.2 Cyclic Redundancy Check

In information theory, there are two major error control strategies: forward error
correction (FEC) and automatic repeat request (ARQ) [2]. FEC must be used when
the transmission channel is unidirectional and detected errors must be corrected by
the receiver. ARQ may be used in bidirectional communication systems when it
is more convenient to simply detect an error and request a retransmission. ARQ
codes are typically more light-weight in terms of the number of redundant bits and
computation times compared to FEC [2],

The CRC was proposed in 1961 by Peterson and Brown [1] as a separable EDC,
that is now used in many digital transmission and storage systems. Before transmis
sion, a message has its CRC appended as a frame check sequence (FCS) to form a
codeword. On arrival, the FCS of the received message is computed and compared
with the sent FCS; if they differ, an error is detected, else the transmission is assumed
to be error free. When errors are detected, the transmission protocol dictates what
action should be taken, i.e., discard the corrupted data and/or send a retransmission
request.

Some examples of digital communication standards where the CRC is currently
employed are, the Asynchronous Transfer Mode (ATM) [3], and the Institute of Elec
trical and Electronics Engineers (IEEE) communication standards, such as, IEEE
802.3 (Wired Ethernet) [4], IEEE 802.11 (WiFi) [5], and IEEE 802.16 (WiMAX) [6].

As aforementioned, the main research activities concerning CRCs consist of error
detection properties and computation approaches. In [1], the authors propose using a
linear feedback shift register (LFSR) to perform the CRC computation. This simple
architecture operates serially, processing one message bit per clock cycle. After [1],
a large amount research effort has been invested in developing parallel hardware
architectures and software algorithms that perform the computation more quickly or
efficiently, and this thesis continues along this path.

3

1.3 Motivation

In this section, we present the motivation for our study. With the current wireless
telecommunications boom that is world is undergoing, ensuring data integrity will
become more of an issue in the future. The CRC is an attractive option for use
in communication systems, because it is easily described mathematically and the
error detection properties are well understood. Moreover, there are many different
approaches to perform the CRC computation, and any contributions that advance
or improve upon these ideas could end up being deployed in real-world industrial
systems.

In terms of the amount of research attention it receives, the CRC can be considered
a hot topic. At the time of this writing, recent IEEE Transactions journal papers with
contributions pertaining to the theory of CRCs include [7], [8], [9], [10], [11], and [12].
This demonstrates the large amount of current interest in this area. Furthermore,
the most recent and only survey [13], was published in 1988, and many developments
have happened since then. For these reasons, we feel that the time is right for a fresh
investigation and discussion of this topic.

1.4 Approach

In this section, we present the approach of our study. Since this thesis is in the field
of computer arithmetic, generally, all of the concepts discussed stem from a mathe
matical formulation. After one performs some manipulations and obtains a desired
formulation, the next step is realizing that formulation as a hardware architecture
or software algorithm. After realization, one proceeds to implement the architecture
or algorithm, using a hardware description or programming language, respectively.
Finally, the implementation is then deployed on a platform and its correctness can
be verified. Figure 1.1 illustrates how we go through these steps in this study.

In this thesis, all of the formulations begin from the CRC equation, that is intro
duced in [1]. As shown later, many computation schemes have been deduced from the
application of different techniques to manipulate that equation. Our approach begins
by generalizing those existing methods found in the literature. By accomplishing this,
we have more flexibility to describe and compare the different schemes which have
been previously published. Afterward, we present some novel formulations and their
resultant realizations as CRC computation approaches that yield new architectures
and algorithms.

4

Figure 1.1: Different stages of the approach.

In terms of the experimental methodology, after an architecture or algorithm has
been proposed, one can perform simulations to obtain the theoretical area/memory
and time complexities. The majority of the simulation data in this thesis is obtained
through custom C + + software, that has been written by the author over the course
of this study. These theoretical evaluations serve to validate our experimental results
gathered through deployment of our implementations on their respective platforms.

1.5 Objectives

The primary objective of this thesis is to propose novel CRC computation approaches
which outperform the existing ones. In this study, the performance of an approach is
measured in terms of both area/memory and time complexity. In order to achieve this
primary objective, we first strive to provide the reader with a complete understand
ing of the fundamentals of the CRC computation. This involves using consistent
notations to derive and generalize the previous computation approaches. We then
perform simulations and experiments to demonstrate the high performance of our
novel approaches, and we thoroughly explore the area/memory versus time complex
ity trade-off. Also, we aim to identify and propose some improvements to the existing
computation approaches. Finally, we suggest open research questions that could be
the focus of future work.

5

Chapter 2

Preliminaries

2.1 Preview

T HE Cyclic Redundancy Check (CRC) is a term that most of us have come
across at one time or another reading computer literature in the Internet age.

In this chapter, we present the preliminaries required to discuss the various aspects
surrounding the CRC. This includes a review of the branch of mathematics that CRCs
operate in, the first hardware architectures proposed to implement the computation,
and the general error detection properties.

Like most topics in information technology, the presentation style and notations
used to describe the mathematics of the CRC computation have evolved consider
ably since being first introduced by Peterson and Brown in 1961 [1]. Emphasis has
shifted from discussing the basic serial computation case to more complex parallel
computation cases, and exhaustive explorations of error detection properties have
been undertaken. In light of these advancements, the goal of this chapter is to review
the fundamental material using more modern notations and conventions, and lay the
foundation for discussing the material in later chapters.

2.1.1 Organization

The remainder of this chapter is organized as follows. In Section 2.2, the topic of
binary polynomial arithmetic is reviewed. This includes a discussion of binary fields
and binary polynomials, i.e., polynomials over G F {2). In Section 2.3, the CRC ba
sics are introduced using modern conventions. This includes mathematics, generator
polynomials, serial hardware architectures, and basic error detection properties. This
chapter is concluded with a summary in Section 2.4. We note that, most of the
material contained in this chapter can be found in [1], [2], and [13].

6

2.2 Binary Polynomial Arithmetic

This section quickly reviews the fundamentals of the branch of mathematics that
is required for an understanding of CRC computation. This involves discussing the
binary Galois field GF (2) and binary polynomials. This material forms the basis for
the later binary polynomial formulation of the CRC computation. For a more formal
and in-depth discussion of these topics, we refer the reader to [2] and [14].

2.2.1 Binary Fields

To begin, we roughly define a field to be a set of elements for which one can perform
addition, subtraction, multiplication, and division without leaving the set. Further
more, the commutative, associative, and distributive laws must be satisfied by the
addition (+) and multiplication (•) operations [2], [14].

Next, an adaptation of the formal definition of a field contained in [2] is presented.
Let F be a set of elements on which the addition and multiplication operations are
defined. The set F together with the addition and multiplication operations, is a field
if the following three conditions are satisfied:

1. The set F is a commutative group under addition. The identity element with
respect to addition is called the zero element and denoted by 0.

2. The set of nonzero elements in F is a commutative group under multiplication.
The identity element with respect to multiplication is called the unit element
and denoted by 1.

3. Multiplication is distributive over addition; that is, for any three elements / 0,
/ i , and f 2 in F,

fo • (fi + h) — fo ■ fi + fo ‘ h-

It follows from the above definition that a field must contain at least two elements,
namely 0 and 1. In fact, it is the field that contains only these two elements, called
the binary Galois field that we are most interested in. Before discussing this field,
some basic properties are listed without proof, which can be easily derived from the
previous definition of a field [2].

7

0 1
0 0 0
1 0 1

+ 0 1
0 0 1
1 1 0

(a) (b)
Figure 2.1: Modulo-2 truth tables: (a) addition, (b) multiplication.

1. For every element / 0 in a field, /o • 0 = 0 • /o = 0.

2. For any two nonzero elements /o and / i in a field, /o • fi ^ 0.

3. For any two elements / 0 and fi in a field, for /o • f\ = 0 and /o ^ 0, imply that
/ i = 0 .

4. For any three elements / 0, / i , and / 2 in a field, for f 0 ^ 0, /o • / i = fo ■ f 2,
implies that fi = f 2.

Now consider the binary Galois field denoted as GF (2) = {0 ,1 } that has two
elements, with modulo-2 addition and multiplication operations defined in Figures
2.1a and 2.1b, respectively. It is clear that the commutative, associative, and dis
tributive laws hold for the addition and multiplications operations defined on the
set G F (2). Thus, {0 ,1 } is a field with two elements under modulo-2 addition and
modulo-2 multiplication [2],

Note that binary addition and multiplication between two elements in GF (2) =
{0 ,1 }, can be implemented in hardware using logical exclusive-or (XOR) and logical
and (AND) gates, respectively. Throughout this thesis, unless otherwise noted, the
addition sign, i.e., “ + ” is used to denote the XOR operation, and the dot sign, i.e.,

denotes the AND operation. Finally, note that for the set GF (2), addition and
subtraction are defined to be the same operation, i.e., 1 ± 1 = 0 and 1 ± 0 = 0 ± 1 = 1.

2.2.2 Binary Polynomials

From the definition of a binary field presented in the previous subsection, we are now
ready to discuss binary polynomials. Consider a polynomial whose coefficients are
from the binary field GF (2), with the variable x, i.e.,

F (x) = f 0 + f ix H------ b f nxn,

where fi € { 0,1} for 0 < t < n. Polynomials of this form will be referred to as
polynomials over G F (2) [2], In this thesis, upper case letters are used to denote
polynomials over GF (2) and the coefficients are lowercase letters.

8

The degree of a polynomial is defined as the largest power of x with a non-zero
coefficient. Polynomials over GF (2) can be added (or subtracted), multiplied, and
divided in the usual way. As an illustration of these operations let

G (x) = go + g\x + • • • + gmxm,

be another polynomial over GF (2). Assuming m < n, then addition or subtraction
is computed as,

F (x) ± G (x) = (/o + go) + (/i + gi) x + • • ‘ + (fm + gm) xm +

fm+ lXm+l H----- + fnXn.

For multiplication one has the product

F(x) -G (x) = C (x) = c0 + C\x H--------1- cn+mxn+m,

where

c0 = fogo

= fogi + fido

= fog2 + figi + /250

= fogi + hgi-i + figi-i + • • • + /¿50

Crt+m fngm-

Note that for CRCs, binary polynomial division is the most important operation.
From the Euclidean division algorithm, one knows that when F (x) is divided by
G(x), a unique pair of polynomials over GF (2) is obtained: Q (x) called the quotient
and R (x) called the remainder. Thus the relationship

F(x) = Q (x) ■ G{x) + R (x) (2.1)

is obtained, where the degree of R (x) is less than the degree of G (x). From (2.1) one
can adopt the following notation for expressing the calculation of R (x) from F (x)
and G (x) as

R(x) = F (x) mod G (x).

9

The traditional elementary school long-division technique is often used when com
puting the division operation of two binary polynomials, and in the following section
an example is provided in Figure 2.2.

Data Representation

It is convenient to represent binary strings as polynomials over GF (2) [2]. However,
one source of confusion often arises with the Endianness associated to mapping bit
positions of the binary strings to the coefficients of the polynomial [15]. In the CRC
literature, two methods are readily used, the first being mapping the most significant
bit (MSB) to the coefficient of the term with the highest power of x down to the least
significant bit (LSB) being mapped to coefficient of the x° term, i.e., 1011 1001 —>
x1 + x5 + x4 + x3 + x°. The second method is the reverse of the first, with the
MSB being mapped to the coefficient of the x° term up to the LSB being mapped
to the coefficient of the largest power, i.e., 1011 1001 —> x° + x2 + x3 + x4 + x7.
These conventions will be referred to as the normal and reverse notation, for the first
approach and second approach, respectively.

In this thesis, we have chosen to adopt the reverse notation, because software
CRC computation algorithms are more efficiently implemented with this approach,
and this is consistent the convention used in the latest software based CRC paper [7],
as well as [13] and [16]. Also, in hardware it is more popular to illustrate the serial
computation architecture using the reverse notation (e.g.: [1], [10], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26]), rather than using the normal notation.

2.3 CRC Basics

After reviewing the related basics of binary polynomial arithmetic in the previous
section, we are now prepared to discuss the fundamental aspects surrounding CRCs.
In this section, the mathematics of the computation, generator polynomials, serial
architectures, and error detection properties are all reviewed.

2.3.1 Mathematics

Let us begin by introducing the following binary polynomials listed in Table 2.1,
which are similar to the conventions found in [13], The m-bit CRC polynomial,
also called the syndrome and denoted by S (x) of a k-bit message, is defined as the

10

Table 2.1: CRC binary polynomials.

Polynomial Name Max Degree
A(x) Quotient k - 1
E(x) Error k + m — 1
G (x) Generator m
R (x) Received k + m — 1
S(x) Syndrome m — 1
U(x) Message k - 1
V(x) Codeword k + m — 1

remainder of the division between the message polynomial U (x) multiplied by xm,
and the (m + l)-bit generator polynomial G (x), i.e.,

S (x) = (xm • U (x)) mod G (x). (2.2)

The n-bit codeword polynomial, where n = k + m is defined as

V(x) = S (x) + x m-U(x) , (2.3)

and consists of the syndrome polynomial concatenated with the message polynomial.
The codeword polynomial corresponds to the bits transmitted by the sender. Define
the n-bit received polynomial R (x) to consist of

R(x) = V(x) + E(x) , (2.4)

where E (x) is an n-bit error polynomial. From (2.4) it is clear that if E (x) — 0, then
R(x) — V (x). Define A (x) to the quotient of the division between xm • U (x) and
G (x), then from the property of Euclidean division one can obtain

xm-U(x) = A (x) - G (x) + S(x) . (2.5)

Next, in order to discuss the error detection properties one needs to show that the
codeword polynomial is a multiple of the generator polynomial. Substituting (2.5)
into (2.3) and one obtains,

V(x) = S(x) + xm-U(x)

= S (x) + (A (x) • G (x) + S (x))

= A(x) ■ G (x). (2.6)

11

Thus, it is concluded that codeword is a multiple of the generator polynomial. At the
receiver, the integrity of a frame is verified by performing one of the two following
checks:

1. Compute and test to see if R (x) mod G (x) = 0.

2. Separate R(x) into the received message xm ■ U' (x) and received syndrome
S' (x), and then compute and test xm ■ U' (x) mod G (x) = S' (x).

If either equality does not hold, then it is known that R (x) ^ V (x), and a trans
mission error is detected. Finally, from the above definitions, it can be shown that
if

E (x) = F (x) • G (x (2.7)

then an error will go undetected. Beginning from (2.4) and substituting (2.6) and
(2.7), one can obtain,

R (x) = V (x) + E (x)

= (A (x) • G (x)) + (F (x) • G (x))

= (A (x) + F (x)) - G (x) .

It is clear that in this case, that R (x) mod G (x) = 0, and it is concluded that error
patterns of this type are not detectable.

2.3.2 Generator Polynomials

Next, we discuss CRC generator polynomials. Generator polynomials are always of
the form,

m — 1

G{x) = 1 + Y^,9ix* + xm, gi € {0 ,1 } (2.8)
i = 1

i.e., all generator polynomials have nonzero x° and xm terms [1]. Table 2.2 lists
frequently referenced generator polynomials [10]. In this thesis, we denote the second
greatest nonzero power of G (x) as r, i.e.,

T—1
G (x) = 1 + ^ 2 9ixl + xT +

i=i

12

Table 2.2: Frequently referenced generator polynomials.

Name Polynomial
CRC-12 1 + X + x2 + X 3 + X 11 + X 12
CRC-16 1 + x2 + x 15 + x 16

CCITT-16 1 + x5 + x 12 + x 16
CRC-16f 1 + X + x 14 + x 16

CCITT-16f 1 + X 4 + x 11 + x 16
CRC-32 1 + X + x2 + x4 + x5 + X 7 + xs + x lû

X 11 + X 12 + X 16 + x22 + X 23 + X 26 + X 32
f denotes reversed polynomial coefficients.

From (2.8), we define the set T, as

T = {7o,7i, • • • , 7|r|—1} = {i\9i = M € [0,m - 1]} , (2.9)

and define the cardinality of the set Gamma to be the number of elements in T,
denoted as jT(. It is noted that 70 = 0, since generator polynomials always have a
nonzero x° term, i.e., g0 = 1. Earlier we defined r to be the second greatest nonzero
power in G (x), thus 7|r|-i = t . In later chapters, it will be convenient to show
generator polynomials as]Uisrxl + xm, with T = {70 = 0, 71, • • • , 7|r|-2, 7|r|-i = t }.
Table 2.3 lists the Gamma sets of the commonly used generator polynomials.

Observing (2.8), and note that CRC generator polynomials are never divisible
by x. If one were to use a generator polynomial that had x as a factor, then the
resultant syndrome would always have its zero-order coefficient equal to zero [1].
To illustrate this fact, the following derivation is provided. Consider computing a
syndrome using a generator polynomial that has x as a factor, i.e., G (x) = x ■ G' (x),

then G' (x) = xm_1 + Ŷ T=i 9ixl + 1- Using G' (x) in (2.5), one obtains,

xm- 1 ■ U (x) — A (x) ■ G' (x) + 5 ' (x) ,

Table 2.3: Gamma sets of frequently referenced generator polynomials.

Name r in
CRC-12 {0 ,1 ,2 ,3 ,11} 5
CRC-16 {0,2 ,15} 3

CCITT-16 {0 ,5 ,12} 3
CRC-16f {0 ,1 ,14} 3

CCITT-16f {0 ,4 ,11} 3
CRC-32 {0 ,1 ,2 ,4 ,5 , 7,8,10,11,12,16,22, 23, 26} 14

fefeg!«:'. .

13

where S' (x) is at most degree xm~2. Multiplying both sides by x and one obtains,

xm ■ U (x) = A (x) ■ G (x) + x ■ S' (x) .

Thus, it is shown that if G (x) — x ■ G' (x), then S (x) = x • S' (x) and always has a
zero as its zero-order coefficient.

2.3.3 Sample Computation

In this subsection, we present a sample CRC computation using the long-division
technique. Consider the generator polynomial CCITT-4 (G (x) = 1 + x + x4 [27]),
and the 7-bit message 101 0011. Using the reverse Endianness convention, the 7-bit
binary sequence is mapped to the message polynomial as U (x) = 1 + x2 + x5 + x6.
Substituting this message polynomial into (2.2) and one obtains,

S (x) = (xm • U (x)) mod G (x)

= (x4 • (l + x2 -I- x5 + x6)) mod (l + x + x4)

= (x4 + x6 + x9 + x10) mod (l + x + x4) . (2.10)

It is known that when using this generator polynomial the syndrome is Tbits long,
and corresponds to a binary polynomial of at most degree x3, i.e., S (x) = Y^=osixl-
One can proceed to perform the reduction in (2.10) and S (x) = x will be obtained.
The long-division steps are shown in Figure 2.2, and we remind the reader that
in this computation binary polynomials are being used, consequently, addition and

x4 + x + 1
x6 + x5
x 10 + X 9
„10

+ x 3 + X + X

+ X

X 7 + X 6
+ X

+ X + X

+ x6 + x5
X 7 + X 6 + X 5 + X 4

+ X + X

X 6 + X 5 + X
"Î 2

+ X + X

+ X

+ X + X

Figure 2.2: Example CCITT-4 binary polynomial long division computation.

14

subtraction are the same operation. The correctness of the result can be verified by
recalling (2.5), and checking that,

x4 + x6 + x9 + x 10 = (x + x2 + x3 + x5 + x6) • (l + X + x4) + X.

The codeword polynomial V (x) is formed by the concatenation of the syndrome
polynomial and message polynomial (2.3), and for this example one obtains,

V(x) = S (x) + xm ■ U (x)

= X + x4 + x6 + x9 + X 10.

Using the long-division technique, one can verify that V (x) mod G (x) = 0. Finally,
the 11-bit codeword is transmitted or stored as 0100 1010 011.

2.3.4 Serial Implementations

The historical serial implementation of the CRC computation (2.2) in hardware con
sists of a LFSR, which is constructed for a given generator polynomial [1]. The serial
LFSR Architecture has a hardware cost

0 — 777. - Gp + | r | • Cx,

where Cf and Cx denote the cost of a flip-flop (FF) and a two-input XOR gate,
respectively.

There are two different LFSR architectures presented in [1], named LFSRl and
LFSR2 in [26]. In terms of computation time, LFSRl requires k + m clock cycles
while LFSR2 requires k clock cycles, and the general form of each architecture is
shown in Figure 2.3. In practice, all the AND gates are replaced by open or short
circuits depending on the coefficients of the generator polynomial, and the XOR gates
without present feedback connections are removed. Notice that the critical path delay
(CPD), denoted by A, of LFSRl is 1 -Tx while LFSR2 has a CPD of 2 • 7V1, where
Tx denotes the delay of a two-input XOR gate.

If the LFSR2 architecture is used, then the syndrome of a message is computed
by feeding the k message bits in, beginning from the coefficient of the highest order
term i down to uq, afterward the syndrome of the message is stored in the FFs.

1If G (x) = 1 + xm. then the delay of the LFSR2 architecture is 1 - Tx- However, for the common
generator polynomials in Table 2.2 this is never the case.

15

(b)

Figure 2.3: Generalized serial LFSR Architectures for G (x) = 1 + YaLi1 9ixl + xm:
(a) LFSR1, (b) LFSR2.

Alternatively, if the LFSR1 structure is used, then m Os must be fed in after u0
to obtain the syndrome [1]. More formally, the LFSR2 architecture performs the
CRC computation as (xm • U (x)) mod G (x), whereas the LFSR1 architecture treats
the computation as U {x) mod G(x) , where U (x) = xm • U (x). These two serial
implementations serve as the starting points for all the parallel hardware architectures
and software algorithms that are discussed in later chapters.

We close this subsection by tracing the previous example computation through
the LFSR2 architecture. In Figure 2.4a we provide an illustration of the LFSR2
architecture for the generator polynomial CCITT-4 [27], and Figure 2.4b shows the
contents of the FFs after each clock cycle when processing the message U (x) =
1 + x2 + x5 + x6. Clock cycle —1 denotes the initial all zero state of the register,
and as expected, the final result (marked in boldface) is 0100, which corresponds to
S (x) — 0 ■ x° + 1 ■ x + 0 ■ x2 + 0 ■ x3 = x.

2.3.5 Error Detection
A great amount of research effort has been invested in the study of the issues sur
rounding the error detection performance of CRCs. A complete discussion of this
area is beyond the scope of this thesis, but for the sake of completeness, we review
the basic concepts, terminology, and results. We refer the reader to the following sets
of references for discussions concerning: general error detection properties [1], [13],
[28], generator polynomials [8], [27], [29], [30], [31], [32], [33], [34], [35], and different
CRC schemes [28], [36], [37], [38].

16

ÌtL
FF FF ~ P FF ~ P FF

T
S, s

1100101

Cycle Input LFSR Contents
So Si S2 S3

3 0 1 1 1 0
4 1 1 0 1 1
5 0 1 0 0 1
6 1 0 1 0 0

Cycle Input LFSR Contents
So Si S2 S3

-1 — 0 0 0 0
0 1 1 1 0 0
1 1 1 0 1 0
2 0 0 1 0 1

(b)

Figure 2.4: Example CCITT-4 serial hardware computation: (a) LFSR2 Architecture,
(b) trace.

Generally, one can say that the error detection performance of a typical CRC
scheme depends on three factors:

• the degree of the generator polynomial;

• the generator polynomial coefficients; and

• the length of the message (the number of message bits k).

We say that a CRC scheme is typical, if a codeword is formed by computing and
appending the m-bit syndrome to a fc-bit message (2.3). Other situations are possible,
such as using product generator polynomials, two-fold, and cascading; for a detailed
discussion of the effectiveness of these approaches see [38]. For the remainder of this
subsection, our discussion is restricted to the typical scheme.

Recall the earlier definition of the error polynomial in (2.4), and it was shown
that it must be a multiple of the generator polynomial for the error pattern to go
undetected. The length of a burst error is defined to distance between and including
the furthest two corrupted bits in a received codeword, e.g.: the burst error described
by the error polynomial E (x) — x1 + xj has a length of j — i + 1, assuming 0 < i <
j < n. It is noted that every nonzero coefficient in E (x) corresponds to an inversion
in the codeword at that bit position. From these concepts, we are ready to discuss
some results for simple error patterns.

17

Consider the situations when the i-th codeword bit is inverted, then E (x) = x1
for 0 < i < n. Since G (x) always has present x° and xm terms (2.8), x l cannot be
expressed as a multiple of G (x) and this type of error will always be detected.

For the cases when there are only two codeword bit inversions, they are described
by the error polynomial E (x) = xl + xJ with 0 < i < j < n. This error polynomial
can be factored as E (x) = x1 • (1 + xl~i), and it is concluded that two bit errors will
go undetected if and only if G (x) evenly divides 1 + xl_T

For all burst errors of length less than m, the error polynomial can be written as
E (x) — x1 ■ P (x), where the degree of P (x) is less than the degree of the generator
polynomial. Then, one has P (x) mod G{x) = P (x) and this error is always detected.

Here, some useful error detection theorems for CRCs are given without proof, and
they can be found in [28].

• All single-bit errors will be detected because the generator polynomial always
has more than one term. The simplest generator polynomial is G (x) = 1 + x
(2.8).

• All cases where an odd number of bit errors have occurred will be detected if a
generator polynomial has xa + 1 for a > 0, as a factor.

• All single- and double-bit errors will detected if the degree of the codeword
polynomial is no greater than the period2 of the polynomial.

• All single-, double-, and triple-bit errors will be detected if the generator polyno
mial has xa +1 for a > 0 as a factor, and the degree of the codeword polynomial
is no greater than the period of the generator polynomial.

• All burst errors of length less than or equal to m are detected.

• The misdetection probability PTOd, is defined to be the ratio of the total number
of error patterns to the number of possible error patterns that go undetected,

Prmd.
2k - 1
2n ~ 1

< 2'

and it can be estimated by the degree of the generator polynomial.

For proofs of these theorems and further discussion, the reader is encouraged to
consult [1] and [13].

2Period refers to the smallest degree polynomial that G (x) evenly divides.

18

Error Correction

The authors of [1] also note the potential for the CRC to be able to correct errors.
Similar to the error detection case, the remainder of the received codeword divided by
the generator polynomial is computed, i.e., R(x) mod G(x). Now, if the remainder
is zero, then correct transmission is assumed. Otherwise, the remainder is compared
to the n stored values of xl mod G (x) for 0 < i < n, and if a match is found, the i-th
bit of the codeword is flipped and the message is assumed correct. Alternatively, if
the non-zero remainder is not found in the store values, a multi-bit error has occurred
and detected. An implementation of single-bit error correction using the generator
polynomial CCITT-16 with k = 16 can be found in [39].

2.4 Summary

In this chapter, we reviewed the concepts of binary polynomial arithmetic and dis
cussed some of the fundamentals of CRCs. Binary polynomials or polynomials over
GF (2) have coefficients from the set GF (2) = {0 ,1 }, and they can be added (sub
tracted), multiplied, or divided in the usual way. Addition and multiplication of
binary coefficients can be accomplished by using logical XOR and AND operations,
respectively. The CRC computation involves finding the remainder of the division
of the augmented message polynomial by the generator polynomial. CRC genera
tor polynomials are of degree m and always have a present non-zero x° term. The
classical hardware implementation of the CRC computation consists of a LFSR and
it performs the computation serially. The error detection properties are well un
derstood and depend on the generator polynomial, message length, and deployment
scheme. For typical schemes, an error pattern must be a multiple of the generator
polynomial to go undetected. Error correction is possible using CRCs. However, the
entire codeword must be buffered and a look-up table is typically used to perform the
correction.

19

Chapter 3

Literature Analysis

3.1 Preview

O VER the years, various parallel formulations have been proposed with the aim
of deriving new hardware architectures and software algorithms to perform

the CRC computation. In this chapter, we analyze the developments most related
to our contributions. This includes an investigation and discussion of the various
formulations that have been published and their suggested realizations as hardware
architectures and/or software algorithms. The aim of this chapter is to develop gen
eralized formulations for all of the previous works. This helps us to compare our
schemes with the previous approaches, and demonstrate that our schemes presented
in the thesis are indeed novel.

Excluding the bit-wise software algorithm, all of the architectures and algorithms
discussed in this chapter perform the CRC computation by processing multiple mes
sage bits in an iteration. For this reason, we have included our generalized primitive
parallel CRC formulation as a starting point for all the different formulations. By
taking this approach, we feel the reader has a better chance of understanding the
contributions made by the other authors, and it also provides a different angle for
describing the published formulations. Any minor extensions that we have proposed
to the surveyed works are noted, however we leave the discussion of the performance
of our implementations of the architectures and algorithms to Chapter 5.

20

3.1.1 Organization

The remainder of this chapter is organized as follows. In Section 3.2, we present
the parallel formulation fundamentals. This includes a discussion of how a message
is partitioned into blocks, and the binary polynomial and state-space approaches to
obtain parallel primitive CRC formulations. In Section 3.3, we discuss the existing
hardware architectures. In Section 3.4, we review the existing software algorithms and
LUT generation algorithms. This chapter is concluded with a summary in Section
3.5.

3.2 Parallel Formulation Fundamentals

All the parallel CRC computation architectures discussed in this thesis rely on the
message being partitioned into blocks. Formulations are typically presented by binary
polynomial [13], [40] or state-space (matrix) representations [20], [24], [26], and are
based on either the serial CRC LFSR1 or LFSR2 Architectures.

In this section, we first review the existing primitive parallel CRC formulations,
for the serial CRC LFSRl and LFSR2 Architectures. This includes binary polynomial
and state-space derivations. We begin with the binary polynomial approach since it
relies on a rigorous derivation for partitioning the message polynomial into blocks,
and then the state-space approach is presented. We note that the same parallel
CRC expressions can be obtained from using either of these two approaches, and
later formulations typically use one of these approaches as a starting point for their
derivation.

In addition to the binary polynomial and state-space approaches, a third approach
based on 2-transforms was proposed in [21]. Since none of the architectures and algo
rithms in this thesis are derived from this approach, we have presented the material
in Appendix C.

3.2.1 Binary Polynomial Approach

The binary polynomial approach is derived directly from the CRC equation given in
(2.2). Papers that adopted this approach include [13] and [40] for primitive LFSR2
and LFSRl formulations, respectively. To begin our discussion, we must first set up
the required mathematics to rigorously define the iterative CRC computation. This
involves formally partitioning the message decomposing it into blocks of equal length.
The material contained in this subsection is adapted from our conference paper [41]
with some small notational changes, and extended to describe the LFSRl formulation.

2 1

Message Partitioning

Parallel implementations of the CRC computation process the message block-wise
iteratively. Let q = [|] and q = ["^p] denote the number of iterations required to
process a k-bit message, where at each iteration l bits are processed using parallel
architectures based on the serial CRC LFSR2 and LFSR1 Architectures, respectively.
In this thesis, we refer to l as the degree of parallelism and to distinguish between
LFSR1 and LFSR2 formulations, we mark the LFSR1 variables with tildes. Now,
we describe how the message polynomial is formally partitioned for the LFSR2 and
LFSR1 binary formulations.

LFSR2: Consider an LFSR2 based formulation, one can partition U (x) into q =
[y] message blocks, i.e.,

<}-l
U(x) = '%2xHq- 1~i) -B®(x), (3.1)

¿=o

where (x) represents a binary polynomial of at most degree l — 1 corresponding
to the /-bit message block being processed at the i-th iteration. If k mod l ^ 0, then
there are basically two solutions, and in this thesis we consider the simpler solution
where one has the ability to prepend / — (k mod l) Os to U (x) increasing the message
length to a multiple of l. Alternatively, l — (k mod l) Os can be appended to U (x)
and the CRC value is modified after all the blocks have been processed [11], [42].

Let I/M (x) be the portion of U (x) that contains all the blocks (x) for 0 <
j < i, and let (x) be the syndrome of (x), i.e., a binary polynomial of at
most degree m — 1. Also, define [/ H (x) = 0 and S H (x) = ¿¡„¡t (x), where S-m\t (x)
denotes the initial content of the CRC register. Then these definitions can be written
as

U[{](x) = xl ■ U[i~1] (x) + R [i] (x) ,

A[i] (x) = (xm • U[i] (x)) mod G (x),

for 0 < i < q — 1. It is noted that U (x) = Û q~ ̂ (x) and S (x) = S^-1! (x).
For clarification, a pictorial illustration of the relationships between these recently
introduced polynomials is shown in Figure 3.1.

2 2

U (x)

Figure 3.1: Illustration of the message polynomials.

LFSR1: A similar approach is taken for LFSR1 based formulations, where U (x) =
xm ■ U (x), and U (x) is partitioned into q = message blocks, i.e.,

9 -1
U (x) = J^x'-W "1- 0 • (x), (3.2)

i=0

where (x) represents a binary polynomial of at most degree l — 1 corresponding to
the /-bit message block being processed at the ¿-th iteration. If (k + m) mod 1 ^ 0 ,
then we similarly assume one can prepend l — ((k + m) mod /) Os to U (x) to increase
the length of U (x) to be a multiple of /.

Let I/M (x) be the portion of U (x) that contains all the blocks (x) for 0 <
j < /, and let (x) be the syndrome of U® (x), i.e., a binary polynomial o f at most
degree m — 1. Also, define f /F 1] (x) = 0 and (x) = Sjnit (x), then these definitions
can be written as

m (x) = x i ■ m - v (x)+ ¿w (x) ,

S® (x) = f/^ (x) mod G (x),

for 0 < i < q — 1. It is noted that Ü (x) = ̂ (x) and S (x) = ̂ (x).

LFSR2 Formulation

From the previous definitions, one can derive a recursive expression for S'W (x) in
terms of (x) and B^ (x), i.e.,

23

S[{] lx = (xm ■ U[i] (x)) mod G (x)

= (xm ■ (xz • (x) + B^ (x))) mod G (x)

= (xl • xm ■ (x) + xm ■ B® (x)) mod G (x)

= (x* • S[l~1] (x) + xm • B^ (x)) mod G (x)

= T[l] (x) mod G (x), (3.3)

for 0 < i < q — 1, where

(x) = xl • S [i~1] (x) + xm • B® (x) . (3.4)

Observing (3.3), there are three cases to consider: / = m, l < m, and l > m, called
Cases I, II, and III, respectively. Each case yields a slightly different formulation with
regards which present terms in the polynomial (x) require reduction [43]. These
cases are discussed separately.

Case I: When the degree of parallelism is equal to the generator polynomial degree,
i.e., I = m, (3.4) becomes

T li](x) = xm-Y ^
3=0
TO— 1

£ (

m — 1 m — 1

3=0

Sj ~‘XJ + X L- xJ

= X

3=0
TO—1

m ^ (+ b
3=0

;]) xj . (3.5)

In (3.5), the terms m the polynomials ̂ (x) and (x) completely overlap, and
one can factor the xm term out to show that all the terms in (x) require reduction.

Case II l < m: When the degree of parallelism is less than the generator polynomial
degree, i.e., I < m, (3.4) becomes

m— 1 /-I
r ^ (x) = xl ■ J 2 sll~1]xj + xm xJ

j=0
m —l—1

3=0
l-l

= X■1■ s[i~ l]xj + x m
3=0

E (* G + ^ V -
j=o

(3.6)

In (3.6), the polynomial (x) has l terms that overlap and require reduction between
S^-1! (x) and B^ (x), while m — l terms of (x) do not require reduction.

24

Case III l > m: When the degree of parallelism is greater than the generator
polynomial degree, i.e., I > m, (3.4) becomes

T¡i¡ (z) require reduction.

LFSRl Formulation

In [40], the author proposed the first parallel LFSRl formulation, using Galois field
multiplications. Here, we take a slightly different approach and modify our LFSR2
derivation to obtain a parallel LFSRl formulation. By combining the xm term into
the message polynomial U (z) to form U (x) in (2.2), one obtains

(3.7)

In (3.7), the all of the terms in the S ̂ ̂ (z) overlap with the m greatest power terms
of RM (z) . Again, one can factor the xm term out to show that all of the terms in

S (z) = (zm • U (z)) mod G (z)

= Ü (z) mod G (z). (3.8)

Again, from the previous definitions, one can derive a recursive expression for (z)
in terms of (z) and (z), i.e.,

S®(x) = Ü[í[(x) mod G (z)

f w (z) mod G (z), (3.9)

for 0 < i < q — 1, where

T[¿1 (z) = x l • S [i~ 1] (z) + R[i] (z) . (3.10)

25

From (3.9), one observes that for all l and m cases, l terms in (x) require
reduction and no terms between xl • (x) and (x) overlap. These facts are
clearly illustrated by examining an expanded form of (3.10),

¡—1 m — 1

(x) = &^xJ + x l ■ s^_1'xb
j=0 j—0

3.2.2 State-Space Approach

The second approach that we will discuss for obtaining the primitive parallel CRC
equations consists of developing a state-space model for the serial LFSR architectures,
and subsequently extending them to parallel input cases.

Fundamentals

In this subsection, notations similar to those used in linear systems theory are used
to describe the typical state-space model. The general linear, step-invariant, discrete
time state space is commonly represented as,

^nxl \k T l] A wxn ’ ^nxl [̂] T B nxr • Urxi [fc]

Ymx 1 [̂] = Cm'xn ‘ ^nxl [&] ~b Dmxr ‘ Urxi [A;] , (3.11)

where the vectors xnXl, urxi, and ymxi denote the state, input, and output vectors,
respectively, and the matrices A nxn, BnXr, C mxn, and Dmxr denote the state, input,
output, and input-to-output coupling matrices, respectively. A common illustration
in block diagram form of the general state-space model is shown in Figure 3.2 [44],

Figure 3.2: General state-space model [44].

26

Figure 3.3: Delay diagram of the serial CRC LFSR2 Architecture.

LFSR2 State-Space Formulation

Published CRC LFSR2 state-space models that use nearly identical notations to the
ones used in this thesis are presented in [20], [24], and [45], and two other examples of
models with slightly different notations can be found in [17] and [22], When comparing
the notations used here to the ones from digital system theory, the same letters for
the coupling matrices will be maintained, however to mark their dimensions, the CRC
variables m and l will be used, therefore n = m and r = l, also the output vector
size is equal m. Finally, we substitute k with i for the iteration index. Observing the
architecture in Figure 3.3, and one can derive the following state-space model for the
serial CRC LFSR2 Architecture,

Xmx 1 [* 4“ 1] — A mX77i • X mx l + t>mxl ' ^ [®]

ymxl [¿] = Cmxm ‘ Xmxl T dmxl ' ^ [z] , (3.12)

0 0 0 0 9o go
1 0 0 0 9i 9i

for 0 < i < k — 1, where A mxm — 0 1 0 0 92 i b mxi 92

0 0 0 . . . 1 9m-1 9m— 1
Cjnxm = Imxrru dmxi Omxii and u [i] = Uk--1—i from (2.2).

The serial formulation in (3.12) can easily be extended to a parallel formulation
that processes l message bits in an iteration,

Xmxl [z T 1] — A mxm ' ^-mx 1 [̂] T B mxl ' Wxl [̂]

ymxl [̂] = Cmxm ' Xmx 1 [¿] T D mxZ ' U.;X1 [z] , (3.13)

27

for 0 < i < where A mXm = (A mxm)1,

Bmxl (A - m x m) ' b;xl (Am x m) ' A m x m ' b/xl (A mxm) ‘ b/xl]•
Cmxm — C mXm — Imxmj D mx; — 0mx/i Slid

uixi [i]= u[i-l + (l - 1)] u[i-l + (l - 2)] ••• u[zO]

Here we have assumed that the message has been properly partitioned, and to avoid
a notation clash with the serial state-space model (3.12), we have marked the parallel
state-space matrices and vectors in (3.13) with bars.

LFSR1 State-Space Formulation

In [26], a state-space model was presented for the serial CRC LFSR1 Architecture
that was extended to the parallel case. We have modified the notations used in
that paper to make them more consistent with the notations used in this thesis to
describe the serial LFSR2 Architecture. Furthermore, the approach presented in [26]
cannot be extended for situations when the degree of parallelism is greater than the
generator polynomial degree, and the formulation we present next does not impose
those restrictions.

Observing the architecture in Figure 3.4, and one can derive the following state
space,

^mx 1 "F 1] — A mxm ‘ Xmx 1 \f\4" bmxi • u [z]

Ymxl [i] = C mXm ‘ -kroxl [¿] 4“ dmxi u [z], (3.14)

Figure 3.4: Delay diagram of the serial CRC LFSR1 Architecture.

28

0 0 0 0 9o 1
1 0 0 0 9i 0

for 0 < i < k + m — 1, where A mxm = 0 1 0 0 92 i b mxi 0

0 0 0 • • 1 9 m — 1 0

Lmxm i, Cr, = c 771X7715C mxm lmxm; and dmxi Omxi- It is noted that
dTOxi = dmxi, and u [i] = uk+m_i_i from (3.8). Again, to avoid a notation clash with
the LFSR2 state-space model, we mark the LFSR1 matrices and vectors in (3.14)
with tildes.

For the cases when the degree of parallelism is less than or equal to the generator
polynomial degree l < m, this formulation can easily be extended to

^mxl [* T l] — A mxm ^mxl [*] T B mxZ ' Ù/xl [*]

Ymxl [̂] = C'mxm ilmxl [¿] T DmxZ ' b ;xi [i] , (3.15)

for 0 < i < [fc+7 x], where À mXm = (Amxmj : ~̂ mxl

1---

1

o X 1__

_J

> C'mxm =

Imxmi DmxZ Omxi, and

fhxi [*] = ù[i- l + (l - 1)] ù [* •/ + (/ - 2)] •••

E-h1-----
1

It is noted that A mxm — A mxmi C mxm — C'mxrre) and D mx; Dy^x/.
For the cases when l > m, the input coupling matrix becomes

BmxZ

where b mxi is the input coupling matrix of the serial LFSR2 state-space model (3.12),
and all the other coupling matrices in (3.15) are unchanged.

3.3 Hardware Architectures

In this section, we review most of the published hardware CRC computation archi
tectures found in the literature [10], [17], [20], [21], [22], [23], [24], [25], [26], [40],
[46], [47], [48], and [42]. The two parallel LFSR Architectures derived from the prim
itive formulations developed in the previous section are examined first. Afterward,
the Two-Step [46], Cascade [23], Look-Ahead [25], State-Space Transformed [24], and

29

Retimed Architectures [10], [42], [47] , and [48] are discussed. For most of the ap
proaches, we present a generalized formulation that extends from a primitive one, and
its subsequent hardware realization.

3.3.1 Primitive Architectures

The parallel LFSR Architectures that perform CRC computation are hardware re
alizations of the primitive parallel formulations that were derived in the previous
section. Since the expressions are in the primitive form, they are the fastest non-
pipelined hardware architectures that perform the CRC computation. In other words,
there is no cancellation or sharing of terms between the parallel equations.

We have chosen to present these architectures using binary polynomial notations,
and we briefly explain how the state-space or ^-transform approach can also be used
to obtain the equivalent parallel architectures. It is important to remember that a
designer can use whichever method they are most comfortable with to obtain their
desired implementation.

Before beginning this discussion, we note that the publications concerning parallel
LFSR Architectures have not considered the case when l > m. The figures drawn in
this chapter are rather general and in Chapter 4 we provide detailed design that is
specific for the parallel LFSR2 Architecture when l > m. This can be found in our
conference paper [41].

Parallel LFSR2 Architecture

The parallel LFSR2 Architecture hardware realization that is illustrated in Figure 3.5,
can be obtained by directly mapping (3.4) to a hardware architecture. One observes
that there is a level of XOR gates required to combine the overlapping terms between
the xl • (a;) and xm ■ (x) polynomials, and then a block of XOR tress to

Shift-XOR

Figure 3.5: Generalized parallel LFSR2 Architecture.

30

perform the reduction of (x) mod G (x). Finally there is a block that contains an
array of FFs to store the (x) results. The latency of this approach is [y] clock
cycles, and the reader can consult [17], [20], [21], [22], and [45] for further information.

Now, to obtain an equivalent architecture using the state-space approach, we note
that j-th columns of A mxm and B mx/ correspond to the coefficients of xl+j mod G (x)
and xm+j mod G (x), respectively. Depending on l and m, there will be columns that
are identical between A mxm and B mx;, and these matrices can be seen as alternative
representations of (xl ■ (x)) mod G (x) and (xm ■ (x)) mod G(x). Finally,
output coupling matrix Cmxm is an identity matrix, therefore, by combining the
common columns in the input and state coupling matrices with a level of XOR gates,
a representation equivalent to the binary polynomial approach is obtained.

The z-transform approach [21] is quite similar to the binary polynomial approach,
only the calculation of the parallel expressions is different. With the binary poly
nomial approach, one selects a method to compute 5^ (x) = (x) mod G (x) and
develop the m parallel equations. Alternatively, the convolution operation is used to
construct the parallel equations and the realization of the result can be achieved with
an architecture similar to Figure 3.5.

Finally, we note that is in this thesis we have assumed that is customary to first
fix the generator polynomial and degree of parallelism before designing and imple
menting an architecture. Recently, a programmable CRC architecture based on the
parallel LFSR2 Architecture [22] was proposed. However, we consider this topic to be
outside the scope of this thesis and the interested reader can consult [49] for further
information.

Parallel LFSR1 Architecture

Similarly, the parallel LFSR1 Architecture hardware realization that is illustrated in
Figure 3.6 can be obtained by directly mapping (3.10) to a hardware architecture.
From the figure, one observes that the high-level structure is nearly identical to that
the parallel LFSR2 Architecture in Figure 3.5, but in this case the input polynomial is
not augmented before it is added to the previous syndrome. Later, it is shown that in
some situations the CPD of this architecture can one less Tx than the corresponding
LFSR2 realization. The latency of this approach is clock cycles, and the reader
can consult [26] and [40] for further information.

31

Shift-XOR

Figure 3.6: Generalized parallel LFSR1 Architecture.

3.3.2 Two-Step Architecture

In [46], the Two-Step Architecture for performing the CRC computation was pur
posed. Basically, the author showed that it is possible to first use a polynomial that
is a multiple of the generator polynomial to perform the reduction of the message
and obtain a fixed-length intermediate result. Then, the intermediate is subsequently
reduced by the generator polynomial to obtain the final syndrome.

The key to this approach is to find the multiple polynomial M (x) that results in a
parallel LFSRl implementation with CPD Tx - To achieve this, the present non-zero
coefficients of M (x) must be spaced at least l terms apart [46]. Since this method is
based on an LFSRl formulation [26], [40], an additional m Os must be appended to
the message to obtain the correct result, and this fact is not mentioned in [46]. The
author notes that the second reduction only needs to be performed once, and since

•the intermediate is of a fixed length, the implementation of the second block does not
require feedback connections.

F o r m u la t io n

The formulation for the Two-Step Architecture can be expressed by first defining the
multiple polynomial

M(x) = P (x) - G (x) ,

where the multiplicand polynomial P (x) = 1 + Pixl + xPi and

m +p— 1

M(x) = 1 + mixi + xm+p
i= 1

(316)

32

such that when G (x) is multiplied by P (x), M (x) has its present non-zero coefficients
spaced apart by at least l terms. Then, the first step of the reduction is performed as

$m (x) = (x1 ■ S H + j mocj m (x)

= fW (r)m odM (i).

for 0 < i < q — 1, where l < m + p. After the intermediate Sm (x) is obtained, it
is subsequently reduced by the generator polynomial G (x) and the final syndrome
S (x) is obtained as

S (x) = Sfj~ ̂ (x) mod G (x).

Multiple Polynomial Search

As one may imagine, it is difficult to find P (x) polynomials which produce suitable
M (x) polynomials that result in implementations with first stage CPD of Tx for large
degrees of parallelism. Little insight is provided into the method used in [46] to find
P (x) for CRC-32 with l = 8 other than the author mentioning that an exhaustive
search was performed. Out of curiosity, we wrote C + + code that performed a search
for P (x) polynomials for the other frequently referenced generator polynomials with
1 = 8 and the found M (x) are listed in Table 3.1.

The search strategy that we devised can be summarized as an improved exhaustive
search technique. After completing an exhaustive search to find a suitable M (x) for
the CRC-12, which consisted of testing each P (x) of the form P (x) = 1 + X^=i PiPP
xp up to degree p = 32, i.e., 231 distinct polynomials, we proceeded to cover the same
search space for CRC-16 without any luck. We then reconsidered the problem and
noticed that it is possible to solve for the coefficients of the terms with the l smallest
and greatest l powers of P{x) . By knowing that M (x) is of the form (3.16), but

Table 3.1: Two-Step Architecture multiple polynomials for frequently referenced gen
erator polynomials when l = 8.

G (x) M (x)
CRC-12 1 + x ri + x30 + x44
CRC-16 1 + x9 + x22 + x34 + x51 + X60

CCITT-16 1 + x 10 + x24 + x32
CRC-16f 1 + X 9 + X 26 + x38 + x51 + x60

CCITT-16t 1 + X 8 + x22 + X 32

CRC-32* 1 + X 23 + x46 + x64 + x84 + X 92 + X 111 + x 123
* reported in [46].

33

more specifically,
m + p —l

M (x) = 1 + ^ rriiX1 + xm+p,
i=l

i.e., mj = 0 for 1 < i < l — 1 and m +p — l < i < m+p — l. In other words, after the x°
term the next l — 1 terms must not be present, and before the xm+p term the previous
l — 1 terms are not present. Consider extracting the l smallest and greatest degree
terms from P (x) and G (x), and then call those polynomials Ps (x) and Pq (x) , and
Gs (x) and Gg (x) , respectively. We know that for the smallest l terms

/-i
Ps (x) • Gs (x) = 1 + ^ 2 Ox1 + xTS H----- ,

i=1

where ts > l, and there is only one Ps (x) that satisfies that relation. A similar
argument can be made for the product of the greatest l terms of P (x) and G (x)
resulting in

m +p—l

PG (x) • Gg (x) = • • • + xTE + 0xi +
i=m+p—l+1

where rE < m+p—l, and there is only one Pq (x) that satisfies that relation. In Tables
3.2a and 3.2b the Ps (x) and PG (x) polynomials for common generator polynomials
with degree of parallelism l = 8 are listed, respectively.

To put it in perspective, the naive exhaustive search for the CRC-12 multiple
polynomials lasted approximately one week (with the simulation running constantly).
With the improved method, we are able to complete the same search in about one
minute. However, we note that this approach cannot be easily extended to solve
for more coefficients in M (x). Consequently, it would not be feasible to find the
M (x) polynomial for CRC-32 reported in [46]. An alternative approach could test
M (x) mod G(x) = 0 using one of the software CRC computation algorithms, where
the coefficients in M (x) are at least l terms apart.

Realization

The approach to realize the Two-Step Architecture suggested by the author consists
of two blocks, and an illustration of the architecture is given in Figure 3.7. The first
block which is denoted by (x) mod G (x), is used to perform the initial reduction
by M (x) and can be executed at a very high clock rate. The second block, denoted
by Sm (x) mod G (x), performs the final reduction by G (x) once, at a much slower
rate. However, since the second block does not have a feedback connection, it can be

34

Table 3.2: Two-Step Architecture multiplicand polynomials for frequently referenced
generator polynomials when l — 8: (a) smallest order terms, (b) greatest order terms.

(a)
G(x) Ps(x)

CRC-12 1 + X + X4 + X5

CRC-16 1 + X2 + X4 + X5

CCITT-16 1 X ̂
CRC-16f 1 + X + X2 + X3 + X4 + X5 + X® + X7

CCITT-16f 1 + X4

CRC-32 1 + X + X3 + X5 + X7

(b)
G{x) Pg (x)

CRC-12 xp~7 + xp~6 + xp~5 + xp~4 + xp~3 + xp~2 + xp~l + xp
CRC-16 xp~7 + xp~6 + xp~b + xp~A + xp~3 + xp~2 + xp~l + xp

CCITT-16 XP~A + xp
CRC-16f xp-a + xp~A + xp~2 + xp

CCITT-16f xp~5 + xp
CRC-32 xp~6 + xp

easily pipelined and this extension is not stated in [46]. Thus it is possible to derive a
pipelined parallel implementation with CPD Tx- Furthermore, as stated earlier, the
author neglects to mention the fact that an additional m Os must be appended to the
message to make the scheme functional. So, if the second block is pipelined, then the
latency of this approach is + Sp clock cycles, where Sp denotes the number of
pipeline stages in the second block.

Shift-XOR

Figure 3.7: Generalized Two-Step Architecture.

35

3.3.3 Cascade Architecture

In [23], the idea of cascading the serial LFSR2 combination logic to obtain the Cas
cade Architecture was presented. In this approach, the author notes that if one
separates the combinational logic from the register in the serial LFSR2 Architecture,
and cascades copies of it, then a parallel architecture is obtained. The strength of
this approach is its implementation simplicity. A designer with limited knowledge of
CRCs can easily derive and implement a parallel architecture from the serial archi
tecture without restriction on the desired degree of parallelism. Other papers that
use different forms of this approach include [50], [51], and [52],

Formulation

The formulation of this approach is quite simple, beginning with the recursive equa
tion in (3.3), and letting the degree of parallelism l = 1 one can obtain,

S® (x) = (x(1) • (x) + xm • B® (x)) mod G (x)

= ^x • S (x) + xm • mod G (x)

= crci (x) , b ^ , (3.17)

where crci (x) , b ^ = ^x • (x) + xm • 6^ (x) j mod G (x). Now, writing
an equation for (x) from (3.17), one can obtain

S[i+1] (x) = crCl (s® (x) ,

= crci (crci (x) , ,

which can be generalized for Ŝ l+l 1 (x) as,

S[i+l] (x) = crCl (s [i+l- l] (x) , b̂ +l]^

= crci ^crcj (x) ,

= crci (crci • • crd (S [l“ 1] (x) , b ^ , • • • ,) , b .

(3.18)

36

Now, if one considers a change of variables in (3.18) to describe a system that processes
/ message bits at a time, by defining (x) = JZjZo bfx3 where b'f = b{')+l~(j+1)Z and
replacing Ŝ 1+l̂ (x) with (x), one can obtain,

S[l] (x) = crc! ^crci • • crcx (s [l_l1 (x) , , • • • , bf1) , . (3.19)

The formulation in (3.19) shows that the CRC operation as defined in (3.17) can be
applied repeatedly during a single clock cycle to obtain a parallel architecture.

Though it was not mentioned in [23], it is clear that this approach can be gener
alized by defining the CRC function to process more than one message bit at a time,
i.e.,

crc, (x) , B® (x)) = (xl ■ S^-11 (x) + xm • B® (x)) mod G (x),

where (x) = In facb this concept is extended in the following section
and employed to develop architectures that are flexible in the sense that the degree of
parallelism can altered without modification to the architecture. However, the main
advantage of the cascading approach is to allow a designer with limited knowledge to
implement it, thus it is best suited for the serial cascade case.

An extension that can be more useful is cascading the LFSR1 combinational logic
instead of the LFSR2 combinational logic. The CPD of the LFSR1 logic is Tx, while
the LFSR2 logic has a CPD of 2 • Tx . Thus, for some generator polynomials, one can
reduce the CPD by using the LFSR1 logic. However, if the LFSRl logic is used, then
an additional m Os must be appended to the message to obtain the correct result.

Realization

The generalized hardware realization of (3.19) is illustrated in Figure 3.8, and Fig
ures 3.9a and 3.9b illustrate the generalized LFSRl and LFSR2 combinational logic,

€\ XORs bl-2 XORs hZ XORs

Figure 3.8: Generalized Cascade Architecture.

37

Figure 3.9: Generalized cascade combinational logic blocks for G (x) .= 1 +
+ (a) LFSR1, (b) LFSR2.

respectively. From the figures it is clear that both architectures require |F| x l XOR
gates, and the computational latency is [y] and clock cycles when using the
LFSR2 and LFSR1 combinational logic, respectively. Finally, in [23] a sample imple
mentation for G (x) = 1 + x2 + x3 with l = 4 is illustrated1.

3.3.4 Look-Ahead Architecture

In [25], a look-ahead approach was applied to the serial LFSR2 architecture to derive
the Look-Ahead Architecture. The technique described in this paper is applied to
both internal and external LFSR architectures. Since the CRC is defined only for
internal LFSRs, we do not discuss the applications to external LFSR architectures.

Formulation

The formulation presented in [25] is unique in the sense that it begins from the
message being partitioned in l blocks, where l is the degree of parallelism. Here, we
reproduce the derivation, using notations consistent with the ones used in this thesis.
Begin by assuming that k mod l = 0 and partitioning the message into l blocks, i.e.,

U (x) = U0 (x) + U1(x) + --- + Ut- 1 (x) , (3.20)

k_j
where Ui (x) = UiX1+ui+ixl+l -\-------huk̂ i+ixk~l+l = Y2j=o Uj.i+ixkl+l. The next step is
to manipulate the Ui (x) polynomials; consider the effect of multiplying the message

1 There is a typo in Figure 3a on page 110 and it is corrected in Appendix C.

38

polynomial by xm, and from (3.20) one can obtain,

xm -U (x) = xm ■ (U0 (x) + Ui (x) + • • • + E//_i (x))
/ - i

= E (x" ■ u ‘ <x>)

/-I / f - 1

= E K ’ - E ' v m ^
i—0 \ j=0
l-l

E
x m - (l - l) + i . ^ 2 Uj l+ .x U+O -'-1

¿=0 Y j=0
/-I

¿=o
(3.21)

where £/* (x) = UiXl~x + ui+ix 2l~l H------- h ufc_;+jXfc-1 = ^ L o Table
3.3 is a reproduction of Table 1 in [25], showing the relationship between the U (x),

Ui (x), and Ui (x) polynomials, but using the reverse Endianness notation.

Now substituting (3.21) into the CRC definition given in (2.2), and one obtains,

/ - i
S (X) = ^ x ™-(l~l)+i . fj. mod Q

¿=0

= (x m- l+1 • Uo (x) + x m~l+2 • Cfi (x) + • • • + xm • Ui-i (x)) mod G (x).
(3.22)

The authors of [25] then make the remark that the multiplication of x m~l+l with
Ui (x) can be accomplished in hardware by shifting the Ui (x) into the (m — Z + ¿)-th

Table 3.3: Look-Ahead Architecture polynomial relationships for k = 9 and l = 3.

deg x° X 1
5X Xs X4 X 5 X 6 x 7 X *

V O) u0 U\ U2 U3 U4 u5 Uo u7 Us
U0 (x) Uo 0 0 Uz 0 0 u6 0 0
U ,(x) 0 «i 0 0 U 4 0 0 u7 0
U2 (x) 0 0 U2 0 0 U5 0 0 U 8

U0 (x) 0 0 Uo 0 0 U 4 0 0 u7
tii(x) 0 0 Ui 0 0 ^5 0 0 u8
U2 (x) 0 0 u2 0 0 «6 0 0 9̂

39

Figure 3.10: Non-optimized parallel CRC computation architecture where l < m.

right-most position of the LFSR2 architecture [2], An illustration of a realization of
(3.22) is shown in Figure 3.10, where similar to the serial LFSR architectures, the
coefficients of the greatest order terms are fed in first, i.e., u^k-1 , u^k-2 , • • ■, uifi for
Ui M = E tc 1 Uijxi. The authors note that this architecture does not have any speed
advantage over the traditional serial LFSR2 architecture, requiring k clock cycles to
process a £;-bit message, and we note that this approach cannot be easily extended for
l > m. However, by applying look-ahead techniques it is possible to take advantage
of the Z — 1 Os between message bits in the inputs Ui (x).

Next, we examine a simplified state-space model of the architecture in Figure 3.10
where zeros are applied to the inputs. Noting that l < m and beginning from the
system,

1 T 1] = A-mXTn ' Xfnxl X] T Bmxm • Umxl [¿]

Ymx 1 [XI — C mxm ’ ^mxl] -f- D mxm U-mxl [X] 1 (3.23)

0 0 0 0 go
1 0 0 0 9i

for 0 < i < k 1, where A mxm B mXm 0 1 0 0 92 5 ^mxm

Imxm? Dmxm 0mxm) Billd
0 0 0 1 9m—1

iimxl 0 ixm—l 'U'O.k—l—i ^l,k—l—i . . . Ui— l,k—1—i
T

which describes the architecture in Figure 3.10. Consider applying zeros to the input
u.mx 1 then (3.23) reduces to

40

^mx 1 "I" 1]

Y m x l [¿]

-mxm

'm xm

^mx 1 [̂]

^mx 1 [̂] 5

and after Z — 1 clock cycles the content of the state register can be expressed as

^mxl [¿“hi] — (A mxm) ’ ^mxl [¿] • (3.24)

Since the JJi (x) input polynomials were defined to have one message bit followed by
l — 1 Os, one can consider the input bit and then apply the look-ahead transformation
in (3.24) to account for the Z — 1 Os during a single iteration without inputting them.
Thus the formulation becomes,

^mxl [i d 1] — (AmXm) ’ (-̂mxm ‘ ^-mxl [¿] T Rmxm ' ^mxl [̂])
Ymxl [*] = G mxm • Xmxi [z] + D mxm ' Umxl [z] , (3.25)

for 0 < i < [V -] , where the coupling matrices are as defined in (3.23) and the input
vector umxi [z] is formed from the primitive LFSR2 state space in (3.13) with some
extending zeros, i.e.,

Ofll-Zxl

Ujxi [i

Now, since A mxm = B mXm5 one can modify (3.25) and obtain,

% x l [z] —

X-mx 1 [z T 1]

Y m x l [̂]

(■A-mxm) ' fmx 1 \̂\

C mxm ‘ Xmxx [*] T D mxm xl W, (3.26)

for 0 < i < [V I ’ where tmxl [®] = Xmxi [i] + Umxl [«]■

Realization

The approach to realize the Look-Ahead Architecture consists of computing the addi
tion xmxi [z] + umxi [z] and then cascading l copies of the A mxm combinational logic
depicted in Figure 3.11 to perform the look-ahead operation. Figure 3.12 shows the
generalized look-ahead architecture. This architecture is non-primitive, cannot be
easily developed for cases when l > m, and requires |T| x l XOR gates to implement.
Finally, we note that a detailed design and trace is provided for k = 8, l = 2, and
G (x) = 1 + x + x 3 + x 4 in Section 4.1 of [25].

41

Amxm-----------------V
P- 1— % A

;
. 1— I a

Figure 3.11: Generalized look-ahead combinational logic block for G (x) = 1 +
S X i 1 9iX* + x m.

Figure 3.12: Generalized Look-Ahead Architecture.

The characteristic noted by the authors that we feel is most unique to this ap
proach is the ability to develop an architecture that is capable of varying the degree of
parallelism. By adopting an architecture shown Figure 3.13, one can realize a flexible
parallel CRC computation architecture that can be adapted by simply by-passing
look-ahead logic blocks. This design could be suitable for deployment in intellectual
property (IP) cores or part of an adaptive system. One point not raised by the authors
of [25] is the ability to adjust the generator polynomial by simply supplying control
signals to the AND gates in the look-ahead blocks as depicted in Figure 3.11. We
note that similar modifications could be made to the cascading approach to obtain
an even more flexible design, that does not place the restriction of having the degree
of parallelism less than the generator polynomial degree.

42

Figure 3.13: Design of the Flexible Look-Ahead Architecture.

3.3.5 State-Space Transformed Architecture

In [24], a state-space similarity transformation method was proposed to obtain the
State-Space Transformed Architecture that is easily pipelined. Excluding the Two-
Step Architecture, all of the previous approaches discussed thus far cannot be easily
pipelined dude to the feedback loop complexity [24], The state-space transformation
proposed in [24] creates a system with a feedback loop complexity equal to that of
the serial LFSR2 architecture, and the input and output logic blocks can be pipelined
resulting in a parallel architecture with CPD 2 • Tx-

Formulation

Beginning with the parallel LFSR2 state-space equations (3.13), consider a similarity
transformation xTOXi [z] = Tmxm • x(nxl [z], which takes the state coupling matrix to
companion form. Then, the transformed state-space equations can be written as,

X m x l ~h 1] A m x m ' X m x l Kl ~h ’ *-hxl [¿]

Y m x l \i\ = Cmxm • X m x l [z] + D rnxl ' Ù /x l [¿]) (3.27)

= c'^mxm ^

m x m m xm

T
• A m xm * T m x m j ^ m x l ^ m x m ’ ^ m x l j 3-11(1for 0 < % < [, where A'

• Tn -1- m x m

In [24], it is shown that the matrix T mXm that takes A mxm to companion form
A ^ xm, can be found as

m xm ^ (A mxm) ̂ *bmxl ^(Amxm) j * b mxl ^ (Amxm) ^
m—1

A m x m)) ' b m x l

(3.28)

and the vector2 b ^ xl can be selected freely subject to the constraint that the columns
of Tmxm are linearly independent, i.e., TmXm is invertible. Furthermore, if the gen
erator polynomial is irreducible, then any b ^ xl can be selected.

2 In [24], b i denotes the m x 1 vector that is used to create the matrix T mxm.

43

In [24] an example is presented for CRC-32 with l = 32, and for simplicity the
T

author selects b 32xl 1 0 0 0 to construct the transformation matrix
T 3 2x3 2 - The author makes the comment in the discussion proposing an open research
question that “it may also be possible ... using a different choice for [b^xl], to find
cases [with lesser hardware requirements]” [24]. The hardware requirements in this
case consist of the number of XOR gates, FFs, and pipeline stages (PSs). We chose
to investigate this open research question in our conference paper [53] and our search
approach is explained next.

We make one final note concerning the formulation of this approach. In [54], the
authors extend the formulation in [24] to handle the case when the message length is
not a multiple of the degree of parallelism. We consider this to be outside the scope
of this thesis, and we will omit it from our discussion.

Vector b^xl Search

We perform a brute-force search testing all possible b ^ xl vectors for their result im
plementation complexity. Since designers take different approaches to implement an
architecture (possibly depending on what different hardware elements are available),
to consider a b ^ xl to be optimum, we feel that it is best to count the number of Is in
the coupling matrices for the frequently referenced generator polynomials. This may
always result in the globally optimum value for all the different hardware libraries,
but the end result will likely have a lower hardware complexity than selecting the

r l T
simple vector b ^ xl = 1 0 0 • • • 0 vector.

To perform our analysis of the selected generator polynomials with l = m, we
wrote C ++ code that precomputed the state-space matrices Amxm, B mx; in (3.13)
for each generator polynomial. After the precomputation stage, we loop over all the
2m — 2 possibilities for the different b ^ xl vectors. For each b ^ xl candidate, the
matrix T mxm is computed from (3.28) and inverted using Gauss-Jordan elimination,
i.e.,

771X771 •771X771 -771X777
i- l
777X777]•

to obtain T “ xm. Next, we verify that T mxm • T “ xm = Imxm, and afterward the
transformed coupling matrices A'mxm, B ^ ; , and C'mxm in (3.27) are obtained. We
proceed to count the number of Is in A'mxm, B 'mxl, and C'mxm, and the set of b^ xl
vectors that produced minimum values is retained. One optimization for the compu
tation exploits the fact that if l = m, then A mxm = B mx(m) [24], thus we are able
to first compute B'mxrn = T ~ xm • BmXm and then compute A'mxm - B ’mxm ■ T mxm.

44

Table 3.4: Optimum bjnx] for frequently referenced generator polynomials when l =
m.

G W h*umxl
CRC-12 r-~1 00 XO

 !

CRC-16 [OxCOODf
CCITT-16 [0x648B]r , * [0x908C]r , [0xC916]r , * [0xF664]7
CRC-16t [OxOOEO]7, * [0x740l]r

CCITT-16f [0x390D]r , [0x721A]r , * [OxAClF]"'
CRC-32 [0x0AA4 1D98]T, * [0x3C9C 8222]r

Table 3.5: Comparison of the total number of Is in the transformed coupling matrices.

G {x) h*umx 1 h*umx 1 % Savings
CRC-12 136 120 11.8
CRC-16 218 188 13.8

CCITT-16 238 226 5.0
CRC-16f 250 190 24.0

CCITT-16t 248 226 8.9
CRC-32 1031 929 9.9

By taking this approach, we save one matrix multiplication operation in our main
simulation b ^ xl loop.

The results of our search are summarized using a compact hexadecimal notation
r i T

in Table 3.4, and the comparison with the simple b ^ xl = 1 0 lxm—1 vectors is
shown in Table 3.5. We note that at this writing, we have completed over 50% of the
CRC-32 search, and the final result will appear in our conference paper [53]. As an
example of the hexadecimal notation, the optimum vector for CRC-12 with Z = 12 is
found to be

^12x1
-i T1 0 0 0 0 0 0 1 0 1 0 0

ITwe denote it as b*2xl = [0x814] , and hats are used to mark the optimum vectors.

Realization

A block diagram of the pipelined architecture is shown in Figure 3.14. In our real
ization, we assume only two-input XOR gates are available and pipelined the input
and output blocks such that their output wires were clocked. Any required retiming
FFs are placed at the roots of the pipelined XOR trees. Finally, we note a typo in
the matrix T _1 listed at the end of [24] and we have corrected it in Appendix C.

45

Figure 3.14: Generalized State-Space Transformed Architecture.

3.3.6 Retimed Architectures

In [10], the authors manipulated the serial LFSR2 architecture by unfolding, pipelin
ing, and retiming it. Since no closed form formulation for this approach is presented,
we neglected to study it in detail. However, the results achieved by this approach are
quite good for CRC-32, but it is difficult to gage its performance with other degrees of
parallelism. We note that a possible future study could consist deriving the parallel
expressions of this approach based on mathematical manipulations.

Other proposed retimed architectures include [42], [47], and [48]. In [47], a parallel
architecture is proposed based on the LFSR1 formulation. The input reduction logic
is unfolded and retimed, however the critical path in the feedback loop is unchanged
limiting the operational frequency. The other two retimed architectures, i.e., [42]
and [48], rely on assumptions that may limit their deployment. For instance, in
[42] the message length must be known beforehand and [48] assumes that there are
buffered packets to achieve good throughput. For these reasons, we consider all of
these retimed architectures to be outside the scope of this thesis and they are omitted
from our comparisons.

3.4 Software Algorithms

In this section, the published software algorithms that perform the CRC computation
are surveyed. CRC software algorithms are generally slower than their hardware
architecture counterparts, however they offer the designer greater flexibility and are
useful in systems that employ micro-controllers. The Bit-wise Algorithm, Table Look
up Algorithm, Reduced Table Look-up Algorithm, On-the-Fly Algorithm, Slicing
Algorithms, and Distributed Table Look-up Algorithm, as well as the LUT Generation
Algorithms are discussed in detail.

46

In our discussion, we take an approach similar to what used to discuss the hardware
architectures in the previous section. Each algorithm is summarized by presenting a
generalized formulation and a possible software realization using C++ pseudo code.
All of the algorithms are based on the primitive LFSR2 formulation, and are pre
sented using binary polynomial derivations. We begin our discussion by outlining our
assumptions in the following subsection. Published papers concerning CRC software
algorithms include [7], [13], [15], [16], [55], [56], [57], [58], [59], and [60].

3.4.1 Assumptions

To simplify our discussion of the CRC software algorithms, in this thesis we assume
the following:

• u>-bit bus width;

• datapath with standard instruction set, e.g.: desktop personal computer (PC);

• all typical bit-wise operations are assumed to take equal run time;

• the leading x m term of the generator polynomial is considered implicit;

• generator polynomial degree is less than or equal to the bus width, i.e., m < w,

• degree of parallelism is less than or equal to the bus width, i.e., I < w,

• word-sized chunks of the message are fetched at a time;

• reverse Endianness convention is employed; and

• W = words are required to store a A-bit message in memory.

Since the target deployment for our software experiments consisted of a desktop PC
with w = 32, most of these assumptions are rather trivial. Before moving on to the
discussion of the algorithms, we provide some justification for the assumptions that
may not be obvious to the reader.

First, we feel that the most important issue for CRC software algorithms is the
Endianness convention of the computation. We have chosen to maintain the reverse
convention in all our implementations, because this notation simplifies the implemen
tations of most CRC algorithms, including our later proposed algorithm. Also, it is
used in the most recent software CRC publication [7] and this convention is illustrated
in Figure 3.15.

47

w =
k
w

kmoéw w-{kmoàw)
A

(^ A
(^

m sg[o]
m sg[l]

m s g [fF - 2]
m sg [P F -l]

/

\

U w (W -\) U k - 2 u k - 1 0 0

U w (W ~ 2) U w (W - 2)+ l U w (W - 2)+ 2 U w (W -2)+ 3 U w (W ~ l) - 2 U w (W - 1)-1

; ;

« W K + i K + 2 U w+3 . . . W 2 w - 2 U 2w -\

« 0 M i u2 « 3 K - 2

t t
MSB LSB

Figure 3.15: Illustration of the message array.

Next, when representing generator polynomials in memory, there are traditionally
two approaches. Since generator polynomials always have non-zero x° and xrn terms
[1], one of those terms can considered implicit and we do not need to store it in
memory. The overwhelming majority of papers adopt the approach to make the
coefficient of the xm term implicit, e.g.: [7], [13], [56], and [58], and we also follow that
convention. Moreover, the Endianness of that representation is also important, and
in Table 3.6, we provide both representations for the common generator polynomials
with the leading xm term implicit.

Again, like a hardware architecture, an iteration of a software algorithm is defined
as the operations to process l message bits. We note that since l < w was assumed,
then it is possible for an implementation of an algorithm to require multiple iterations
to process one w-bit message chunk. Finally, since we have assumed m < w, the final
syndrome and all the LUT entries can fit inside a single word. For discussion of
implementations when m > w, the reader can consult [15].

Table 3.6: Standard hexadecimal representations of frequently referenced generator
polynomials.

G(x) Normal* Reverse*
CRC-12 0x80F OxFOl
CRC-16 0x8005 OxAOOl

CCITT-16 0x1021 0x8408
CRC-16f 0x4003 0xC002

CCITT-16f 0x0811 0x8810
CRC-32 0x04Cl 1DB7 0xEDB8 8320

* x 171 term is implicit.

48

3.4.2 Bit-wise Algorithm

The Bit-wise Algorithm (CRCB) [56] is an emulation of the serial LFSR2 Architecture
(Figure 2.3b) in software. The CRCB does not capitalize on the advantage that
datapaths can manipulate multiple bits (a word) at a time, and consequently it is
quite slow.

Formulation

The formulation for this approach is quite simple, recalling the equation that was
used to develop (3.17),

(x) = (x ■ S^ ̂ (x) + xm ■ B ^ (x)) mod G (x). (3.29)

If one expands the (x) polynomial and replaces B® (x) with 6^ in (3.29), then

(3.30)

is obtained. Since generator polynomials can be written as

xm = go + g ix + g2x 2 4------- h gm- \ x m 1

equation (3.30) becomes

(3.31)

Realization

The realization of (3.31) is rather straightforward, and in Algorithm 3.1 we show a
code snippet for a possible C ++ implementation of CRCB(l) assuming m — w = 32.
Observe that the parentheses are used to denote the number of message bits processed

49

Algorithm 3.1 Bit-wise Algorithm.
crc = INIT__VALUE;
while (p_buf < p_end) {

msg = * (uint32_t *)p_buf;

for (i=0; i<32; i++) {
if ((msg A crc) & Oxl) == 0x1)

crc = (crc » 1) A polynomial;
else

crc » = 1;

msg >>= 1;
}

p_buf += 4;
}
return crc A FINAL VALUE;

T T

T T
u.

(a)

T T
¿0

T T
Uiw U(i+\)-w-i

(b)
Figure 3.16: Illustration of CRCB Endianness for m < w: (a) normal, (b) reverse.

in an iteration for a realization of an algorithm. For further discussion concerning
implementations of CRCB, the author may consult [13], [15], and [56]. Finally we
note that, if the normal Endianness convention is used to implement this algorithm
and m < w, then an extra shift is required in the condition in Algorithm 3.1 to form
s^l1! + (as well as all the other shifts being reversed), see Figure 3.16. In fact, all
the CRC software algorithms in this thesis suffer this problem for normal Endianness
convention when m < w.

3.4.3 Table Look-up Algorithm

The Table Look-up Algorithm (CRCT) first suggested in [56], but often credited to
[58], is rather easily implemented and useful for software deployments of high-speed
CRC computations where memory is readily available. Consequently, this algorithm
is popular for desktop PC deployments.

50

Formulation

The formulation of this approach consists of combining l iterations of CRCB into a
single iteration. Beginning with (3.3), assuming l < m, and expanding the (x)

and B^ (x) polynomials, one can obtain,

(x) = (x l • (x) + x m • B® (x)) mod G (x)

= (a g " V + s li~ 1]x l+1 + • • • + s t 1Ja;i+m_1+

b[$ x m + b f x m+1 + ■■■ + b[li 1 a:m+i- 1) mod G (x)

= a g - V + a f " V + 1 + • • • + h x ^ + ((a t 1,1 + fig1) x"*+

(s t - l i + bi) ^ + 1 + ' ' ' + (s t-3 + ^ l i) *m+l~X) mod G (x)

= a g - V + a f - V + 1 + • • • + a t lL ^ ™ - 1 +
(xm • H [i] {x)) m odG (x), (3.32)

where (x) = (^ t i+ j + i - i) ■> ancl (x) is use(l to represent the terms
that require reduction in xl • (x) + xm • B^ (a;). If one performs the reduction of
x m ■ H® (x) in (3.32) during a single iteration, then the performance of this approach
will be better than CRCB.

Realization

An LUT is created with 2l m-bit entries for the syndromes of each of the possible
Z-bit patterns of H® (x), where

lut (H® (x)) = (xm ■ H® (re)) mod G (x).

The most common degree of parallelism for implementations of this algorithm is
l = 8 . Selecting l such that w mod l ^ 0 makes little sense, because the number of
bits processed in the iterations of a word fetch will not be equal. The next logical
value would be l = 16, but that results in a LUT with 216 entries, and the designer
may not have that amount of memory available. Furthermore, even when there is
enough memory available to implement l = 16, the access times are likely to be poor
mainly due to caching [1 2], [61].

51

Algorithm 3.2 Table Look-up Algorithm.
crc = INIT_VALUE;
while (p_buf < p_end) {

msg = * (uint32_t *)p_buf;

for (i=0; i<4; i++) {
term = (crc A msg) & OxFF;
crc = lut[term] A (crc >> 8);

msg » = 8;
}

p_buf += 4;
}
return crc A FINAL VALUE;

In Algorithm 3.2, we show a code snippet for a possible C ++ implementation of
CRCT(8) assuming m = w = 32. For the cases when l > m, the development of the
formulation in (3.32) is slightly different with

l—m—l m—1
H [i] (z) = Y b f x j + Y (4 _1] + bf+i-m) x j -

j=o j=o

In our discussion of the next algorithm, we develop this formulation in detail. Finally,
additional implementations and further discussion of this algorithm can be found in
[7], [13], and [15].

3.4.4 Reduced Table Look-up Algorithm

The Reduced Table Look-up Algorithm (CRCR) first suggested in [13], also known
as the Virtual Table Algorithm [15], is derived from the linearity property of the
modulus operation. Typical implementations slightly outperform CRCB, at the cost
of a small amount of additional memory.

Formulation

The approach of this algorithm is based on decomposition of the polynomial H® (x)
and the distribution of the modulus operation. Beginning from (3.3), assuming l > m,
and expanding the (x) and (x) polynomials, one can obtain,

52

5 [i] (x) = (x l • (x) + x m ■ B® (x)) mod G (x)

= (s | p V + H-------- 1- S[̂ } \x l+m~l+

+ b f x m+1 + • • • + b f^ x " 1̂ - 1} mod G (x)

= (f f i ”>+ i f * “ « +• • •+ + (s i ; - 1) + 4 +) * '+

(+ " + d -™ + i) x ‘+l + • ■ ■ + (» t - 'J + i’L) m od G (x)

= (xm ■ (x)) mod G (x), (3.33)

where ifW (x) = sj ~ 1] xJ+ ̂ 2^Jm-i (si _1] + bf-m+i) x j ■ Then, the polynomial
x m ■ HW (x) in (3.33) is decomposed and the mod operation is distributed, i.e.,

(x) = (x m ■ H® (x)) mod G {x\

= X

l- 1
m X ' L.KI^ h y x 3) mod G (x)

3 = 0

h ^ x m mod G (x) + h^xm + 1 mod G (x) +
h f ^ x ™ ^ - 1 mod G (x).

+

(3.34)

Realization

To implement (3.34) in software, one can create a reduced LUT with l m-bit entries,
where

lut (xj) = x m+j mod G (x).

Then, during each iteration, the CRCT LUT entry is constructed from the required
look-ups (depending on values of h® for 0 < j < l — 1) to the reduced LUT table.
This approach serves as a low-memory alternative to CRCT. Selecting the degree of
parallelism equal to bus width is generally the best choice for the fastest implementa
tions of this algorithm [13]. In Algorithm 3.3, we show a code snippet for a possible
C ++ implementation of CRCR(32) assuming m = w = 32.

3.4.5 On-the-Fly Algorithm

The On-the-Fly Algorithm (CRCF) [13], [56], also known as the Optimized Virtual
Table Look-up Algorithm [15], relies on implementing the primitive LFSR2 equations
in software with datapath operations. Unlike the previously described software CRC

53

Algorithm 3.3 Reduced Table Look-up Algorithm.
crc = INIT_VALUE;
while (p_buf < p_end) {

term = crc A * (uint32_t *)p_buf;

crc = 0x0;
for (i=0; i<32; i++) {

if ((term & 0x1) == 0x1)
crc A= lut[i];

term >>= 1;
}

p_buf += 4;
}
return crc A FINAL VALUE;

computation algorithms CRCB, CRCT, and CRCR, the performance of CRCF is
dependent on the degree of parallelism, coefficients of the generator polynomial, and
creativity of the implementer.

Formulation

As we have demonstrated though out this chapter, there are many different ways to
obtain the primitive parallel LFSR2 equations. In typical explanations of CRCF, the
equations are obtained from the entries of the CRCR LUT, and both [13] and [56]
present a table outlining those equations for CRC-16 with l = 8 . We have produced a
similar table in Appendix B, that outlines the equations for CRC-32 with l — 8 . For
designers not experienced with hardware, this is probably the best method to obtain
the CRCF expressions.

Realization

The implementations of CRCF(8) for CRC-16 that are described in [13] and [56]
make use of special memory flags such the register parity. In many cases, these flags
may not be known of or available to the designer. Referring to the expressions for
CRCF(8) with CRC-32 in Appendix B, one can see that it would be difficult to derive
an implementation that outperforms CRCR(32) on any datapath. Also, we feel that
this algorithm is best suited for smaller datapaths such as w = 8 or w = 16. For
these reasons, we omit this algorithm from our comparisons.

54

3.4.6 Tea-Leaf Reader Algorithm

The Tea-Leaf Reader Algorithm was one of the earliest CRC algorithms proposed by
the authors of [57], We note that the presentation style and notations contained in
the paper are quite cumbersome and difficult to understand. This algorithm was sub
sequently shown to be less efficient in terms of the number of number of instructions
and LUT sizes when compared to CRCT in [58]. Furthermore, in [62] the authors
discuss the differences between internal and external LFSRs, and they state the CRC
computation is implemented with an internal LFSR architecture, whereas the Tea-
Leaf reader algorithm is based on an external LFSR architecture. It is noted that
there exists a unique one-to-one mapping between the signatures created from an
input sequence inputted to each architecture, but the result produced from the ex
ternal LFSR architecture is not the CRC computation as defined in (2.2). Therefore,
the Tea-Leaf Reader Algorithm does not perform the CRC computation. For these
reasons, we omit this algorithm from our comparisons, and for further discussion on
internal and external LFSRs and the signatures generated by them, the reader may
consult [63] and [64],

3.4.7 Joshi-Dubey-Kaplan Algorithm

In [16], a parallel CRC algorithm was proposed, which we refer to as the Joshi-Dubey-
Kaplan Algorithm (CRCJDK). It was designed to take advantage of the instruction
set extensions present in the IBM PowerPC 128-bit architecture. It is difficult to
compare implementations of CRC JDK [7], because similar to CRCF its performance
relies on specific datapath instructions that are not always available to the designer.
We attempted to implement it on our w = 32 system and derive a formulation that
modeled the operation of this algorithm, but we were unsuccessful. For these reasons,
we omit this algorithm from our software comparisons.

At the end of [16], a parallel CRC architecture is proposed by mapping the CR-
CJDK to hardware. However, the explanation of its implementation is not clear, and
we failed at attempts to implement it. We have found no other papers in the liter
ature that provide comparisons of the theoretical or implementation performance of
this architecture, and for these reasons we omit it from our hardware comparisons.

55

3.4.8 Slicing Algorithms

The Slicing Algorithms are the fastest known software CRC computation algorithms.
The derivation of these algorithms presented in [7] is quite complex involving many
theorems and lemmas. In this subsection, we derive the slicing formulation though
simple binary polynomial manipulations, and show this approach is really a combi
nation of the CRCR and CRCT algorithms. Two variants of approach are presented
in [7] called the CRC Slicing-by-4 Algorithm (CRCS4) and the CRC Slicing-by- 8 Al
gorithm (CRCS8). They are suitable to process one word and two words portions
of the message stream during an iteration for CRCS4 and CRCS8 , respectively. Our
formulation for this approach focuses on CRCS4, but it is easily extended to the
CRCS8 case.

Formulation

The formulation of this approach can be considered as an extension of the CRCR
algorithm, and it is typically developed for situations when l > m. For CRCS4,
continuing from (3.33) and assuming that l mod 4 = 0, slicing H® (x) into four
polynomials, then distributing the modulus operation, and one obtains

S® (x) = (xm ■ H® (x)) mod G (x)

= (x m ■ (.H f1 (x) + £ 4 . H f] (x) +

x^ ■ (x) + (x)^ mod G (x)

= ^xm ■ H § (x)j mod G (x) + (x m+^1 • H® (x)j mod G (x) +

^rm + 2 • (xfj mod G (x) + (x m+^ • H® (x)^ mod G (x),

(3.35)

— 1 4 - 1where H ? (x) = £ £ h^x*, (x) = T . U , H ? (x) = - lV 4 hli rl ^3 = 0 nU jX ’
ï - 1

H3 (X) = E i= 0 h 31
+ 3

X- and assuming that l mod 4 = 0.

Observing (3.35) and one notices that a similar approach was taken with CRCR,
but in this case the reduction of (x) has been split in such a way that four
polynomials of | bits require reduction. Also, note that each polynomial requires
reduction at a different offset. For CRCS8 , one splits (x) into eight polynomials
assuming that l mod 8 = 0 .

56

Algorithm 3.4 Slicing-by-4 Algorithm.
crc = INIT_VALUE;
while (p_buf < p_end) {

term - crc A * (uint32_t *)p_buf;

crc = lut_56[term & OxFF] /'
lut_48[(term » 8) & OxFF] A
lut_40[(term » 16) & OxFF] A
lut_32[term » 24];

p_buf += 4;
}
return crc A FINAL VALUE;

Realization

The realization of this approach in software is rather straightforward. For CRCS4,
four LUTs are created for the different offsets xm, xm++ xm+5 , and x m+^ . With
w = 32, l = 32 is generally the best choice with size of the LUTs exploding for
greater values of l, and awkward alignments and poor performance for smaller values
of l. In Algorithm 3.4, we show a code snippet for a possible C ++ implementation
of CRCS4(32) assuming m = w = 32, and this is similar to what is presented in [7].
This approach outperforms CRCT because it avoids alignment shifts by processing
an entire word in an iteration and the caching problem by requiring four LUTs, each
with 23 m-bit entries.

3.4.9 Distributed Table Look-up Algorithm

Recently, the Distributed Table Look-up Algorithm (CRCD) was proposed in [60].
Basically, this approach adapts CRCS4 to perform the CRC computation with dis
tributed accumulators, i.e., one on each processor. The message is then partitioned,
and portions are processed in parallel before the final result is obtained from combin
ing all the partial results. Since we did not have access to a distributed environment,
we opted not to implement this algorithm.

However, in the future work section of that paper, the authors suggest an inves
tigation into a hardware realization of their approach. In the following chapter, we
investigate this idea and show that it is likely that cases exist where this approach
can offer improvement over the existing hardware approaches. However, simulations
need to be performed to verify that these cases exist and that they are for useful
situations.

57

3.4.10 Look-up Table Generation

In this subsection, the three LUT generation algorithms for the LUT based CRC
computation algorithms discussed in this chapter are presented. We note that LUT
entries are typically computed offline, so efficiency is not a primary concern. There
fore, we feel that designers should aim to implement algorithms that are more easily
maintained, so their correctness that can be verified. We remind the reader of our
assumption that m < w, i.e., all LUT entries can be stored in a single word. No
tice that we drop the iteration superscript from the H (x) polynomials, because the
iteration has no impact when we are considering the creation of an LUT.

CRCT LUT Generation

As previously discussed, the m-bit LUT entries for CRCT were defined as

lut (H (x)) = (xm ■ H (x)) mod G (x),

where H (x) = To generate the entries for the LUT, the bit-wise CRC
algorithm can be used. One can loop over the 2l different bit patterns of H (x),

compute the CRC with CRCB, and store the result in a table at the index described
by the bit pattern of H (x). In Algorithm 3.5, we show a code snippet for a possible
C ++ implementation of the CRCT LUT generation algorithm.

Algorithm 3.5 Table Look-up LUT Generation Algorithm.
lu t s ize = pow(2 , dop);

for (i= 0 ; i< lu t s iz e ; i++) {
msg = i ;
1 f s r = 0 ;

for (j =0 ; j<dop; j++) {
i f (((msg A l fs r) & 0 x 1)

l f s r = (l fs r » 1)
else

l f s r » = 1 ;

== 0 x 1)
A polynomial;

msg » = 1 ;
}

lu t [i] = l f s r ;
}

58

Algorithm 3.6 Reduced Table Look-up LUT Generation Algorithm.
lut_size = dop;

for (i=0; i<lut_size; i++) {
lfsr = polynomial;

for (j=0; j <i; j++) {
if ((lfsr & Oxl) == 0x1)

lfsr = (lfsr » 1) A polynomial;
else

lfsr » = 1;

lut[i] = lfsr;

CRCR LUT Generation

Recalling, that the m-bit LUT entries for CRCR were defined as

lut (xJ) = (xm • x-7) mod G (x),

for 0 < j < 1 — 1. The cleaver reader may notice that to compute the CRC of a
message of the form U (x) = x3 involves shifting one 1 followed by j — 1 Os into the
Serial LFSR2 Architecture. Again, using CRCB one can easily generate this LUT,
and in Algorithm 3.6, we show a code snippet for a possible C ++ implementation of
the CRCR LUT Generation Algorithm. One final point worth noting, the CRCT LUT
can be generated from the CRCR LUT entries by means of the CRCR Algorithm,
and this is discussed by the authors of [13].

CRCS LUT Generation

Recalling, that the LUT entries for the slicing algorithms depend on the offset and
the degree of parallelism, we define the generalized CRCS LUT as

lutG (H (x)) = (xm ■ x° ■ H (x)) mod G (x),

which is slightly different than the notation used in [7]. This is easily implemented
as combination of the two previous approaches, using CRCB to reduce H (x) and
shifting in an additional o Os. In other words, combining the x° ■ H (x) together, and

59

Algorithm 3.7 Slicing LUT Generation Algorithm.
lut_size = pow(2, dop);

for (i=0; i<lut_size; i++) {
msg = i;
lfsr = 0;

for (j=0; j< (dop+offset) ; j++) {
if (((msg A lfsr) & 0x1) == 0x1)

lfsr = (lfsr » 1) A polynomial;
else

lfsr » = 1;

msg >>= 1;

lut[i] = lfsr;

one obtains,

lut0 (H (x)) = (xm • x° • H (x)) mod G (x)

= (x m • H ' (x)) mod G (x),

where H ' (x) = x° * H (x). In Algorithm 3.7, we show a code snippet for a possible
C ++ implementation of the CRCS LUTs generation algorithm.

3.5 Summary

In this chapter we reviewed the CRC formulations, architectures, and algorithms
most relevant to our work. We identified three methods to obtain the primitive
parallel CRC equations: binary polynomial, state-space, and ^-transform. Parallel
hardware architectures are based on either LFSR1 or LFSR2 formulations, while
software algorithms are based solely on LFSR2 formulations.

The LFSR Architectures that perform the CRC computation are direct hard
ware realizations of their mathematical formulations, and are the fastest known non-
pipelined architectures. The Two-Step Architecture can result in parallel implemen
tation of the CRC computation with CPD Tx, however it is difficult to find M (x)
polynomials for degrees of parallelism greater than l = 8 . The approach used to de
rive the Cascade Architecture places no restrictions on the degree of parallelism and

60

generator polynomial degree, and is useful for designers with limited knowledge who
wish to implement a parallel CRC architecture. The Look-Ahead Architecture is yet
another systematic method to realize a parallel CRC computation in hardware. The
State-Space Transformed Architecture, can be used to derive a realization that can be
pipelined with CPD 2 -Tx - We performed a brute-force search to obtain the set of op
timum vectors used to construct the transformation matrices for frequently referenced
generator polynomials. Unfolding, pipelining, and retiming techniques were applied
to the serial LFSR2 Architecture to obtain high-speed parallel CRC computation
circuits.

The Bit-wise Algorithm is software emulation of the LFSR2 Architecture. The
Table Look-up Algorithm uses LUTs to perform the computation at a fast rate and
requires 2l m-bit LUT entries. The Reduced Table Look-up Algorithm is slightly
faster than the Bit-wise Algorithm requiring l m-bit LUT entries. The On-the-Fly
Algorithm relies on the designer being able to implement the parallel LFSR2 equa
tions using bit-wise operations. Unlike the previously mentioned algorithms, the
performance depends on the coefficients of the generator polynomial. Although the
Tea-Leaf Reader Algorithm is frequently cited in software CRC papers, it does not ac
tually perform a proper CRC computation. The Joshi-Dubey-Kaplan Algorithm was
designed to operate on a 128-bit Power PC architecture, and relied on instructions
specific to that architecture. The Slicing Algorithms use multiple LUTs to perform
the CRC computation, and they are the fastest known software algorithms. The Dis
tributed Look-up Algorithm extends the slicing approach to operate across multiple
processors. All of the LUTs for the previously mentioned software algorithms can be
computed using a variant of the Bit-wise Algorithm.

61

Chapter 4

N ovel C om putation Approaches

4.1 Preview

T HE previous chapter studied the existing CRC formulations. These formula
tions can be used to derive subsequent hardware architectures and software

algorithms. We have seen that many approaches exist, all having different implemen
tation trade-offs. Now, with the existing work sufficiently described and analyzed, we
are poised to develop our novel computation approaches.

In this chapter, we present a few novel extensions to the CRC formulation. These
contributions give rise to new computation approaches that are realized as architec
tures and algorithms. We show that some of these approaches improve upon the
existing ones, while the others are explored and could be the focus of future work.
In the following chapter, we present the performance comparison of our proposed
approaches versus the exiting ones.

4.1.1 Organization

The remainder of this chapter is organized as follows. In Section 4.2, we present
the binary polynomial to matrix derivation and our optimized parallel LFSR2 Ar
chitecture for the case when the degree of parallelism is greater than the generator
polynomial degree. In Section 4.3, the derivation, algorithm, and architecture of
Lambda Gamma approach are presented. In Section 4.4, we extend the existing bi
nary polynomial approaches discussed in the previous chapter and propose a novel
architecture. In Section 4.5, we derive and present the Message Splitting Architecture
which is based on the Distributed Table Look-up Algorithm and show that it may
outperform the existing approaches. This chapter is concluded with a summary in
Section 4.6.

62

4.2 Binary Polynomial to Matrix Approach

In this section, we construct a matrix-based representation of the parallel CRC LFSR2
formulation. Unlike the previous matrix-based approaches that are obtained through
state-space manipulations, our approach begins from the binary polynomial descrip
tion of the CRC computation presented in the previous chapter. After completing
the derivation, we propose an architecture specific to the case when the degree of
parallelism is greater than the degree of the generator polynomial. The majority of
this material appears in our conference paper [41], with some notational changes to
bring the formulation in-line with the material in the previous chapter.

4.2.1 Formulation

Assuming that degree of parallelism is greater than the generator polynomial degree,
i.e, l > m, and continuing from the LFSR2 derivation presented in (3.7), one can
obtain

771—1(l—m —1

j=o j =o
l—m—1 771—1

Z bf xj + Z (Si 11 + bf+l~m) ^
j=o j =0

771—1

= E bf*1+m+E (A"+
j=0 j=0
1-777—1

E ^
3=0

where

(4.1)

0
0 < j < m

* ? = ‘ b ' K m < j < l (4.2)

/ f - l + bf-m l < j < l + m

Now, we introduce a matrix multiplication for representing the non-zero portion
of scalar (re) in (4.1), as the product of a row vector Xix/ = 1 x x i-1

%and the column vector = 7̂77+1 Ẑ+777—1 , i.e.,

Z+777— 1 /+771—1

= x m -
j=m j=m

- x m - fxixi-tjld .

63

From (4.2), it is clear that (x) = YljtIZ 1 tjXj , consequently,

r W (i) = x ’" - x lx, . t W 1. (4.3)

From the recursive definition of the CRC given in (3.3), and using (4.3), one can
derive a generalized matrix-based formulation for the CRC computation as

S [l] (x) = (x m ■ X i xi • t j ^ mod G (x)

1] -t fii mod G (x)2>m

X

x m mod G (x)
mod G (x)

l+m—'.

-i T

m+1

Xm+l—1 mod G (x)

7x1

00,0 + 01,0^ + * * * + 0m—1,0 ̂
0 0 , 1 + 0 1 , 1 ^ + * • * + 0771— 1 ,1 -2 '

771—1

771— 1

771— 1

X i

9o,l- 1 + 9l,l-lx + • • • + 9m-l,l-lx

9 o,o 9o,i • • • 9o,i-i
9 i,o 9i,i • • • 9 i, i- i

7x1

xm 7x1

0m—1,0 0m—1,1 ' ’ ’ 0m— 1,/—1
_ Y O _ . f W— Alxm Vjmx/ Lix V

for 0 < i < q — 1 , where Xixm — l x xm~ i and

00,0 9o,i 9o,i-i

GrmX/ ~
0 1,0 9i, i 9i,i-i

0 m—1,0 9m—1,1 9m—1,1-

(4.4)

Similar to the method used to express (x) as the product of a row and column
vector in (4.3), one can write the left-hand side of (4.4) as

5 [1 x = Xi Xm °77ixl (4.5)

64

1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1
1 1 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0
1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1
1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1
1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0
0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0
1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0
1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1
0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
1 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 1
1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0
0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1
0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0
0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1
1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1
1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1
0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0
0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1
1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 1
0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 X 1 1 1 0 1 0 0
0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0
0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1
0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0
0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1

Figure 4.1: Matrix G 3 2X32 for the generator polynomial CRC-32 when l = 32.

Then dropping x ixm from (4.4) and (4.5) and one obtains

i x i W = G mxrt|[‘J1. (4.6)

We note that having the matrix Gmx; expressed in this form (4.4) simplifies the task
of developing software to generate it for different generator polynomials and degrees
of parallelism. An example of the matrix G 3 2 X 32 using the generator polynomial
CRC-32 is shown in Figure 4.1.

4.2.2 Realization

We begin by noting that since the iteration number has no impact on an architecture,
for convenience, one can drop the superscript notation from the terms in the parallel
CRC formulations. However, since these equations are recursive and contain both
and Sj~^ for 0 < * < q — 1 and 0 < j < m — 1, we can mark the next CRC terms,
i.e., with primes. This notation is also used in [22] and [26].

65

Observing (4.6), it should be clear that there are m equations (one equation per
syndrome bit),

S0 /O (tmt t"m+1) j tm +l—l)

= f l tm +1) j An+i—l)

^m—1 = fm — 1 iS"mi bn+1) ? tm +l—l) ■

A parallel CRC circuit can be constructed by direct realization of the m equations de
scribed by the multiplication Gmxrt/xi, i.e., independent realizations of the functions
fiS-

It is possible to use complexity reduction techniques to share hardware between
these m parallel equations, i.e., sub-expression sharing. Some of the published sub
expression sharing techniques include [65], [6 6], [67], [6 8], and [69], Initially, we
attempted to develop our own complexity reduction approach tailored for CRCs,
but afterward we found [6 8] which outperformed our approach and subsequently we
abandoned this topic.

Now, recalling from Chapter 2, where A and 0 are defined to be the time and area
complexity of a hardware architecture, respectively, we now let Si and (9,; represent
the delay and hardware complexity of for 0 < i < m — 1, respectively. Then, the
CPD of a hardware architecture A is determined by,

A = max(<J0A , - - - J m - 1) ,

and we define the total hardware complexity of a parallel CRC architecture as

TO —1
0 = to • Cx + Qi + m • Cf ,

¿=o

where, C x and Cp were previously defined to be the cost of an XOR gate and FF,
respectively.

As we are interested in the fast realization of /¿s, XOR trees can be utilized to
implement the equations. It is known that an n-bit XOR tree has hardware cost
{n — 1) • C x and [log2 n] gate levels. Therefore, if all the terms in an equation have
delay O -T x , this results in a delay of flog2 n] • Tx , where Tx is the delay of an XOR
gate.

66

Figure 4.2: Example DARC- 8 XOR tree architecture for s'2 = t2 + t5 + t6 + t7 + tg + ti2
with l = 16.

Since l > m, Us are computed with different delays (either 0 -Tx or 1 -Tx). Thus it
is possible to reduce the Sis if proper care is taken when constructing the XOR trees.
As can be seen in (4.2), terms tm to £/_i can be obtained with no delay, whereas the
terms tt to £m+/-i have the delay 1 • Tx . Therefore, in this architecture, we begin to
construct the XOR tree by pair-wise XORing the terms tm to U- i that are present
in each /¿, and at the same time we obtain the present ti to £m+/_i terms. Assuming
that in fi there are cq,0 terms with no delay and cr,̂ terms with 1 -Tx delay, if > 0

then the results can be summed up after [log2 (cq,i + [ivr"|)'| levels. Thus, the delay
of is equal to

Si = (l + log2 (<A, 1 + (4.7)

and the hardware complexity is

— (o'i.o + CRi — 1) • Cx . (4.8)

Figure 4.2 graphically shows how one can build an XOR tree for the s'2 equation of
the generator polynomial DARC- 8 (G (x) = 1 + x 3 + x4 + x5 + x 8 [27]) with l = 16.

Considering all the above remarks, we can now present a generalized design of
the parallel LFSR2 Architecture when l > m as shown in Figure 4.3, which appears
in [41]. It is an extension of the parallel CRC architecture presented in [2 2] and
illustrated with conventions similar to those of the parallel LFSR1 Architecture for
l = m in Figure 4 of [26], with some optimizations specific to the case l > m. The
first optimization is trivial, like previously published primitive architectures, we share
the feedback XOR gates that combine Sj-i and for l < j < l + m — 1 (4.2). The
second optimization comes from the previous discussion about how one can reduce
the overall delay by first having a level of XOR gates that combine the present tj

for m < j < 1 — 1 terms with no delay, and then construct an XOR tree with the
remaining terms.

67

68

This architecture was novel in the sense that no one had undertaken a study of
the design when l > m. In the following chapter, simulations are performed for this
situation and the optimum degrees of parallelism are determined.

4.3 Lambda Gamma Approach

In this section, we present the Lambda Gamma approach for performing the CRC
computation. We consider this to be the most significant contribution contained
the thesis. This approach gives rise to both a software algorithm and hardware
architecture. Compared to the existing approaches, the novel software algorithm
provides high-performance and requires low-memory usage.

4.3.1 Formulation

Here, we examine the relationships between the columns of Gmx/ and discuss how
the matrix is constructed. Afterward, we propose a matrix decomposition that we
call the Lambda Gamma decomposition. This derivation assumes that the degree of
parallelism is greater than or equal to the degree of the generator polynomial, i.e.,
I > m. We note that in [70], the original formulation for the modular reduction with
l = m — 2 is introduced and it has been used to design a bit-serial multiplier. In
the following, we extend this development to the CRC computation for l > m and
propose software and hardware approaches.

Beginning from the formulation in (4.6), the entries of the left-most column of
G mxz are obtained from the coefficients of G (x) as follows: g^o = g¿, where gij0 E

G mxi and gi E G (x), for 0 < i < m — 1; this is because

Therefore, when computing the remaining l — 1 right-most columns of Gmxz, in gen

771— 1

x m mod G(x) = | 1 + giX1 j mod G (x)

771— 1

1 + 9%x%

eral, each column represents the result of x m+i mod G (x) for 0 < j < l, and we
have

69

Recall that x T denotes the order of the second greatest nonzero term in the generator
polynomial, i.e.,

r —1
G (x) = 1 + ^ 2 9ix% + xT + %m-

i—1

Now, if j < m — r then no further reduction by G (x) is required [70], and for
these cases, the top-most entry of the j-th. column is equal to zero, i.e., goj = 0 .
However, when r + j = m, the term x T+G requires reduction, i.e., substitute xT+J =
xm = x T + giX1 + 1; this results in the entry g0,m-T = 1. For the remaining
cases r + j > m, the value of g0j depends on the generator polynomial. Also, it is
interesting to note that g0jS are fixed for a given generator polynomial.

From the entries in the top-most row of Gmxj, i.e., c/0j for 0 < j < l — 1, we define
the set A such that

A = { Ao, Ai, • • • , A|a|_i }

= {J I 9o,j = 1)7^ [0, l — 1], go,j ^ G mxi} . (4.9)

In other words, A can be seen as the set of js for 0 < j < l — 1, for which the
coefficient of the least significant term, i.e., x°, in the polynomial representation of
x m+o mo(| q (a;) is i. Note that A0 = 0, since go = 1 for all generator polynomials [1].
Moreover, the set A is easily computed using the serial LFSR2 Architecture (Figure
2.3b), by feeding in 1,0,0, ••• ,0, and recording the cycle numbers when so = 1
(counting the first cycle as cycle 0).

From the earlier discussion concerning reduction, it is clear that A0 = 0 and
Ai = m — r. With the left-most column of G mxi, which contains the coefficients of
the generator polynomial, one can obtain the columns between A0 and Ai of G mxi, as

xm+j mod G (x)

for Ao = 0 < j < Ai = t ; which is equivalent to a j-fold down-shift operation of the

r —1

X~ 1 + 9iZl + x
i= 1

T — 1

— x? + 9ix%+J +
i= 1

70

left-most column of GTOX/. For the case j = Ai, we have

Xm+Xl mod G (x) = x Xl ■ ^ 1 + QiXx + x T̂

r—1
= xAl + J 2 9ixi+Xl + xT+Xl • (4.10)

i—1

Substituting Xi = m — t into the right-hand side of (4.10), one obtains

r—1
xm+Xl mod G (x) = x m~T + 9iXi+m~T + x T+m~T

t= 1
T—1

= x m- T + Y , 9 i xi+m~T + xTn'
i=i

which is equal to the addition of the left-most column of Gmxi with its Ai-fold down
shifts. Next, for Ai < j < A2, x m+i mod G (x) can be obtained by (j — Ai)-fold
down-shifts of column A^ This is the same as the addition of the j-fold and (j — Ai)-
fold down-shifts of the left-most column in Gmx;. The remaining columns can be
obtained similarly.

4.3.2 Matrix Decomposition

From the set A, we introduce a group of |A| matrices that have the dimension m x l

denoted as À j^ for 0 < k < |A| — 1. To construct À j^ , begin with an m x l null
matrix, add a south-east (\) diagonal string of Is, which originate from A -̂th column
in the top-most row of À j^ , and extend across to the opposite side of the matrix;
the remaining entries of À j^ are Os, i.e.,

where

IYmxl —

X f t j = <
0 i ^ j — Afc

h3
c 1 * = 3 — Afc

A0,0
X lXk]
A0,l A 0,l-1

X \̂ k]
Al,0

X lXk]
Al,l

X [̂ fc]
AU -i

\ l xk]
. A m - 1,0

X [̂ fc]
Am—1,1 A m—1,/—1 _

71

Alternatively, the matrix A|^/ can be expressed as

A [A fc] =
mxl o mxAfc D mx(l-\k)

where D mx(i-\k) is a rectangular diagonal matrix1. Also, note that square bracketsv r \ i
have been chosen to describe the A J^ matrices, and this should not be confused with
the square brackets used to denote iteration numbers elsewhere in the thesis.

Next, define the matrix down-shift operator, denoted by j i , which acts on the
matrix A pxq as

A(p_q

where [A(9_qX9] denotes the p — i top-most rows of A pXq and i < q. We note that
this matrix j i operator can be expressed by the matrix multiplication

(A

(Apxg)^ — [Ojxp]
[D(p_i)Xp]

A pxq■

With the matrix down-shift operator defined and generalizing the above construc
tion explanations, we can decompose the matrix Gmx/ as

. (4.11)
jer \keA / ij

Furthermore, we can express the equation given in (4.11) as a matrix product

G mxl mxm ■Amxl (4.12)

where
go 0 . . . 0

9i go . . . 0

l 0

9m— 1 g-m- 2 ••• go

XD — [dij] and ditj = 1 if i — j else dij = 0.

72

and
9o,m—l • • • 90,1-1

00,m —2 ' ' ■ 90,1-2
• . • ’

$0,0 * ' * 90,l—m

recalling that c/j G G (x) and gitj G GTOX;. To prove (4.12) is equivalent to (4.11), we
make the following observation

Amxl = A-mxO (4-13)
ifcg A

which is obvious from our definition of the matrices. Then, substituting (4.13)
into (4.11) and one obtains

Gjyjx/ = 5 3
ter

= (Amxz)i7o + (Amx/)|7l H + (AmxO^ip^! ■ (4-14)

A mxl

00,0 00,1
0 00,0

0 0

Replacing the down-shift operations with their equivalent rectangular diagonal matrix
products, one obtains

G tox; — (A mxz)j.7o + (A mx/) lrYl + • • • + (A

0
D

7o x l
(l~7o)xl

l7 i

A mxl T

■mx^i7in-i

O71 xl
D 0-7i)xZ

A mxl + ••• +

07|r|-ixJ

D
•A

(l—7| r| -i)x i _

O70 xl

l~7o)xl

mxl

+
O71 xl

D (/-7i)x/
+ — h

07in-i xl

D
A

(*_ 7|r|-i)x* _
mxl

(4.15)

From the definition of the set T in (2.9), it is clear that the expanded sum in (4.15) is
equal to rmxm. Thus, we have shown both decompositions to be equivalent. Finally,
we note that the sets A and T serve as compact and convenient methods to represent
the Amxi and r mXm matrices, respectively.

Next, the matrix Gmx/ decomposition expressed in summation form (4.11) is used
to propose a software algorithm, whereas, the product form decomposition (4.12) is
used to propose a hardware architecture. Before proceeding we provide the following
example to illustrate how one can decompose a matrix Gmx;-

73

An Example

Consider constructing and decomposing the matrix G4x5 using the CCITT-4 gener
ator polynomial (G (x) = 1 + x + xA [27]) and l = 5. From G (x) one can quickly
obtain m — 4 and T = { 7 0 , 7 1 } = {0,1}. Next,

^1x4 *G4 x 5 —

x 4 mod G (x)
T

1 0 0 1 1 "
x 5 mod G (x)

^ G 4 X 5 =
1 1 0 1 0

0 1 1 0 1

x8 mod G (x) _ 0 0 1 1 0

is computed. From the top-most row of G 4 X 5 (shown in boldface), one extracts
A = {A0, Ai, A2} = {0, 3,4}.

Next, using the set A, the three A4Axfcg matrices are constructed as

1 0 0 0 0 " ' 0 0 0 1 0 "

A [0] -iV 4 x 5 “

0

0

1

0

0

1

0

0

0

0

m -, i v 4 x 5 —
0

0

0

0

0

0

0

0

1

0

0 0 0 1 0 0 0 0 0 0

and
0 0 0 0 1

 ̂[4j 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Now, consider the inner summation of (4.11), and compute the sum

V (A [*] ̂ - A [0] + A [3] + A [4]/ ,, ^yv4 x 5 J ~ yv4 x 5 + a 4 x 5 + yv4 x 5
fce A

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0
+

0 0 0 0 1
+

0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

’ 1 0 0 1 1 "

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

74

Finally,

E
/ ’ 1 0 0 1 1 \

0 1 0 0 1

0 0 1 0 0

\ o 0 0 1 0 /

1 0 0 1 1

0 1 0 0 1

0 0 1 0 0
0 0 0 1 0

’ 1 0 0 1 1

0 1 0 0 1

0 0 1 0 0
0 0 0 1 0

1 0 0 1 1

1 1 0 1 0
0 1 1 0 1

0 0 1 1 0

1 0 0 1 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

o o o o o "

1 0 0 1 1
0 1 0 0 1
0 0 1 0 0

Notice the single cancellation which occurs in the matrix addition (shown in boldface).

Alternatively, using (4.12) and starting from the sets T and A, one constructs

Then

' 1 0 0 0 ' " 1 0 0 1 1

1 1 0 0 and A 4 X5 = 0 1 0 0 1

0 1 1 0 0 0 1 0 0

0 0 1 1 0 0 0 1 0

4 x 4 A 4 x 5

1 0 0 0 1 0 0 1 1

1 1 0 0 0 1 0 0 1

0 1 1 0 0 0 1 0 0

0 0 1 1 0 0 0 1 0

1 0 0 1 1

1 1 0 1 0

0 1 1 0 1

0 0 1 1 0

4 x 5 .

As a final remark, we observe that the equality stated in (4.13) holds in this example.

75

4.3.3 Algorithm Realization

From the matrix decomposition presented in (4.11), we propose a new software algo
rithm that performs the CRC computation, we call it the Lambda Gamma Algorithm
(CRCAr). Like the all the previously published algorithms, our proposed algorithm
processes the message iteratively and we adopt the reverse Endianness convention for
representing the message and syndrome polynomials in memory (see Figure 3.15).

Beginning with the matrix and vector product in (4.6) and substituting (4.11),
one can obtain

(4.16)

When realizing (4.16) in software, after forming tjxl, we move it into the inner sum
mation of (4.16) and perform the multiplications with the matrices. This cor
responds to extracting and summing m-bit groups from t[xl beginning at the Afc-th
left-most bit position. If A*, points to a position in tjxl where m consecutive bits
would run off the end of tjxl, then zeros are used to fill the higher order positions (as
would be the result of • tjxl). We denote the m-bit intermediate result of the
set A summation by lJ)Jxl, i.e.,

(4.17)

Since we are discussing a software algorithm, in fact (4.17) is realized as

Afterward, the set T summation is carried out on the intermediate vector lj^xl and
the result is stored as the next syndrome. The set T summation is realized in software
as

Finally, the order of operations for CRCAr is denoted by parentheses as

(4.18)

76

bits sh ifted out

MSB LSB

g a rb a g e

MSB LSB

Figure 4.4: Illustration of the Lambda Gamma Algorithm when l > m and l = w:
(a) left-shifting by the set A, (b) right-shifting by the set T.

Figure 4.4 shows a pictorial representation of the Lambda Gamma Algorithm when
l > m. The A and T summations are shown as a group of left-shifts and right-shifts,
in Figure 4.4a and 4.4b, respectively. Again, we remind the reader that we are using
the reverse Endianness convention and the algorithmic form of CRCAr(32) is shown
in Algorithm 4.1 as a C ++ code snippet. One observers that the implementation is
straightforward and consists of two for-loops.

Similar to the CRCT, CRCR, and CRCS4 algorithms, the CRCAr algorithm re
quires precomputation operations, consisting of the sets A and T for a given generator
polynomial and degree of parallelism. In Algorithm 4.2, we show a code snippet for a
possible C ++ implementation of the Lambda LUT generation algorithm. The algo
rithm is derived from the definition of the set A in (4.9), and uses a modified version

Algorithm 4.1 Lambda Gamma Algorithm.
crc = INIT_VALUE;
while (p_buf < p_end) {

term = crc A * (uint32_t *)p_buf;

intermediate = 0x0;
for (i=0; i<lambda_size; i++)

intermediate A= term « lambda[i];

crc = 0x0;
for (i=0; i<gamma_size; i++)

crc A= intermediate » gamma[i];

p_buf += 4;
}
return crc A FINAL VALUE;

77

Algorithm 4.2 Lambda LUT Generation Algorithm.
lut_size = 0;
lfsr = polynomial;

for (i=0; i<dop; i++) {
if (((lfsr » (gpd-1)) & 0x1) == 0x1)

lut[lut_size++] = i;

if ((lfsr & 0x1) == 0x1)
lfsr = (lfsr » 1) A polynomial;

else
lfsr >>= 1;

}

Table 4.1: Lambda sets for the frequently referenced generator polynomials.

G (x) A for l = 32 |A|
CRC-12 {0,1,2,3,4,5,6,7,8,11,12,13,14,15,

16,17,22,23,24,25,26, 29,30}
23

CRC-16 (0 ,1 ,2 ,3 ,4 ,5 ,6 , 7,9,10,11,12,13,15,16,17,
18,19, 20,21, 22, 23, 24,25, 26, 27, 30,31}

29

CCITT-16 (0,4, 8,11,12,19, 20, 22, 26, 27,28} 1 1

CRC-16f {0, 2 ,4 ,6 , 8,10,12,14,15,18,19, 22, 23, 26, 27, 31} 16
CCITT-16f {0, 5,10,12,15,16, 20, 22, 24, 25, 26, 29, 30} 13

CRC-32 (0,6,9,10,12,16, 24,25,26, 28,29,30, 31} 13

of CRCB to perform the xm+l mod G (x) reductions for 0 < i < l — 1 and records
the iterations when the term x° is present in the result. The A sets for the frequently
referenced generator polynomials with l = 32 are provided in Table 4.1. The set T is
easily obtained from the coefficients of the generator polynomial, and T sets for the
frequently referenced generator polynomials were provided earlier in Table 2.3.

4.3.4 Architecture Realization

From the matrix and vector product presented in (4.12) and substituting (4.11), one
can obtain

Smxl = (r 'mxm ‘ A m xl) " 1 * (4-19)

When realizing (4.19) in hardware, is formed by the addition of the input message
block and the previous syndrome. Then, the multiplication between the matrix Amxi

and vector t j^ is performed, resulting in an m-bit intermediate vector, denoted by
l[i] i eAmx 1’ 1*c,5

771X 1 A ; • t 1i l m x! l l x l -

78

Shift-XO R

Figure 4.5: Generalized Lambda Gamma Architecture.

The vector l]̂xl is subsequently multiplied by the matrix T mxm and the result is stored
as the next syndrome in the m-bit FF array. The order of operations is denoted by
parentheses as

smxl = (j^mxm • mxl ' . (4.20)

A pictorial representation of (4.20) when l > m is shown in Figure 4.5. Since the
delays of the vector inputs to these matrices can be different, one should proceed by
pairing terms in order of least delay first, in order to obtain the fastest overall CPD.
We have taken this approach for our implementations and our results are stated in
the following chapter.

4.4 Extended Binary Polynomial Architecture

In this section, we introduce a new parameter that extends the existing binary polyno
mial formulations of the CRC computation. This parameter, denoted as p, allows one
to derive both the LFSR2 and LFSR1 formulations from a common staring point. We
call this the LFSRp approach, and show it is useful for obtaining optimized primitive
hardware architectures in terms of CPD and latency for a given generator polynomial
and degree of parallelism.

4.4.1 Formulation

We begin by modifying the original CRC equation (2.2) as

S (x) = (x m~p ■ Ù (x)) mod G (x), (4.21)

where
U (x) = xp • U (x). (4.22)

79

Next, we decompose our discussion into two parts that consider non-negative and
negative values of p. From this point forward, hats are used to denote variables used
to describe the LFSRp formulation.

Non-negative p

Assuming that p > 0, we provide recursive polynomial-based definitions similar to
the ones in the previous chapter, and derive a generalized parallel polynomial-based
CRC formulation with the parameter p.

Message Partitioning The approach taken is similar to what is done for the primi
tive parallel LFSR2 and LFSR1 formulations presented in the previous chapter. Begin
by partitioning U (x) into q message blocks, i.e.,

9-1
U(x) = -R [i] (x),

1=0

where (x) represents a binary polynomial of at most degree l — 1 corresponding to
the Z-bit message block being processed at the ¿-th iteration. Again, if (k + p) mod
G (x) 7 ̂ 0, then we assume one can prepend l — ((k + p) mod G (x)) Os to U (x) to
increase its length to a multiple of /.

Let t/M (x) be the portion of U (x) that contains all the blocks (x) for 0 <
j < i, and let (x) be the syndrome of (x). Also, define i /H (x) = 0 and

(x) = ¿»¡nit (x), then these definitions can be written as

t /[i](x) = xl ■ Û [i~1] (x) + R [i] (x) ,

S [i] (x) = (x m~p ■ Û [i] (x)) mod G (x),

for 0 < i < q — 1. It is noted that Û (x) = (x) and S (x) = (x). For more
information, we refer the reader to examine Figure 3.1, where the message polynomial
relationships for the LFSR2 approach are illustrated.

Derivation From the previous definitions, one can derive a generalized recursive
expression for S'W (x) in terms of (x) and B® (x), i.e.,

80

S® (x) = (xm“p • U® (x)) mod G (x)

= (x m~p • (x l • (x) + (x)^ mod G (x)

= (x l ■ x m ■ (x) + xm ■ B ® (x)) mod G (x)

= x̂* • (x) + xm~p ■ B ^ (x)^ mod G (x)

= T® (x) mod G (x), (4.23)

where
fN (x) = x* • S [i~1] (x) + xm~p ■ B® (x) . (4.24)

for 0 < i < q — 1.

Observing (4.23), there are a few cases to consider depending on the values of l,

m, and p. The discussion of these cases is first partitioned by the ranges 0 < p < m

and p > m.

Case I: 0 < p < m First, we note that for any l and G (x), if p = 0 then a primitive
parallel LFSR2 formulation is obtained. Conversely, if p = m, then we obtain a
primitive parallel LFSR1 formulation. Similar to the LFSR2 approach, we first form

(x) by performing the addition of (3.10), then the final reduction is carried out
(4.23). Depending on l and m there are different overlapping situations between the
terms of x l • (x) and x m-p . ¿\i] (x) and some of them are illustrated in Figure
4.6.

p m -p p m - l - p I p

(a) (b)
X X

X 1 - S [M]
xm-p -B[i]

** x‘
r *
1---

1 i xm~p -B{ H xi j
i) H1

l-m + p m -p p

(c) (d)

Figure 4.6: Illustrations of some of the LFSRp overlapping situations between x l ■
(x) and x m~p ■ B ^ (x) in (x): (a) l = m and 0 < p < m, (b) l < m and

0 < p < m — l, (c) l < m and m — l < p < m, (d) l > m and 0 < p < m.

81

From Figure 4.6 one can observe that only the terms in the overlap will require
XOR gates to complete the addition in (4.24), and consequently we note that for
0 < p < m, all implementations have equal hardware complexities. As proof, first it
is clear that for all situations where we have complete overlap between xl • (x)
and x m~p ■ R^ (x) the hardware complexity is equal. Since in these cases, (x) has
the same range of powers of x present, thus the reduction (4.24) is identical and the
number of overlapping terms is equal, see Figure 4.6b. Now, we note that regardless
of the value of p, the degree of (x) is at least x m because we have / > 1. Since the
degree of (x) is greater than or equal to G (x), by properties of modular reduction
each coefficient of (x) will be influenced by at least one coefficient of (x).
Therefore, when we shift the degrees of the present R^ (x) terms to positions which
do not require reduction, i.e., degrees less than xm, we remove one XOR gate required
to form (x), but one XOR gate is added to sum the newly added xm~p ■ R^ (x)
term that does not require reduction with the reduced (x) terms.

Case II: p > m When p > m, as shown in Figure (4.7), there are no overlapping
terms between x l ■ (x) and xm~p ■ B ^ (x) in (4.23). Consequently, the implemen
tation of this computation can be carried out as

S [i] (x) = (x ' • S [i~ 1] (x) + x m~p ■ B [i] (x)) mod G (x)

(x* • (x)) mod G (x) + (x m~p ■ B® (x)) mod G (x),

for 0 < i < q — 1.

Furthermore, when p > m there are terms in x m~p • RW (x) which have negative
powers of x. Generally, the reduction of these negative power terms is as complex as
the terms with powers greater than xm. Therefore, it is not of any interest to explore
this case because the latency is equal to [^y2] cycles.

*

I m i m

(a) (b)

Figure 4.7: Illustrations of some of the LFSRp non-overlapping situations between
xl ■ RM (x) in jTM (x): (a) l = m and p = m, (b) l > m and p > m.

] x'-S^tx)
| x - p -Bl'] (x)
i A i(d

x '-S l‘~1]

i[i) (

82

Negative p

Assuming p < 0, we can rewrite (4.22) as

U (x) = xp ■ (u0 + uix H------- b life-\xk~l) ,

or

U (x) = u0xp + uxxp+1 H------- bu|p|_ix 1 + ii|p| + ii|p|+ix H------- bufc-ixfc+p x. (4.25)

One can observe that there are two groups of terms in (4.25). One group includes
the terms with negative powers of x and the other one includes the terms with non
negative powers of x. Therefore, one can split (4.25) into two parts as

U (x) = Ut {x) + U2 (x) , (4.26)

where,

&! (x) = UqXP + UiXP+1 H------- b U\p\-\X 1, (4.27)

and

U2 (x) = x\p\ + u\p\+ix H------- b Uk~ixk+P x. (4.28)

As shown above, (4.27) has |p| terms with negative powers of x and (4.28) has
k — \p\ terms with non-negative powers of x. Substituting (4.26) into (4.21) and we
obtain

S (x) - (xm~p ■ (u , (x) + U2 (x))) mod G (x),

which, by properties of modular reduction, can be split into two independent compu
tations as

Si (x) = (x m p • U\ (x)J mod G (x), (4.29)

and
S2 (x) = (x m~p • U2 (x)^ mod G (x). (4.30)

Now, the final CRC can be obtained using the following

S (x) = S\ (x) + S2 (x) . (4.31)

83

However, this approach has two drawbacks, the message length k must be known in
advance and the first half of the message buffered, before the parallel computation
can be performed. We feel that these dependencies are not desirable for typical
implementations of the CRC computation, and for this reason we do not consider
this approach further.

4.4.2 Realization

For non-negative p values, the generalized parallel LFSRp Architecture is illustrated
in Figure 4.8. As previously noted, this approach can give rise to both generalized
parallel LFSR2 (Figure 3.5) and LFSR1 (Figure 3.6) Architectures by selecting p = 0
and p = m, respectively.

Discussion

Since we have shown that the hardware complexity is constant for all the implemen
tations of LFSRp with 0 < p < m, we are interested in finding the optimum p for
0 < p < m, in order to minimize the overall time complexity of the CRC computa
tion. This is accomplished by finding all the set of ps that result in a realization with
minimum CPD. Then, the smallest p in the set is identified as the optimum p which
reduces the computational latency.

Revisiting the serial LFSR Architectures shown in Figure 2.3, if we wish to modify
those architectures and find the optimum p in 0 < p < m for l = 1, then we search for
the maximum value of i where g* = 0 and gi G G (x), and then we select p = m — i.

In other words, we are looking to place the input at the right-most LFSR position
without a present feedback connection, and this results in an implementation with
CPD 1 • Tx and computation time k + p cycles.

Shift-XOR

Figure 4.8: Generalized parallel LFSRp Architecture.

84

For parallel CRC computation architectures, determining the optimum p is not as
straightforward. To this end, we provide an illustrative example with m = l = 6 and
show the affect of three different ps.

Example

Consider the generator polynomial DARC-6 (G (x) = l+ x 3 + x4+ x 6 [27]) with degree
of parallelism l = 6. We provide dot notations for the LFSRp implementations with
p = 0, 4, and 6, in Figures 4.9a, 4.9b, 4.9c, respectively. We use white and gray dots
to denote terms with no delay and 1 • Tx delay, respectively, while the syndrome bits
are denoted with black dots.

In these figures, we first show how to form (x) and then perform the reduc
tion (x) mod G (x), observing the reduction in Figure 4.9a (marked with arrows),
beginning with the first term requiring reduction, we show

x 6 = l + x 3 + x4

x 7 = X + x4 + x5

x 11 = x + x 2 + x3 + x4 + x5.

The other two figures have similar reduction patterns, however (x) has some terms
with different delays and powers that do not require reduction.

Using the XOR construction technique where we pair 0 • Tx terms first before
construction XOR trees, the CPDs are 4 • Tx , 3 • Tx , and 3 • Tx for the p = 0, 4,
and 6 implementations, respectively. One can observe that all three implementations
require 24 XOR gates. For the other ps in 0 < p < 6 the corresponding CRC
implementations can be obtained similarly, all require 24 XOR gates, clock
cycles, and have CPDs of 4 • Tx , 4 -Tx , 4 ■ Tx , 3 -Tx , 3 -Tx , and 3 -Tx , respectively.
However, the CRC realization with p = 4 is identified as the optimum p for 0 < p < m,

because it minimizes CPD and latency.

85

-M

S [i-l](x) f
* M (x) '

(*)

X° X1 x2 x3 JC4 X 5 x6 x7 x8 x9 x10xn

"o"o“ ©” ®” ©“ ©]

• •

• • •

• • •
XOR Tree

(a)

XOR

x6-SN]
] (x)

T[i] (x)

(*)
X° X1 X2 X3 X4 X5 x6 x7 x8 x9 x10xn

® G © © © ©
© © © © © ®

1®© © © # ©
© © ©

o © ©
© © © © ©
© © ©
© © © © o

© © o © ©

© © © O © G:

XOR Tree

(b)

A ' A)
X° X1 X2 X3 X4 X5 X6 x7 x8 x9 x10xn

X- -B[i] (x)

T[i] (x)

___......... o..o„©

XOR

m ~ o ' o ' o ~ oi © G © ©
• • •

• • •
© © © o o
o © o
o © © © ©

0 o © © ©
XOR Tree

(c)

Figure 4.9: Example DARC-6 dot notation for the parallel LFSRp Architecture with
l = 6: (a) p = 0, (b) p = 4, (c) p — 6.

86

4.5 Message Splitting Architecture

In this section, we explore the application of idea of message splitting proposed in
[60] as a software algorithm to a hardware architecture. The authors of [60] suggested
that a hardware architecture based on their software algorithm could be the source
of some future work.

In this approach, one computes a number of separate syndromes for different por
tions of the message. These syndromes are finally combined to obtain the syndrome of
the entire message. The formulation of this approach begins by following the LFSR2
binary polynomial formulation discussed in the previous chapter. Unlike the gen
eralized LFSRp formulation with p < 0 that also splits the message, this approach
does not depend on the message length k. The derivation we provide is for situa
tions when the message is partitioned into to two groups. Extending this approach
to higher orders, such as four, is rather straightforward.

4.5.1 Formulation

By recalling how the message polynomial was partitioned into Z-bit blocks in (3.1),
one can perform the following expansion,

9-1
u (x) = -B ® (x)

¿=0
= x Hq~1] ■ (x) + xHq~2) ■ B [1] (x) + xHq- 3) • B [2] (x) +

xU<7-4) . B {3] (x) + . . . + x l . £[ff-2] (x) + #[9-1] (x) .

Now, assuming that one has the ability to prepend the required number of zeros
to extend the message to a length such that there are an even number of message
blocks, i.e, q mod 2 = 0 and then grouping the blocks in U (x) into evens and odds,
one obtains

U (x) = x l'̂ q~lS> • B ^ (x) + x l'(q~3̂ ■ B ^ (x) + ••• + £*• B^q~2̂ (x) +

x liq- 2) • £ [1] (x) + x Hq~4) • B [3! (x) + • • • + B [q~^ (x)

= Ue (x) + U0 (x) ,

where Ue (x) = xU?-i) . _g[°l (x) + ^K?-3) . fil2] (x) + • • • + xl ■ B^q~2̂ (x) and Ua (x) =

x;-(9_2) . B ^ (x) + x l'̂ q~4 ̂ ■ B ^ (x) H------- 1- B^q~^ (x).

87

Let u f (x) and u f (x) be the portions of U (x) that contain all the blocks (x)
and B ĵ+11 (x) for 0 < j < i, respectively, and let S f ' (x) and So' (x) be the syndromes
of u f (x) and u f (x), respectively. For convenience, define B f (x) = S '2z' (x) and
B f (x) = (x). Also, define (x) = t/i-1' (x) = 0 and Si *' (x) = Sinit (x)
and si-1' (x) = 0, where S;nit (x) denotes the initial content of the CRC register. Then
these definitions can be written as

U f (x) = x 21 • U f~ 1] (x) + B f (x) ,
S f (x) = (xm ■ U f (x)) mod G (x),

and

U f (x) = x 21 • U t 1] (x) + x l ■ B f (x) ,
S f (x) = (xm • U f (x)) mod G (x),

for 0 < i < [^2^]. It is noted that U (x) and S(x)

Derivation

From the previous definitions, one can derive recursive expressions for Se' (x) and
So' (x) using a manner similar to the polynomial based derivations, i.e,

S f (x) = (xm • U f (x)) mod G (x)
= (xm • (x21 • f/J1-1' (x) + B f (x))) mod G (x)

= (x21 ■ x m ■ i/]1-1' (x) + xTO • I^1' (x)) mod G (x)

= (x21 • Sj*-1' (x) + xm • B f (x)) mod (7 (x)
= (x) mod G (x), (4-32)

for 0 < i < \̂ 2~"|, where

T f (x) = x21 ■ S t 1] (x) + xm • B f (x) , (4.33)

88

and

S® (x) = (xm - U f (x)) mod G (x)
= (xm • (x21 ■ U^~1̂ (x) + x l • (x))) mod G (x)

= (x21 ■ x m ■ u t 1] {x) + Xm+l ■ B f (x)) mod G (x)
= (x21 • Si*"11 (x) + xm+l ■ B f (x)) mod G (x)

= TW(x)modG(x) , (4.34)

for 0 < i < \̂ 2^], where

T® (x) = x 21 ■ S%~1] (x) + xm+l ■ B f (x) . (4.35)

4.5.2 Realization

The hardware realization of the split approach is shown in Figure 4.10. One observes
that two accumulators are required, each with m FFs and the message block is split
in half (into even and odd digits). Next, we analyze the CPD of this approach and
show that it can outperform the extended binary polynomial approach for some cases.
However, simulations should be undertaken to see if useful cases exist, and this could
be the focus of some future work as outlined in Chapter 6.

Figure 4.10: Generalized parallel Message Splitting Architecture.

89

i !
x^-S^fx); j**x*:" j '...'vy. |

i (x)

I

! x̂ -B̂ x)

(a)

(b)

x“ -5]",|(x)

x̂ -B̂ x)
(̂x)

c-.̂ ix)
¿t'] (x)

i''M

(c)

x-'̂ fx)

(d)

1 *--sMWI B ['] (x)

d f'M

Figure 4.11: Illustrations of the Message Splitting Architecture overlapping polyno
mial situations when / = m: (a) Splitting LFSR2, (b) Splitting LFSRl, (c) LFSR2,
(d) LFSRl.

Discussion
The formulation described by (4.32), (4.33), (4.34), and (4.35) is strongly based on the
binary polynomial approach analyzed in the previous chapter. Here, we have shown
that one is free to split the of blocks the message polynomial into groups and process
these groups in parallel. It is noted that these blocks need not be of equal length,
but for simplicity we have chosen to split the message into even and odd digits. As
noted in [60], this approach is different than the message slicing approach [7] because
it uses multiple accumulators.

Observing the polynomial manipulations in (4.32) and (4.34), it should be clear
that the extended binary polynomial approach (4.21) can easily be applied to gen
eralize the splitting formulation. Here, the final LFSRl result is provided without
derivation,

T f { x) = x 21 • ^ (*) + B f (s)
5^ (x) = (x) mod G (x),

fW(x) = x 21 ■ S [t 1] (x) + x l ■ É® (x)

S ® (x) = f 0[i] (x) mod G (x).

and

90

Now, we show that this approach can offer speed improvement on the existing par
allel LFSR Architectures at the cost of additional hardware. Consider implementing
the Splitting Architecture with 21 = m, i.e., this approach splits message blocks of
21 bits into two ¿-bit sub-blocks during each iteration. The terms (x) and (x)
to be reduced are formed as illustrated in Figure 4.11b, and Figure 4.l id shows the
terms (x) for parallel LFSR1. It is clear that the reduction of the polynomials
x m • (x), x m ■ So~^ (x) , and x m ■ (x) require equal time complexity, and
B $ (x) + • B̂ o (x) = (x) . Therefore, the equation with the CPD in the LFSRl
approach also exists in one of the split architecture groups. Hence, we conclude
that both have equal CPDs, but the hardware complexity of the Message Splitting
Architecture is nearly double.

For the LFSR2 case, we reason from the bar Figures 4.11a and 4.11c as follows.
It is clear that the delay of the realization of each half of the LFSR2, split approach
is less than or equal to the delay of LFSR2 since not all the positions in (x)

and Te ̂ have delay 1 • Tx - Therefore, it is possible that the CPD split architecture
can be less than LFSR2. Furthermore, we have shown that the delay of LFSRl is
less than or equal to that of LFSR2, and for all the cases when LFSR2 and LFSRl
have equal CPDs the splitting approach has a chance to outperform the primitive
approaches. We conclude that these situations are possible, however it is not known
if they will exist for the frequently referenced generator polynomials and/or useful
degrees of parallelism. A possible future study could involve performing simulations
to determine if and what situations this is possible for.

4.6 Summary
In this chapter, we presented the detailed design of the parallel LFSR 2 Architecture
specific to the case when the degree of parallelism is greater than the degree of the gen
erator polynomial. Afterward, three novel formulations of the CRC computation were
presented. The Lambda Gamma formulation yields a high-performance low-memory
software algorithm, which is suitable for implementations when the generator poly
nomial degree is less than or equal to the word size. The extended binary polynomial
formulation demonstrates how the classical binary polynomial formulation can be
generalized to allow one to derive LFSR2 and LFSRl based formulations from a com
mon starting point. Finally, the future work suggested in [60] is explored and shown
that their proposed Message Splitting Architecture could offer improvement over the
existing primitive architectures. However, simulations are required to identify those
cases and we have opted to leave them for a possible future investigation.

91

Chapter 5

Sim ulations and Im plem entations

5.1 Preview

T HE performance of a hardware architecture is evaluated in terms of its area
and time complexities. Whereas, the performance of a software algorithm is

measured by its memory and time complexities. Other qualitative factors such as,
ease of implementation and regularity can also be considered. In the CRC compu
tation domain for a fixed generator polynomial and degree of parallelism, hardware
architectures are quantitatively compared in terms of their XOR gate and FF counts,
as well as their critical path delay and latency values. Conversely, software algorithms
are quantitatively compared by their memory requirements (code and data), as well
as their execution times.

In this chapter, we present the data that we have gathered through our simula
tion and implementation experiments, which were conducted over the course of this
study. We begin with the examination of the hardware architectures by performing
simulations followed by comparisons and analysis. Some of these simulations are fol
lowed up with implementations for validation. Then, the performance of the software
algorithms are measured with a thorough theoretical analysis, which is followed by
implementations for verification. Similar to what is found the literature, our com
parisons are carried out using the frequently referenced generator polynomials with
useful degrees of parallelism.

In terms of the novel approaches presented in this thesis, we compare the Lambda
Gamma Architecture against its non-pipelined counterparts. The parallel LFSRp
Architecture is compared against the parallel LFSR1 and LFSR2 Architectures. The
CRCAr(32) is compared against the existing software algorithms. Additionally, we
present the experimental results contained in our conference papers [41] and [53].

92

Hardware Architectures

Theoretical

- Gates and Flip Flops
- Critical Path Delay

Implementation (FPGA)

- Occupied Slices
- Worst Case Delay

Implementation (ASIC)

-Area
- Timing

Software Algorithms

Theoretical

- Instruction and LUT Memory
- Instruction Counts

Implementation (Desktop)

- Program and LUT Size
- Average Computation Time

Implementation (Microcontroller)

- Program and LUT Size
- Average Computation Time

(a) (b)

Figure 5.1: Different quantitative comparison metrics for implementations of the CRC
computation: (a) hardware architectures, (b) software algorithms.

The implementations of the hardware architectures are deployed on application-
specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs).
The ASIC data is reported as the required area and timing, whereas, the FPGA data is
given in terms of the number of occupied slices and worse case delay. These hardware
metrics are summarized in Figure 5.1a. The software algorithms are compared in
terms of memory, i.e., number of instructions and look-up table (LUT) sizes, and
computation speed. The implementation data provides execution times for various
message lengths, and these software metrics are summarized in Figure 5.1b.

5.1.1 Organization

The remainder of this chapter is organized as follows. In Section 5.2, we present the
results of our hardware experiments. This includes our simulations and implementa
tions data on FPGA and ASIC platforms. In Section 5.3, we present the results of our
software experiments. This includes a theoretical analysis and some benchmarking
results. This chapter is concluded with a summary in Section 5.4.

5.2 Hardware Experiments

This section presents the studies conducted on the CRC hardware architectures. First
we detail the results obtained through simulations and then implementation data is
provided for some selected simulation experiments.

93

5.2.1 Simulations

Here we provide the theoretical comparison between all the hardware architectures
that perform the CRC computation studied in this thesis. In addition to the standard
analysis of the algorithms in terms of the hardware and time complexity, we have
undertaken two additional studies. The first study investigates and finds the optimum
degrees of parallelism in terms of CPD for the parallel LFSR2 Architecture and was
the focus of our conference paper [41]. The second study investigates and finds the
optimum p values on the interval 0 < p < m for the LFSRp Architecture.

Comparison: Non-Pipelined Architectures

We begin our hardware simulations by comparing our proposed Lambda Gamma
Architecture against the existing non-pipelined architectures, i.e., [22], [40], [23], and
[25], when the degree of parallelism is equal to the generator polynomial degree. We
remind the reader that all of these architectures require m FFs to implement and
have a computation latency of [y] clock cycles, except [40] which requires
clock cycles to process a A>bit message. The comparison results are presented in
Table 5.1.

Comparing the Lambda Gamma Architecture against the systematic approaches,
i.e., [23] and [25], one observes that the proposed architecture has an equal or lower
CPD, but requires more XOR gates. The only exception being CRC-32 where the
Lambda Gamma Architecture requires the fewest gates of all the approaches. We
remind the reader that the proposed architecture is expected to perform poorly for
digit sizes less than the degree of parallelism, and its implementation is not easily
described for those input sizes. However, if l > m then we expect the area complexity
to improve.

Table 5.1: Theoretical non-pipelined hardware architecture comparison for frequently
referenced generator polynomials when l — m.

G (x)
Arch

CRC-12
© A

CRC-16
0 A

CCITT-16
0 A

CRC-161
0 A

CCITT-16f
0 A

CRC-32
0 A

[22] 52 5 72 5 88 4 154 5 ' 84 4 452 6
[40] 52 4 72 4 88 4 154 4 84 4 452 5
[23[60 24 48 32 48 8 48 16 48 8 448 18
[25] 60 13 48 17 48 5 48 9 48 5 448 16
Ar 104 7 149 6 60 5 90 6 53 5 439 8

94

Study: Optimum Degrees of Parallelism

This portion of the thesis outlines our results in our conference paper [41], concerning
the optimum degrees of parallelism in terms of CPD for the parallel LFSR2 Archi
tecture. We begin by discussing how we obtain the optimum degrees of parallelism.
Then, with these optimum degrees of parallelism, we show how the computation time
can be minimized. Finally, the time-area product efficiency metric is investigated.

For this study, we have written C ++ software that computes the matrix Gmx;
for a given generator polynomial and degree of parallelism. One can compute the
A and © values from the number of Is in a row of the matrix G mxi, and they are
stated in terms of the maximum number of XOR gate levels and the total number
of XOR gates, respectively. The computation time <i> of a A:-bit message using the
parallel LFSR2 Architecture is equal to q clock cycles multiplied by the CPD of the
architecture, i.e.,

m .<f> = - x A.
t

We restate that for a given generator polynomial, A is a function of l. Therefore,
to obtain the fastest architectures, we are interested in finding the maximum l for a
given A, i.e., minimize $.

As an illustration of how to minimize <F, consider the DARC-8 generator polyno
mial (G (x) = 1 + x3 + x4 + x5 + x8 [27]). Through simulations, we obtain the A
and 0 , for 1 < l < 256, and the results are plotted in Figure 5.2. Since the CPD
is computed from a ceiling function, the A plots resemble step functions with some
spikes for values of l that are greater than m. Observing Figure 5.2, we see the first
spike at l = 16,17. As we are interested in finding degrees of parallelism that result
in the fastest circuits, rather than selecting l = 3 with A = 3 • Tx (which is the point
before the first transition from A = 3-Tx to A = 4-2"x), we select / = 17, which is the
maximum l with A = 3 • Tx, and we record the hardware complexity of 0 = 48 • Cx-

The plots for the frequently referenced generator polynomials resemble the DARC-
8 plot, however they are generally not as noisy. The results for those generator
polynomials are given in Table 5.2.

95

Figure 5.2: Plot of the critical path delay and hardware complexity versus the degree
of parallelism, for the parallel LFSR2 Architecture using DARC-8 with 1 < l < 256.

Table 5.2: Hardware complexity for the maximum degree of parallelism of differ
ent critical path delays using frequently referenced generator polynomials, using the
parallel LFSR2 Architecture.

A
G (x) l

2
© l

3
© l

4
0 l

5
© l

6
0 l

7
0

CRC-12 1 5 3 13 7 33 46 192 107 517 247 1345
CRC-16 1 3 3 13 7 33 18 82 61 295 146 826

CCITT-16 4 12 8 32 16 88 49 307 98 722 234 1786
CRC-16f 2 6 4 16 8 48 35 329 90 794 191 1697

CCITT-16f 5 15 10 40 19 105 55 333 106 752 236 1810
CRC-32 1 14 4 56 13 179 31 434 80 1169 209 3255

After we obtain the CPD versus the degree of parallelism data for a given gener
ator polynomial, obtaining the computation time is rather trivial. For the generator
polynomial CRC-32, we show the A and $, versus l plot for k = 1500 bytes (which is
the MTU size for Ethernet) in Figure 5.3. For clarity, the points shown in boldface
in Table 5.2 are marked on the plot. Obtaining similar plots for the other generator
polynomials is not difficult. But, due to the vast number of different standards that
employ these polynomials, presenting specific data for all the U-values would prove
to be too cumbersome. Nevertheless, we provide timing data for the points found in
Table 5.2 using a message length of k = 1024 bits for all the frequently referenced
generator polynomials (excluding CRC-32 whose results are for k = 1500 bytes) and
the values are shown in Table 5.3. The l values marked with asterisks are situations
where the timing result of l + 1 is less than or equal to that of l.

96

Figure 5.3: Plot of the critical path delay and computation time for k = 1500 bytes,
versus the degree of parallelism using CRC-32, for 1 < l < 256.

Table 5.3: Computation time for the maximum degree of parallelism of different CPDs
using frequently referenced generator polynomials.

A
G (x) l

2
$ l

3
$ l

4
$ l

5
$

6
l $

7
l $

CRC-12 r 2048 3* 1026 7 588 46 115 107 60 247 35
CRC-16 l* 2048 3* 1026 7 588 18 285 61 102 146* 56

CCITT-16 4 512 8 384 16 256 49 105 98 66 234 35
CRC-16f 2 1024 4 768 8 512 35 150 90 72 191 42

CCITT-16f 5 410 10 309 19 216 55 95 106 60 236 35
CRC-32 1 * 24000 4 9000 13 3696 31 1940 80 900 209 406

The last comment we make in this experiment concerns the time-area efficiency.
The hardware complexity of all the frequently referenced generator polynomials is
a strictly increasing function, i.e., 0 is increased as l is increased. If we plot the
time-area product $ • 0 versus l, we can compare designs in terms of their time-
area efficiency. Figure 5.4 shows the results for CRC-32 with k = 1500 bytes. As
expected, the time-area product roughly tracks the CPD plot, and as the degree of
parallelism is increased the time-area product also increases, meaning that smaller
degrees of parallelism result in more efficient designs. This result shows that increasing
l generally results in diminishing time-area returns.

In summary, through simulations this experiment obtained the maximum degree
of parallelism for a given CPD of the parallel LFSR2 Architecture for the frequently
referenced generator polynomials. Investigating the computation times for the ob
tained maximum degrees of parallelism, we determined that most of them are indeed
the local optimum choices. Finally, we showed that the time-area product efficiency
for difference degrees of parallelism generally tracks the CPD.

97

Figure 5.4: Plot of the CPD and time-area product, versus degree of parallelism,
using CRC-32 for 1 < l < 256.

Study: O ptim um ps

This study concerns the selection of p to obtain the best LFSRp Architectures in
terms of CPD and latency. The material is explored with the hope of reducing the
time of the CRC computation. Recall from the previous chapter, where we have
shown that all the LFSRp the implementations with 0 < p < m have equal hardware
complexities and the computational latency is [.

We begin this study with an illustration of the effects of varying p for 0 < p < m.

Consider the generator polynomial CRC-32, Figure 5.5 shows plots of the CPD versus
p for some useful degrees of parallelism, i.e., 1 = 1, \m , \m, m, and 2m. Similar to
the previous study, from this plots, the optimum p for a given l can be identified as
the left-most point with a minimum CPD. Plots using other degrees of parallelism
and/or generator polynomials can be constructed and they are similar.

X

>»n
Qia

u

-------L = 16
- • — L = 32

•
\

\
\
\ — _ — -

k •••• K •••• •••• ••••• •• • • • , (• • • • • • •• • • • • * , , • • • • • • •• * i « • • . , • • • • • • •

------- 1------ 1------ 1------ 1------ 1 i------ 1------ 1------ 1------ 1------ r i------ 1------ 1------ 1------ r-"*
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Additional Latency (bits)

Figure 5.5: Plot of CPD versus p for some useful degrees of parallelism using CRC-32.

98

12 16 20 24 28 32 36 40 44 48 52 56 60 64
Degree of Parallelism (bits)

(b)

• LFSR1
a LFSR2
■ LFSRP

Figure 5.6: Plots of LFSR1, LFSR2, and LFSRp using CRC-32: (a) CPD versus
degree of parallelism, (b) p versus degree of parallelism.

Next, using CRC-32, in Figures 5.6a and 5.6b, we show a plot of the A and p

versus l for 1 < l < 2m, respectively using the LFSR1, LFSR2, and LFSRp Ar
chitectures with the optimum p for 0 < p < m. We note that for CRC-32 and
the other frequently referenced generator polynomials, in terms of A, LFSRp is as
good or better than LFSR1 for 1 < l < 2m. Also, the latency of LFSRp is less
than or equal to that of LFSRl. Thus, from our earlier discussion, one can con
clude that LFSRp matches/outperforms LFSRl in terms of time complexity, and it
matches/outperforms LFSR2 as well.

Now, we provide the optimum p values for 0 < p < m with degrees of paral
lelism that are multiples of the generator polynomial degree in Table 5.4, and the
corresponding A comparison is shown in Table 5.5. We first observe that there are
only three instances where LFSRl matches the performance of LFSRyy namely when

99

Table 5.4: LFSRjd Architecture optimum p for 0 < p < m for frequently referenced
generator polynomials with useful degrees of parallelism.

G { x) \ l 1 \m m 2771
CRC-12 2 4 6 7 0
CRC-16 2 2 2 16 14

CCITT-16 1 15 12 0 0
CRCl6f 1 4 8 16 0

CCITT-16| 1 16 13 0 12
CRC-32 1 7 7 4 0

Table 5.5: LFSR hardware architecture critical path delay comparison for frequently
referenced generator polynomials with useful degrees of parallelism.

l 1 \m ______ m 2m
G (x) \ LFSR 1 2 P 1 2 V 1 2 V i 2 P 1 2 P

CRC-12 1 2 1 2 3 2 3 4 3 4 5 4 5 5 5
CRC-16 1 2 1 3 4 3 4 5 4 4 5 4 5 6 5

CCITT-16 1 2 1 1 2 1 2 3 2 4 4 4 5 5 5
CRC-16f 1 2 1 3 3 2 4 4 3 4 5 4 5 5 5

CCITT-16f 1 2 1 1 2 1 2 3 2 4 4 4 4 5 4
CRC-32 1 2 1 3 4 3 4 5 4 5 6 5 6 6 6

p = m. Also, there are six instances where LFSR2 matches the performance of
LFSRp, namely when p = 0. However, this result is not significant, the difference
in terms of the number of cycles between LFSRl and LFSR2 is rather small, and
there are two cases in Table 5.5 where the A of LFSRp is less than that of LFSRl.
Therefore, in most cases, LFSRp marginally improves upon LFSRl by reducing the
latency from to cycles.

Comparison: State-Space Transformed Architecture

Here, we present the results contained in our conference paper [53]. From the state-
space transformed coupling matrices (3.27) obtained using the trivial and optimum
bmxi vectors, the number of XOR gates, FFs, and PSs are calculated. As noted in
[24], the XOR gate count of an implementation can be obtained by summing the
number of Is in the rows of the coupling matrices and subtracting 1 from each row
subtotal, plus the m additional XOR gates required to perform the addition

x' \ i + 1] = A ! m x m • xj„xl [i] + B ^ x, • ulxl [j]. (5.1)

1 0 0

Figure 5.7: Pipelining blocks used in our implementations of the State-Space Trans
formed Architecture.

Recalling that A!mxrn is a companion matrix, the best CPD of the pipelined trans
formed system that one can obtain is 2-Tx . In other words, the maximum delay of the
output wires from the A.'mxm • x^ xl [z] block is Tx , and another level of XOR gates is
required to perform the addition (5.1) to form x(nxl [i + 1]. This results in wires with
delays of 2 • Tx . Thus, to pipeline the logic in the B 'mxl • u;xi [z] and C'mxm • 5clmxl [z]
blocks, one can use a combination of the pipelining blocks shown in Figure 5.7. We
note that this pipelining approach is slightly different than the one reported in [24],

Tables 5.6a and 5.6b give the number of XOR gates, FFs, and PSs required to
realize each of the transformed coupling matrices generated from the simple b ^ xl
compared to an optimum b^ xl, respectively. Also, Table 5.7 shows the total hardware
complexity comparison. The optimum b ^ xl values that correspond to results in
Tables 5.6 and 5.7 are marked with asterisks in Table 3.4. There is a case where
multiple b ^ xl vectors result in optimum implementations when ranked by our metrics,
and both vectors are marked. One observes significant reduction in the number of
XOR gates and FFs when an optimum b*rexl is used to construct the transformation
matrix T mxm for all the frequently referenced generator polynomials. Finally, for all
of these cases the number of PSs are equal for each generator polynomial.

Also, experimenting with other input sizes, we found that for small degrees of
parallelism with the frequently referenced generator polynomials, it is possible to
obtain transformed systems with B ^ ,. matrices which have an entire row of zeros.
In other words, the transformed system has states that are not coupled to the inputs.
Those cases are advantageous because they reduce the number of retiming FFs and
eliminate an XOR gate from the implementation of the addition in (5.1). An example
of this instance is CRC-12 with l = 6 and b*2xl = [0x255]T, where the states Xi [z]
and xio [z] are not coupled to any input. However, since the columns of T mxm are
linearly independent and C mxm = Imxm, all of the outputs are always coupled to a
state. In other words, it is not possible to have an entire row of zeros in C'mxm.

1 0 1

Table 5.6: State-Space Transformed Architecture coupling matrix logic hardware
requirements for frequently referenced generator polynomials when l = m with: (a)

b^x! = [1 0 0 • . . o f , (b) optimum b ^ xl =

(a)

h *umx 1-

l = m A ' c fv mxm
G {x) XOR FF PS XOR FF PS XOR FF PS

CRC-12 46 40 2 8 12 1 46 39 2
CRC-16 76 53 2 2 16 1 92 62 2

CCITT-16 88 68 2 2 16 1 100 68 2
CRC-16f 86 57 2 2 16 1 114 66 2

CCITT-16t 102 70 2 2 16 1 96 69 2
CRC-32 466 281 3 13 32 1 456 249 3

(b)
l = m TVD mXl A'^mxm C f

mxm
G (x) XOR FF PS XOR FF PS XOR FF PS

CRC-12 42 41 2 8 12 1 34 31 2
CRC-16 64 53 2 2 16 1 74 56 2

CCITT-16 90 65 2 2 16 1 86 58 2
CRC-16f 64 52 2 2 16 1 76 57 2

CCITT-16f 90 65 2 2 16 1 86 58 2
CRC-32 404 214 3 13 32 1 416 226 3

Table 5.7: State-Space Transformed Architecture hardware comparison for frequently
referenced generator polynomials when l = m.

l = m

G {x) 1
h*unx 1

XOR FF PS 1
h*unx 1

XOR FF PS

CRC-12 136 112 91 5 120 96 84 5
CRC-16 218 186 131 5 188 156 125 5

CCITT-16 238 206 152 5 226 194 139 5
CRC-16f 250 218 139 5 190 158 125 5

CCITT-16f 248 216 155 5 226 194 139 5
CRC-32 1031 967 562 7 929 865 472 7

1 0 2

Table 5.8: Two-Step Architecture hardware comparisons for frequently referenced
generator polynomials when 1 = 8.

Stage
G (x) XOR

First
FF PS XOR

Second
FF PS XOR

Total
FF PS

CRC-12 32 56 1 182 213 5 214 269 6
CRC-16 48 76 1 290 347 6 338 423 7

CCITT-16 32 48 1 218 260 5 250 308 6
CRC-16f 48 76 1 558 661 6 606 687 7

CCITT-16f 32 48 1 192 216 4 224 264 5
CRC-32 56 123 1 1353 1444 6 1409 1567 7

Comparison: Two-Step Architecture

The hardware requirements of the Two-Step Architecture determined by simulation
are listed in Table 5.8. Observing the results, one notices the large amount of hard
ware required to achieve a parallel implementation with Tx delay. Even though the
theoretical CPD is less than that of the State-Space Transformed Architecture, the
degree of parallelism is smaller and implementation of architectures this large are
expected to have poor performance due to the wiring complexity. For these reasons,
we felt that it was not necessary to implement this architecture in VHDL and it is
excluded from our hardware implementations.

5.2.2 Implementations

Here, we present the data that was gathered through our hardware implementations.
We opted to complete all of our implementations using VHDL and performed deploy
ments on both ASIC and FPGA platforms. The State-Space Transformed Architec
ture implementations were completed on ASIC, while we compared the non-pipelined
architectures on FPGA. Some examples of very-large-scale-integration (VLSI) imple
mentations of the CRC computation found in the literature include [71], [72], [73],
and [74]. Two examples of published works of FPGA implementations include [47],
and [75].

We note that excluding the Cascade and Look-Ahead Architectures, all the other
architectures in this thesis require XOR trees for their implementations. Describing
these XOR trees in VHDL for all the implementations by hand would be a difficult,
error prone, and tiresome task. Even more challenging is the pipelining of the State-
Space Transformed Architecture. Therefore, we wrote C ++ software that generates
complete VHDL files, which describe an architecture for a given generator polynomial

103

and degree of parallelism. The generated VHDL files with XOR trees tended to
be quite large ~ 60 KB, and demonstrate the advantage of the Cascade [23] and
Look-Ahead [25] Architectures, both of which are easily expressed with a hardware
description language (HDL).

Proper care is taken to ensure that all of the inputs and outputs of an architecture
are clocked. All the non-pipelined architectures have no logic between their CRC
registers and outputs, therefore the output wires are clocked by default. However, all
the architectures require their input wires to be clocked, which increases the hardware
cost by l FFs. Finally, we note that the logic in the output coupling matrix of the
State-Space Transformed Architecture was pipelined in such a manner that its output
wires were clocked (see Figure 3.14).

ASIC: State-Space Transformed Architecture

To investigate how an optimum b ^ xl vector affects the physical characteristics of the
State-Space Transform Architecture, ASIC implementations are performed. The gen
erated VHDL files are deployed on 0.18¡i complementary metal-oxide semiconductor
(CMOS) ASIC technology using the Synopsys® Design Analyzer®. The optimiza
tion effort is set to medium with a target period of 5.0 ns, and the area {¡im2) and
timing (ns) are obtained for each of the designs.

The results of our ASIC experiments are summarized in Table 5.9. These results
verify the expected reduction in area and also demonstrate improvements in timing.
The improvements in timing could be attributed to the reduction in area, which
reduces the wiring complexity and shortens the length of global wires in the design.

Table 5.9: State-Space Transformed Architecture ASIC implementation results for
frequently referenced polynomials when l = m.

1 — m
G (x)

h*unxl
area (¿¿m2) delay (ns)

h*unxl
area (/¿m2) delay (ns)

CRC-12 11107 2.79 10156 2.79
CRC-16 16811 2.93 15299 2.72

CCITT-16 17905 2.73 17458 2.64
CRC-16f 18751 2.87 15445 2.71

CCITT-16t 18616 2.73 17470 2.49
CRC-32 72917 4.23 66469 3.20

104

Table 5.10: Non-pipelined architecture FPGA implementation results for frequently
referenced polynomials when / = m.

G {x)
Arch

CRC-12
slices delay (ns)

CRC-16
slices delay (ns)

CCITT-16
slices delay (ns)

[22] 11 1.756 17 2.072 20 1.816
[40] 24 1.280 15 1.619 18 1.315
[23] 12 1.706 18 1.752 14 1.868
[25] 10 1.543 15 1.865 16 1.971
Ar 9 1.684 15 1.743 16 1.815

G (x)
Arch

CRC-16f
slices delay (ns)

CCITT-16t
slices delay (ns)

CRC-32
slices delay (ns)

[22] 29 2.143 16 1.617 73 2.940
[40] 21 1.905 15 1.678 74 2.605
[23] 25 1.946 19 1.818 97 2.888
[25[26 2.148 15 1.942 76 2.756
Ar 30 2.053 17 2.002 70 3.446

FPGA: Non-Pipelined Architectures

For this study, we choose to perform FPGA experiments for the non-pipelined archi
tectures. The generated VHDL files are deployed on a Virtex®-5 FPGA. The target
device is xc5vlx30-3ff324 using Xilinx® USE Design Suite 10.1.02 - Web PACK with
a design goal of balanced. The speed value is set to -3 and the synthesis tool is CST.

Table 5.10 shows the results of our FPGA experiments. One observes a weak
correlation between the theoretical results in Table 5.1, and there is no clear cut
winner amongst them. These results suggest that if designer wishes to realize the
CRC computation on an FPGA, then they should select an architecture that is well
understood and easily implemented. Because these experiments demonstrate that
there is little to choose between them in terms of the performance on FPGA.

5.3 Software Experiments

In this section, we present the results of our software experiments. Before beginning
our discussion, we remind the reader to recall the assumptions made in Chapter 3,
which concern the properties of the datapath. The assumptions simply our analysis
and allow the reader to better predict the performance of these algorithms on their
datapath.

105

To properly interpret the simulation data, the most important assumption made
is that all operations in these algorithms take equal processing time. We justify this
assumption by noting that all the algorithms use similar operations and the memory
accesses tend not to be slow. This is because the maximum LUT has 1024 words.
Therefore, all the LUTs can fit inside the cache of a typical modern processor [7].
Moreover, for the implementation data, during the early stages of this study, we
attempted to generalize the existing algorithms and investigate their performance
by varying the degree of parallelism. We determined that each algorithm has an
optimum degree of parallelism, and implemented the ones found to be optimal for
our datapath. For instance, comparing the performance of CRCT(8) to CRCT(16),
it is clear that CRCT(16) requires half of the number of LUT accesses, but the
implementation performance is actually worse, due to slower LUT access times [61].
Finally, we note the program sizes and code complexities of all these algorithms are
comparable when they are implemented using C++, and we expect similar results for
assembly language implementations. For these reasons, we omit the code size from
our memory comparison.

5.3.1 Simulations

The software simulation results consist of memory and time requirements of a given
algorithm. The memory requirements are well defined for each algorithm regardless of
the platform and they are reported in terms of the number of memory words required
to store the look-up tables. We note that different packing schemes are possible for
storing LUTs in memory. In our experiments, we have chosen to store one LUT entry
per memory word, regardless of its length. In other words, on our 32-bit datapath, it
is possible to store multiple LUT entries for degrees 12 and 16 generator polynomials
in one memory word, and consequently reduce the LUT size. However, the trade-off is
that the implementation becomes more complex and the execution time is increased.

For the theoretical results, the time requirement is defined to be the number of
instructions necessary to process one word of the message, and can be identified from
the algorithms presented throughout the thesis. Note that, we do not consider the
message length in this case, therefore the values reported are normalized. Now, con
sider how one would obtain the execution time for CRCB(l) with CRC-32. Referring
back to its implementation in Algorithm 3.1, we count the number of operations as
follows: lx (word fetch, loop initialization, pointer increment) + 32x (loop compari
son, loop increment) + 32 x (condition test) + 16 x (condition true) + 16 x (condition

106

false) + 32x(shift operation) = 1 x 3 + 32x2 + 32 x3 + 16x2 + 16x1 + 32x1 = 243
operations. Here, we assume an equal branch probability, and the results for the other
existing algorithms can be obtained similarly. We note that, none of the determined
time requirements for the existing algorithms depend on the degree or coefficients of
the generator polynomial.

For CRCAr(32), we obtain the closed form operation count as,

time (CRCAF (32)) = 6 + |A| x 4 + |r| x 4 + {1 }

= 6+(|A| + |r|) x 4 + { l } ,

where the 1 in braces is required when m < w. The memory requirements of this
approach is found to be

memory (CRCAr (32)) = |A| + |r|.

We note that unlike the existing algorithms, the performance of CRCAr(Z) depends
on the sizes of the sets A and T, which are fixed for a given generator polynomial and
degree of parallelism.

The determined memory and timing values for the existing algorithms and the pro
posed CRCAr(32) using the frequently referenced generator polynomials are given
in Tables 5.11a and 5.11b, respectively. Examining the results, one observes that
CRCAr(32) is expected to outperform CRCR(32), with equal or less memory. We
note that there is a strong correlation between the order of LUT size and timing per
formance in these results. That is, algorithms that have larger memory requirements
generally deliver better speed performance until caching becomes and issue.

Table 5.11: Theoretical software algorithm comparison, memory in words and loop
instruction counts: (a) existing algorithms, (b) CRCAr(32).

(a)

Algorithm CRCB(l) CRCR(32) CRCT(8) CRCS4(32)
Memory 1 32 256 1024
Timing 274 180 34 11

(b)
CRCAr CRC-12 CRC-16 CCITT-16 CRC-16f CCITT-16f CRC-32
Memory 28 32 14 19 16 27
Timing 119 135 63 83 71 114

107

5.3.2 Implementations

Here, we outline our software benchmarking system and then provide our measured
implementation results.

Benchmarking System

The software algorithms are benchmarked using a desktop PC with 2 GB RAM, In
tel® 0x86 32-bit Pentium® IV processor operating at 1.5 GHz, running Microsoft®
Windows® XP Professional, version 2002, and Service Pack 3. The implementations
were completed using C ++ and compiled under Microsoft® Visual Studio® 2005,
version 8.0.50727.762, as a WIN32 console application with no optimization options
selected. Finally, we note that all the implementations closely resemble the C++
code snippets presented throughout this thesis.

To obtain the timing results of the algorithms, we used a high-resolution counter
class [76]. The counter class wraps the Pentium® specific time stamp counter, en
abled one to measure the number of processor clock ticks (PCLKS) between two
execution points in a program. When beginning the benchmarking experiments, we
use the program EndltAll version 2.0.0.0 [77] to terminate many of the Windows®
running processes, with the goal of reducing the amount of resource contention. We
note that we cannot measure the percentage of CPU time that is consumed by other
processes while our algorithms are being benchmarked. To combat this problem, we
process relatively short messages and discard the fastest and slowest measured run
times.

Results

We examine the impact that the message length, k, has on the speed of the algorithms
for generator polynomials with different degrees. Figures 5.8a, 5.8b, and 5.8c, show
the timing results for the generator polynomials CRC-12, CRC-16, and CRC-32,
respectively, for message lengths k = 1024, 2048, 4096, and 8192 bits. In these
figures, each point on a timing plot represents the average number of PCLKS for 12
runs, with each of the fastest and slowest measured times discarded. After the discard,
87.5% of the fastest and slowest remaining times are within 2.0 standard deviations of
the mean time. Furthermore, 80% of the standard deviations are less than 1% of their
respective means, with an overall average of 0.56%. These statistics demonstrate an
acceptable amount of variance between run times. We note that we have selected
CRC-16, which is predicted to have the worst case CRCAr(32) performance amongst

108

the degree 16 generator polynomials. These plots verify the simulation performance
results presented in Tables 5.11a and 5.11b. Finally, we conclude that CRCAT(32)
outperforms the existing low-memory CRCR(32) on our system.

350000 -r
^ 300000 - t7T
§ 250000 -
a ,
'l 200000 -

c 150000 - jo

3 io o o o o - 0)

1024 2048 (bits) 4096 8192

■ CRCB

HCRCR

■ CRCAr

■ CRCT

rnCRCS4

(a)

350000
300000
250000

| 200000

c 150000
3 100000 -

50000

1024 2048 Mbits) 4096 8192

■ CRCB

me RCR

■ CRCAr

■ CRCT

■ CRCS4

(b)

■ CRCB

1CRCR

■ CRCAr

■ CRCT

1 CRCS4

Figure 5.8: Algorithm timing plots for: (a) CRC-12, (b) CRC-16, (c) CRC-32.

109

5.4 Summary

In this chapter, we presented our simulation and implementation results for the hard
ware architectures and software algorithms contained in the thesis. The hardware
simulation data was gathered from C ++ software that was written by the author
over the course of the study. To obtain the hardware implementation data, the sim
ulation software was extended to generate full VHDL files, and some of these files
were deployed on the ASIC and FPGA platforms. The software algorithms were the
oretically analyzed by counting both the number of operations required to process a
message word and the memory required to represent their LUTs. Actual algorithm
run times were measured on a desktop PC with a high-resolution counter class.

For the hardware results, we compared our proposed Lambda Gamma Architec
ture against the non-pipelined architectures, and found for CRC-32 it achieves the
best area performance of all the approaches, also in terms of time complexity it
matches/outperforms the systematic approaches for all the frequently referenced gen
erator polynomials. The study of the optimum degrees of parallelism for the parallel
LFSR2 Architecture determined that the time-area product tracks the CPD delay
plot, therefore one achieves diminishing time-area returns as the degree of parallelism
is increased. The optimum p values were obtained for the LFSRp Architecture. How
ever, we note that the improvements of this approach over LFSR1 are minor. Our
pipelining strategy for the State-Space Transformed Architecture was outlined, and
we found for optimum transformations improvements are observed in the number of
XOR gates and FFs. The area complexity of the Two-Step Architecture was investi
gated, and we found it to be quite large for small degrees of parallelism. The ASIC
implementations of the State-Space Transformed Architecture verified the expected
reduction in area and showed improvements in timing. The FPGA implementations
of the non-pipelined architectures demonstrated that there is little difference amongst
them and suggest that a designer should implement a systematic architecture.

For the theoretical software results, we investigated the performance of the pro
posed CRCAr(32) algorithm for the frequently referenced generator polynomials.
CRCAr(32) was shown to outperform CRCR(32) in terms of time complexity and
requires equal or less LUT memory space. We neglected to study the program sizes,
since they are all comparable in C + + . Finally, benchmarking experiments were per
formed on a desktop PC. These experiments validated the theoretical timing values
and we concluded that CRCAr outperforms CRCR when the degree of the generator
polynomial is less than or equal to the bus width.

1 1 0

Chapter 6

Contributions and Future W ork

6.1 Preview

T HE Cyclic Redundancy Check, is an EDC first proposed by Peterson and Brown
in 1961 [1]. The two major areas of ongoing research concerning CRCs consists

of developing new approaches to realize the computation and further investigations
into its error detection properties. This thesis has focused exclusively on studying ap
proaches to realize the CRC computation as an architecture or algorithm, in hardware
or software, respectively.

In this final chapter, we review the contributions contained in this thesis and
present potential directions for future work. As this thesis has shown, most of the
realizations of the CRC computation are proposed from a presented formulation.
Formulations are typically expressed using binary polynomials or a state-space rep
resentations. The existing formulations are derived by considering the computation
of the CRC equation (2.2), reproduced here for convenience,

(xm - U (x)) mod G (x),

as either the reduction of the augmented (xm ■ U (x)) or extended (U (x) = xm •

U (x)) message by the generator polynomial, called LFSR2 and LFSR1 formulations,
respectively. All software algorithms are based on LFSR2 formulations, however
realizing an LFSR1 formulation in hardware can result in an architecture that has
lower a CPD, when compared to its LFSR2 counterpart. It is noted that a small
increase in latency is incurred for architectures based on LFSR1 formulations.

Ill

6.1.1 Organization

The remainder of this chapter is organized as follows. In Section 6.2, the contri
butions contained in this thesis are reviewed. Our contributions are summarized in
a chapter-by-chapter format for easy cross-referencing. In Section 6.3, some ideas
for potential future studies are given and the section is divided into hardware and
software subsections.

6.2 Contributions

This thesis has examined a wide range of aspects surrounding the CRC computation.
We have generalized many of the existing formulations and derived some new ones.
These new formulations have been utilized to propose novel CRC computation ap
proaches that are realized as hardware architectures and software algorithms. These
proposed approaches offer some improvement over the existing architectures and al
gorithms in terms of either computation time or area/memory requirements. Of the
newly proposed schemes, we feel the most significant contribution is the software al
gorithm CRCAT derived from Lambda Gamma formulation. This high-performance
algorithm achieves good timing results with low memory usage and is easily imple
mented on most systems. In the following subsections, we provide a chapter-by
chapter summary of all the contributions contained in this thesis.

6.2.1 Chapter 3

In Chapter 3, many of the existing parallel CRC formulations were developed from
first principles, generalized, and some minor contributions were presented.

We began by developing a rigorous binary polynomial derivation for partition
ing the message into blocks. Afterward, we derived generalized binary polynomial
and state-space formulations of the parallel CRC computation using both LFSR2
and LFSR1 approaches. Unlike the previous approaches, our formulations were con
structed for all three cases of different degree of parallelism and generator polynomial
degree. These generalized formulations form the foundation which allow us to derive
all the approaches contained in the thesis.

The existing hardware architectures were examined next, each was derived and
some minor extensions were performed. For the Two-Step Architecture, we presented
a search methodology to find multiple polynomials and we found them for the fre
quently referenced generator polynomials. Also, we noted that it is possible to pipeline

1 1 2

the second stage of the architecture and obtain a CPD of 1 • Tx- For the Cascade
Architecture, we showed that the LFSR1 formulation could be applied and result in
an architecture with less CPD. For the State-Space Transformed Architecture, we
performed an exhaustive search to obtain the optimum transformation, which results
in a system with reduced hardware complexity. Finally, this chapter examined the ex
isting software algorithms. We presented a straightforward derivation for the Slicing
Algorithms which showed that this approach is a combination of the Table Look-up
and Reduced Table Look-up Algorithms.

6.2.2 Chapter 4

In Chapter 4, some novel computation approaches were presented. The first ma
jor contribution of this thesis concerned the development of a binary polynomial to
matrix-based formulation. Afterward, we investigated the detailed design of the par
allel LFSR2 Architecture when the degree of parallelism is greater than the generator
polynomial degree, and presented some optimizations specific to that case. Next, the
matrix-based formulation was extended and a novel matrix decomposition was pre
sented. We consider this decomposition, we call the Lambda Gamma decomposition,
to be the central contribution of our study. The decomposition gave rise to a novel
software algorithm and hardware architecture. Next, we generalized the CRC formu
lation introducing the parameter p. This formulation allows one to derive both the
existing LFSR formulations from a common starting point. Finally, we investigated
the Message Splitting Architecture and found that it may have promise for some
cases.

6.2.3 Chapter 5

In Chapter 5, the simulation and implementation results of the various architectures
and algorithms were gathered. Hardware experiments were performed first, followed
by software experiments.

Our first hardware simulation compared all the non-pipelined architectures. The
proposed approach outperformed the systematic approaches in terms of CPD, however
at the cost of additional hardware. Next, we presented a study which obtains the opti
mum degrees of parallelism in terms of critical path delay for the LFSR2 Architecture.
We also performed searches for the optimum p values for the LFSRp architecture that
reduce the computation time. LFSRp was shown to match/outperform both LFSR2
and LFSR1, however most of the results offered only small improvements in the overall

113

computation time. The results of the state-space transformation simulations showed
modest reductions in the number of XOR gates and FFs, when the optimum transform
was selected over the trivial one. We found for the Two-Step Architecture, obtaining
a circuit with 1 • Tx delay requires a large amount of hardware and is likely not prac
tical for implementations. Next, ASIC and FPGA implementations were performed
for some selected architectures. We chose to verify our state-space transformation re
sult in ASIC, and the implementations demonstrated improvement in both area and
timing. FPGA implementations were performed for the non-pipelined architectures,
and we concluded that it is best to implement a systematic architecture on FPGA,
since there is little difference between the performance of these approaches.

For the software algorithms, we first conducted a theoretical analysis to obtain
the expected performance. We determined that our proposed CRCAr requires less or
equal LUT memory compared to the existing low-memory CRCR algorithm, and offers
better computation times. Finally, we performed software benchmarking experiments
for all the algorithms and found that our measured results validated our predicted
ones. We concluded that the Lambda Gamma Algorithm outperforms the Reduced
Table Look-up Algorithm when the degree of the generator polynomial is less than
or equal to the bus width, which is the case in many systems.

6.3 Future Work

In this final section of the thesis, we present possible future work and some open
research questions surrounding the realization of the CRC computation in hardware
and software.

6.3.1 Hardware Architectures

After completing this study, it is clear to us that the best CPD that can be achieved by
retiming techniques for a CRC computation architecture is bounded by the complexity
in its feedback loop. As the degree of parallelism is increased, inherently, the feedback
loop complexity increases. Consequently, increasing the degree of parallelism does not
always result in timing improvements. An interesting challenge would be to derive a
systematic approach to obtain an architecture with CPD 1 • Tx , which does not rely
on any assumptions that limit its ability to be deployed.

Currently, the fastest retimed architecture is the Two-Step Architecture, and it has
a best-case CPD oi l - T x . However, one must find appropriate multiple polynomials,

114

which can be difficult. We suggested methods to shorten the search times from
a naive method of testing every polynomial, but they are not suitable for larger
degrees of parallelism. So we pose the following question: in addition to the Two-
Step Architecture, are there any another approaches to obtain parallel CRC hardware
realization of the CRC computation with 1 • Tx delay?

As mentioned in Chapter 3, there is an approach based on manipulating the
serial LFSR2 Architecture by unfolding, pipelining, and retiming it to obtain a fast
parallel CRC architecture. It would be interesting to try to develop a mathematical
approach to describe these manipulations. By taking this approach, one may have
more flexibility and possibly be able to improve on the results in that paper. We note
that other than [24], this is the only paper with an architecture that has a CPD that
is less than CPD in the feedback loop of its primitive counterpart.

Generally, there has been little work attempted to the application of CRC onto
higher order fields, i.e., G F {q). Investigations into the extension of the Lambda
Gamma decomposition onto G F (q) could be performed, as the decomposition should
also be valid in those fields.

Finally, simulations could be performed to determine if it is possible to outper
form the parallel LFSR Architectures by using the Message Splitting Architecture.
However, we note that this approach is also bounded by delays in its feedback loop.

6.3.2 Software Algorithms

This study verified that the speed performance of a given software algorithms is
strongly influenced by the properties of datapath that it will be deployed on. Factors
such as cache size, instruction set, memory access times, etc., will dictate the perfor
mance of an algorithm. With the recent rise in popularity of multicore processors,
a future study could be undertaken on the performance of the existing algorithms
when deployed on these systems. That is, investigations into the influence of different
shared memory schemes for representing the message and the LUTs.

Finally, the desktop benchmarking experiments that were performed in this thesis
could be followed up on a microcontroller that has build-in benchmarking utilities.
We noted that the instruction counts provided in Chapter 5 were based on C++
implementations of the algorithms, consequently they will be compiled differently on
different systems. Even though the variance was low between measured run times
on our system, a more accurate result would likely be observed through assembly
language implementations on a microcontroller.

115

A ppendix A

C R C -32 Hardware Architecture

Equations

IN this appendix, the hardware architecture equations for some implementations
of the CRC computation using the generator polynomial CRC-32, G (x) = 1 +

x + x 2 + x4 + x 5 + x 7 + x 8 + x10 + x11 + x12 + x16 + x22 + x23 + x26 + x32 [4] are
presented. For the parallel LFSR2 and LFSR1, Lambda Gamma, State-Space Trans
formed, and Two-Step Architectures, we list the complete set of equations required
for their implementation. The Cascade and Look-Ahead Architectures are based on
the serial LFSR2 Architecture, therefore their implementation equations are trivial
and are not provided.

Since we are discussing implementations, the iteration number in the formulation
has no impact on the architecture. Therefore, we drop it from the equations. However,
since all these formulations are recursive, we mark the next terms using primes. In
other words, the primes denote terms which input to a storage element.

We note that, all of the equations in this appendix were obtained using modified
versions of the LUT generation algorithms presented in this thesis. Therefore, the
content contained in this appendix can be used by a hardware designer who wishes
to realize the CRC-32 computation as an architecture and/or verify the correctness
their equation generation code.

The remainder of this appendix is organized as follows. In Section A.l, the equa
tions for the parallel LFSR2 and LFSR1 Architectures are presented. In Section A.2,
the equations for the Lambda Gamma Architecture are presented. In Section A.3,
the equations for the State-Space Transformed Architecture are presented. In Section
A.4, the equations for the Two-Step Architecture are presented.

116

A .l Parallel LFSR Architectures

An illustration of the parallel LFSR2 and LFSR1 Architectures are shown in Figures
3.5 and 3.6, respectively. Here, the implementation equations are provided for l — 32.
We note that for LFSR2, £* = Sj + tq see (3.5). Figures A.l and A.2, display the logic
equations for the parallel LFSR2 and LFSR1 Architectures, respectively.

0 = A) "■ 6̂ + h "*■ to 1̂2 2̂4 "*■ hs "*■ A ■*“ hi 2̂9 to 3̂1
5 1 = A '*’ A A A A Al A2 A3 A 6 A 7 "*̂ 24 A? As
52 = A **" A A A A A A A3 1̂4 Afi 1̂7 1̂8 2̂4 Afi Ao Al
53 — + A + ¿3 + ¿7 + ¿g + ¿9 + Ao + A 4 + A5 A 7 A 8 1̂9 2̂5 2̂7 Al
54 “ A A A A A A Al K l A5 A 8 1̂9 ’*’ 20 *̂ 24 *25 2̂9 Ao "*" Al
5 5 = A A A A A A + A Ao A3 A 9 Al 2̂4 2̂8 2̂9
̂ 6 = A A A A A A A Al 1̂4 Ao Al A2 "" A5 2̂9 Ao
S 1 “ A A A A A A ¿1Q + /15 + t lfi + ¿21 2̂2 2̂3 2̂4 2̂5 2̂8 2̂9

8̂ = *0 ■*" ̂1 3̂ "*" h 8̂ “*■ ̂10 1̂1 ̂̂12 A7 2̂2 2̂3 ̂ 28 3̂1
9̂ = A **2 4̂ 5̂ 9̂ Al 1̂2 1̂3 1̂8 ^ 2̂3 2̂4 2̂9

5 10 = ^0 “*" ^2 **" h ^5 "*" ^9 "*" ^13 A 4 ^16 "*" ^19 "*" ^26 "*" ^28 "*" ^29 ^31

1̂1 ~ **o ¿j + ¿3 + ¿4 + ¿9 + ¿12 + 1̂4 + ^5 ^ 1̂7 2̂0 "*" 2̂4 2̂5 "*" 2̂6 "*" 2̂7 2̂8 "*" 3̂1
512 = ̂ 0 1̂ ■*" ̂2 4̂ 5̂ ”*" ̂ 6 h "** ̂12 1̂3 1̂5 1̂7 ̂̂18 2̂1 2̂4 + ̂27 3̂0 3̂1
^13 = ¿1 ¿2 3̂ 5̂ “t ^6 ^7 A o ”*" **13 ^ 1̂4 1̂6 ”*" 1̂8 1̂9 ^22 ”*" ^25 "*" ^28 3̂1

^14 = ^2 **" ^3 U ^6 h * h ■*" 1̂1 1̂4 A 5 A 7 **19 "*" ^20 ^23 + ^26 "*" 2̂9

^15 = 3̂ "*" ^4 "*" 5̂ "*" *7 “** 8̂ 9̂ "*" ^\2 "*" 1̂5 1̂6 ^18 "*" ^20 "*" ^21 **” ^24 "*" ^27 "*" ^30

516 = ̂ 0 "*" ̂ 4 h "*■ ̂8 “*■ ̂12 ■*" ̂13 1̂7 "*" ̂19 2̂1 2̂2 + ̂24 2̂6 "*" ̂29 "*" ̂30
51? = ¿i + t s + ¿6 + ¿9 + ¿t3 + ¿14 + ¿lg + ¿20 + ¿22 + 2̂3 "*" 2̂5 2̂7 3̂0 "*" 3̂1
518 = 2̂ 6̂ 7̂ Ao 1̂4 1̂5 1̂9 2̂1 "*" 2̂3 2̂4 2̂6 2̂8 3̂1
̂ 19 ^ ¿3 + ¿7 + 8̂ + 1̂1 1̂5 "" Afi ■*" 2̂0 + 2̂2 2̂4 2̂5 2̂7 "*" 2̂9
2̂0 = ̂ 4 8̂ ̂ ̂9 "*" A 2 1̂6 "*" ̂17 2̂1 ̂̂23 2̂5 2̂6 2̂8 3̂0
2̂1 = 5̂ "*" 9̂ "*■ Ao "** 1̂3 "*■ 1̂7 1̂8 2̂2 2̂4 "*" 2̂6 2̂7 "*" 2̂9 "*" 3̂1
2̂2 = 0̂ ■*" 9̂ "*" 1̂1 1̂2 “*■ 1̂4 ■*" 1̂6 ^ 1̂8 1̂9 ^ **23 2̂4 "*" 2̂6 ^ 2̂7 2̂9 3̂1
̂23 = ̂ 0 ~~ t\ "*" ̂6 9̂ 1̂3 “*■ As "*" A6 ̂A7 "*" A9 2̂0 2̂6 2̂7 2̂9 3̂1

■̂24 — ¿1 + ¿2 + A Ao ”*■ A4 A6 A7 As "*" Ao “*" All A7 2̂8 "*" Ao
2̂5 = A "*" A A "*" Ai As "*" A 7 As A9 '*’ Ai A2 As A9 "*" Ai
2̂6= A "*" A A A Ao "*" As "*" A9 ^ Ao "*" A2 "*" A3 "** A4 As "*" Ai "*" As ^ Ai

■ 2̂7 = A "*" A "** A "*" A "*" Ai "*" A9 "*" Ao Ai "*" A3 "*" A4 As "*" Ae A7 A9

̂ 28 = A A A A A2 Ao ■" Ai A2 ^ A4 "*" As "*" 2̂6 A7 "*" As ”*" Ao
2̂9 = A “*" A A "*" A "*" A3 "*" Ai A2 A 3 "*" As A6 A7 "*" As **“ A9 “*" A 1

3̂o — ¿4 + ¿7 + A Ao "*" A4 **" A2 “*" A3 A4 A& A7 "*" As A9 "** Ao
53i = A A A Ai As A3 "*■ A4 "*■ As A 7 “*■ As "*" A9 Ao ■*■ Ai

Figure A.l: Parallel LFSR2 Architecture G 32X 32 equations.

117

5q = «0 ^0 ^6 S9 "*■ 510 512 1̂6 "*" S24 ^25 "*" 2̂6 ^28 "*" S29 "*" ̂ 30 "*" 531

5, = W, + 50 + 5, + S6 + S7 + S9 + 5, i + 5,2 + 5,3 + 5,6 + 5,? + S2 4 + S27 + 52g
5"2 = W2 + + 5j + ^ ̂ 57 58 *̂ 9 *̂ 13 ̂ 14 ^ ̂ 16 1̂7 "*~ SIZ 524 "*" ̂ 26 ^30 "*" ̂ 31

5 3 = « 3 ^1 "*" ^ 2 "*" ^3 ^7 "̂ ~ ^8 "*" ^9 ~*~ ^10 ̂ 14 *̂ 15 "*" ^17 "*" ^18 ̂ 19 ^25 "*" ^27 ~*~ ^31
54 = W4 + Sq + S2 + 53 + 54 + 5 6 + 5g + 5 ,, + 5 ,2 + 5 ,5 + 5 ,g + 5 ,9 + S2q + S24 + 525 *̂ 29 *̂ 30 "̂ ~ *̂ 31

5 j = « 5 ~*~ ^0 *̂ 1 *̂ 3 "*" ^4 ^5 ^6 ~̂~ ^7 ̂ 10 "̂ ~ *̂ 13 *̂ 19 ~̂ " *̂ 21 “̂ 24 ~̂~ *̂ 28 ~̂ " ^29

= W6 ^2 "̂ " *̂4 "̂ " *̂ 5 ^6 "*" ^7 "*" ^8 *̂11 ~*~ 1̂4 "*" *̂ 20 ^21 *̂ 22 "*" *̂ 25 "*" ^29 *̂ 30

5? = M? + SQ + S2 + £3 + S5 + 5? + 5g + 5,0 + 5,5 + 5,6 + 521 + S22 + ̂ 23 ^24 *̂ 25 "*" “̂ 28 2̂9

8̂ = W8 "*" 0̂ "*~ 51 "*"̂ 3 ^ 4̂ +58+510+5ll+ 1̂2 1̂7 ^^22 "*" 523 ̂ 28 "*"̂ 31
Sg = U g + 5 , + s 2 + s4 + s5 + S g + 5, j + 5j 2 + Sj 3 + 5j 8 + 5 23 + 5 24 + 5 29

510 = W10 50 ■*" ^2 + 53 ■*" 5̂ S9 "*" S13 + ̂ 14 + 516 ^ S19 + S26 + S2S "*" 529 + ̂ 31

511 = uu + s0 + s i + s2 + s4 + s9 + sn + sH + s ls + s16 + s l7 + s20 + s24 + s 25 + s 26 + i 27 +528 + s31
*̂ 12 ” Wj2 + 5*0 + *$1 + S2 + S4 + S5 + S6 + Sg + 5 I2 + 5,3 + 5 ,s + 5 ,7 + 5]g + 5 2, + 5 24 + 527 + 5 30 + 53,

_.» 1<T Ir. If If _l_ f _L f _1_ f _l_ f _l_f _L_ a _l_ c _l_ c _1_ c _L o J_c
5Ì3 = W13 + 5, + 5 2 + 53 + 55 + ^6 + 5? + S10 + 5,3 + 5M + ^.6 + Sl& + 5 ,9 + 522 + 5 25 "*"^28

= W14 + 52 + 53 + i 4 + ^6 + 5 ? + 5 g + 5 „ + 5,4 + 5 ,5 + 5 n + 5,9 + 520 * ^23 + S26 + 5 29

5Ì5 = wI5 + 53 + 54 + 5 5 + 5 ? + 5 g + Sg 1̂2 + 5,5 + ^16 + 5 18 * S20 + 5 2I + 5 24 + 5 27 + 530

4 = W16 + 50 + ^4 + 5 5 + 5 g + 5 , :, + 5 , 3 + 5] ,7 + 5 ,19 + s :2! + f 22 + 5 2 4 + 5 26 + S2 9 + 5 30

5Ì7 = W]7 + 5, + 55 + *6 + Sg + 5,3 + 5,4 + 5 ,g + 5 20 + 5 .12 + S 2 3 +^ 25 + S2 7 + 5 30 ~^S31

v'
1̂8 = «18 + 52 ■ ^ ó + 5? + 5,0 + 5,4 + 5,5 + 5,9 + 52, + 523 + 524 + 526 + 52g + 53,

1̂9 “ ̂ 19 + 53 + 5? + 5g + 5,, + 5,5 + 5,6 + 520 + 522 + 524 + 525 + 527 + 5 29

S20 = W20 "*" 54 5g + 59 + 5,2 + 516 + 5,7 + 521 + 523 + S25 + S26 + 52g + 530

52, = W2, + 55 + S9 + 5,0 +5 ,3 + 517 + 5,g + 522 + 524 + 526 + S27 + S29 + 53,

“̂22 = ̂ 22 + “̂9 *̂11 *̂12 *̂14 *̂16 *̂18 *̂19 "*" ̂ 23 “̂24 "*" ̂ 26 2̂7 2̂9 *̂3
5-,i = W23 + 5 q + 5 , + 5 A + 5 Q+ 5 , , + 5]S + 5 , A + 5 , 7 + 5 , Q + S jn + 5 9ft + 5 ?7 + 5 79 + 513 1 J 15 1 J 16 ' °17 ' ^19 ‘ °20 1 ^26 ' °27 ' °29 ' ^31

5 24 = W24 + 5, + s 2 + s 7 + 510 + 5 n + 5 ,6 + 5 ,7 + 5 18 ^ S20 ■*"̂21+ 5 2? + 5 2g + 530

^25 = W25 + 5 2 + 5 3 + 5 g + 5 „ + 5]5 + 5n + 5 ,g + 5,9 + 5 2, + 522 ^28 + 5 29 + 53,

5 26 = M26 + 5 q + 5 3 + 5 4 + *̂ 6 ■*■ ^10 + 5 ,g + 5]9 + 520 + S22 + 5 23 + 5 24 + S25 + 5 26 + 5 2g

527 = W27 + 5, + 54 + 5 5 + 5 ? + 5 ji + 5 ,9 + 5 20 + 5 21 + S23 + 524 + 5 26 ■*" ‘̂ 27 + ^29

^28 = w2g + 5 2 + 5 S + ^6 + 5 g + 5,2 + 5 20 + 5 2, + 5 22 + 5 24 + 1?26 + S27 + 5 2g + 530

S2g = U2g + 53 + ^6 + 5 ? + Sg + 5,3 + 5 2, + S22 + 523 + S25 + *̂ 26 + 5 27 + 528 + 5 29 + 5 3,

530 = W30 + 54 + 5 7 + 5 g + 51C + 5^ + S22 + 523 + S24 + 5 26 + S27 + 5 2g + 5 29 + 5 30

^31 = «31 + 55 + 5g + Sg + 5 „ + 515 + 523 + S24 "*"5 25 + 5 2? + 52g + 5 25 + 5 30 + 53,

Figure A.2: Parallel LFSR1 Architecture G 32 X 32 equations.

118

A .2 Lambda Gamma Architecture

An illustration of the Lambda Gamma Architecture is shown in Figure 4.5. Here,
the implementation equations are provided for l = 32, and similar to the parallel
LFSR2 equations, U = Si + Ui. Figures A.3 and A.4 display the logic equations for
the Lambda and Gamma matrices, respectively.

A = * 0 + * 6 + * 9 + * 1 0 + *12 "*" h e "*" *24 "*" *25 "*" *26 *28 *29 *30 "*" *31

A ~ *1 + *7 + *10 "*"*11 "*~ *13 “*~ *17 "*" *25 "*" *26 "*" *27 "*" *29 "*" *30 "*" *31

A = *2 + *8 + *11 + *12 “*“ *14 "*" *18 "*" *26 "*" *27 "*" *28 "*" *30 "*" *31

^ 3 = *3 *9 "*" *12 "*" *13 "*" *15 "*" *19 "*" *27 "*" *28 "*" *29 "** *31

A = *4 ^ *10 "*" *13 *14 "*" *16 "*" *20 "*" *28 "*" *29 "*" *30

.Ag = ¿5 + *n + *14 + *15 + *17 + *21 + *29 *30 “*" *31

A = *6 + *12 *15 + *16 "*" *18 "*" *22 "*" *30 "*" *31

A

A
A
Ao
Ai
Ai
As
A4
As

Ae
a 7
A b
a 9
Ao
Ai
A i
A3

A4
As
Ae
A?
As
A 9
Ao
A 1

— *7 + ¿13 + ¿] 6 + ¿17 + ¿] 9 + ¿23+ ¿31

~ *8 “*" *14 ~*" *17 "** *18 ~*" *20 "*" *24

= *9 + t 15 + /18 + ¿]9 + ¿2i + *25

II 0 + *16 + *19 "*■ *20 "*■ *22 "*" *26

II

"*"*17 + *2o -*" *21 "*■ *23 "*"*27

“ *12 ■*"*18 + *2i + *22 + *24 + *28

II + *19 "*■*22 + *23 + *25 + *29

II + *2o + ¿23 "*■*24 "*■ *26 + *30

“ *15 + *2i + ¿24 + *25 "*" *27 "*■*31

= ¿16 + ¿22 + ¿25 "*" *26 "*" *28

— ¿17 + ¿23 + *26 "*" *27 *29

= ¿18 + ¿24 + ¿27 + ¿28 + *30

= ti9 + ¿25 + ¿28 + ¿29 + ¿31
= ¿20 + ¿26 + t 29 + ¿30
“ *21 "*" *27 "*" *30 + *31

= ¿22 + *28 "*" *31

= ¿23 +129

= ¿24 + ¿30
= *25 + ¿3 j
= *26

= *27

= *28

Figure A.3: Lambda Gamma Architecture A 3 2X32 equations.

119

*0 = 4)
■*i= K + K
S2= A) + A +¿2

= ^ + / ^ + ^ 3
54 ==A0 + A 2 + A 3 + A 4

= Aq + A, + Aj + A 4 + A 5
s$ — Aj + ¿2 + A 4 + A 5 + A 6
.Ŝ = ^ + ^ 2 + ^ 3 + ^ + ^ + ^

5 g — Aq + Aj + A3 + + Ag + Ay H~ Ag
^9= A i -i " A 2 + A 4 + A 5+ A y + A g + A 9

5io = A + ̂ 2 + h + ̂ 5+ K + K + K + ̂ 10

Jjj = A0+Aj+A3+A4-)-Ag+A7+A9 + Aj0 + Aj t
1̂2 = A0 + A1 + A 1 + A 4 + A 5+ A 7 + A s + A[0 + A jj + A[2

^13 = A1 + A 2 + A 3 + A 5 + A 6 + A 8 + A 9 + A 11 + A|2 + A|3

514 = ̂ 2 + A3 + ̂ 4 + ̂ 6 + ̂ 7 + ̂ 9 + ̂ 10 + ̂ 12 + \l + ̂ 4
^ 5 = A3 + A 4 + A 5 + A? + Ag + Aio + A i + A13 + A,4 + Al 5

SÌ7 “ Aj+A^Ag
1̂8 = ¿2 + \ "*" ¿i A "*" ̂ 10 "*" ̂ 11 "*" ̂ 3 1̂4 *̂16 "*" ̂ 7 1̂8

■S1 9 = A 3 + A 7 + A 8 + A 9 + A jj + A12 + A j4 + A j5 + Aj-y + A1g + A j9

2̂0 = ̂ 4 + K + ̂ + ̂ 10 + Kl + ̂ 13 + ̂ 15 + ̂ 16 + ̂ 18 + ̂ 19 + ̂ 20
2̂1 = Ag + A ̂ + A 10 + A11 + A13 + Aj4 + A16 + A]7 + A j9 + A20 + A ^
2̂2 = Aq + Ag “H Ajq + Ajj + Aj2 + Aj4 + A jj + Aj7 + Ajg + A jq + A 71 +^22

¿23 = Aq + A j + A y + A jj + A j2 + A j3 + A j5 + A j6 + A j8 + A j 9 +A2J +A22 +¿21

^24 ~ Aj + A2 + Ag + Aj2 + t̂j3 I '*14 > ' 46
*̂ 25 — A2 “t- A3 “t- Ap “I" Aj3 “H Aj4 “I” Aj 5 "1" Aj 7
•s2 6 = At)+ A 3 + A 4 + A t0 + A 14 , .35 , , n6 .
5 27 = Aj + A 4 + A 5 + A jj + A j5 + A j6 + A j 7 + A j9

*̂ 28 = A7 + A 5 + Ag + Aj2 +
^29 = A3 + Ag +

^30 “ A 4
5 31 = A 54 - A 8 + A 9 + A j5 +

Figure A.4: Lambda Gamma Architecture r 3 2 X 32 equations.

1 2 0

A .3 State-Space Transformed Architecture

An illustration of the State-Space Transformed Architecture is shown in Figure 3.14.
Here, the implementation equations are provided for the state-space transformed

1 T
with l = 32. Figuressystem when it is constructed using b 32xl = |̂ 1 0 0 ••• 0

A.5, A.6, and A.7 display the logic equations of the input, state, and output coupling
matrices, respectively.

«0 = Ai a 2 = x7 + x 31
° 1 6

— x15 + x31 ^24 x23
«1 = A + A l a 9 = A = * 1 6 a 25

11

° 2
= x, + x31 a xo

= x9 + x 31 a is = xI7 ° 2 6
- x25 + x31

= A a xx
= x10+ x 31 a \9 = x lt a 27 = X 26

a A = x3 + x31 a \2 = xu + x 3. a 20 = x19 a 2%

II -j

U 5 = x 4 + x 3l att = X i2 a 2\

II o a 29

II 00

= x s °XA
= x13 a 22 = X 2 1 + X 3 1 a 30 — x29

A = A + A i < h s
= X i4 f l 23 = x22 + x3I a 3[II

& ©

Figure A.5: State-Space Transformed Architecture A 32x32 equations.

121

b0 ~ 4 W9 4 Wjj + Wjj 4 W]7 4- Wjq + W21 4 W22 4 W23 4 W24 4 W23 4 W29 4 W30 4 U3l

¿>3 =W04Wj4M54M64W74Wg + W]0 4 W12 4 WJ3 4 W14 4 W15 4 W]6 4M]? 4 W,8 4 M20 4 M2] 4 M22 4W23 + W24 + w 25 + W 27

b2 = W2 4 1/5 4 W8 4 Wj j 4 W13 4 W35 4 W16 4 W17 4 W18 4 W20 4 W23 4 W24 4 U25 4 W26 4 W27 4 W29 4 W30

¿>3 =M,4M34M54M64 M13 4 W14 4 W15 4 W17 4 U20 4 W21 4 W22 4 U23 4 W24 4 W29 4 W30 4 W31

¿>4 = W3 4 W4 4 W6 4 W7 4 W9 4 W10 + W12 4 W13 4 W18 4 W20 4 W22 4 W24 4 W26 4 W27 4 W28 4 W29

¿5 = «! 4 « 3 4tt5 4tfg 4 w7 4 w9 4 « 10 4 Mu 4 « 13 4 W15 4 Ul7 4 W]8 4 W19 4 W20 4 W21 4 W22 4 W23 4 W25 4 W26 4 U21 4 W28 4 W29

b6 = w3 4 W4 4 W5 4 u 6 4 u 7 4 U% 4 W1(J 4 W12 4 W16 4 W23 4 W24 4 W25 4 W31

¿>7 = w2 4 W3 4 U9 4 M12 4 w13 4 W]8 4 W19 4 W20 4 W21 4 W23 4 U25 4 W26

¿>8 = W6 4W7 4 w9 4 W14 4 W17 4 Wj8 4 W19 4 W21 4 W25 4 W26 4 W27 4 W31

¿>9 = Wj 4 W2 4 W3 4 W4 4 W5 4 W7 4 WJ4 4 W15 4 WI6 4 W19 4 W20 4 U2i 4 W2g 4 W29

Z>jO = W6 4 U-j 4 W9 4 W10 + Wjj 4 W]2 4 W]4 4 W16 4 W]7 4 W19 4 W20 4 W21 4 W22 4 W23 4 W26 4 W27 4 W29 4 W30 4 W31

= Wj 4 M10 4 W12 4 W13 4 W16 4 W20 4 W21 4 W24 4 W2g 4 W31

b\2 = W2 4 W7 4 W9 4 W|Q 4 W31 4 W13 4 W22 4 W23 4 W30 4 W31

bn = W2 4 W4 4 Wg 4 W10 4 W]2 4 W]? 4 Wlg 4 W19 4 W2, 4 W23 4 W25 4 W27 4 W28 4 W29

¿>¡4 = W, 4 W3 4 W4 4 W7 4 W9 4 WI3 4 WJg 4 W20 + W22 4 W23 4 W25 4 W26 4 W27

b\5 = w2 4 w5 4w6 4 w7 4Wg 4 w9 4W10 4 Wjj 4W12 4W13 4W14 4W15 4 W16 4 W17 4 W,9 4 W20 4 W22 4 W23 4 W27 4 W31

¿>16 = W3 4 W4 4 W5 4 W7 4 W8 4 W9 4 W10 4 Wjj 4 W12 4 W14 4 W15 4 W17 4 W18 4 W19 4 W25 4 W26 4 W2? 4 W28 4 W30 4 W31

1̂7 ~ W2 4 W8 4 Wj2 4 W15 4 W18 4 W20 4 W21 4 W24 4 W25 4 W26 4 W28 4 W29 4M3,

¿>]g = Wj 4W3 4 w7 4W]0 4 Wjj 4W]3 +W]4 4W]5 4W29 4W30

¿>19 = Wj 4 W4 4 W6 4 W? 4 W8 4 W9 4 W,j 4 W12 4 WJ3 4 W14 4 W]6 4 W18 4 W20 4 W21 4 W22 4 W23 4 W24 4 W26 4 W28

¿>20 = Wj 4 W2 4 W3 4 W4 4 W7 4 W12 4 W14 4 W15 4 Wlg 4 W19 4 W21 4 W26 4 W27 4 W28 4 W29 4 W30

¿>2i — W6 4 W7 4 W9 4 Wj0 4 Wjj 4 W12 4 W13 4 W16 4 W22 4 W24 4 W27 4 W29 4 W30

b22 = w2 +W3 4w6 4 Wg 4 w9 4 W10 4W,2 4W,3 4W14 4 Wj6 4W19 4W20 4 W2] 4 W25 4W26 4W27 4W31

Z?23 = Wj 4 W2 4 W3 4 W5 4 W6 4 W? 4 W8 4 W,j 4 Wj7 4 W20 4 W22 4 W23 4 W27 4 W30

Z>24 = W3 4 W6 4 W7 4 W9 4 W13 4 W14 4 W]5 4 W1? 4 Wlg 4 W19 4 W20 4 W2] 4 W24 4 W26 4 W27 4 W28 4 W30

¿>23 = Wj 4 w2 4 w5 4 w7 4 Wg 4 W14 4 W15 4 W]g 4 W19 4 W20 4 W21 4 W22 4 W24 4 W27 4 W28 4 W29

¿̂ 26 = Wj 4 W3 4 W5 4 W7 4 Wg 4 W10 4 W13 4 W15 4 W17 4 W18 4 W19 4 W22 4 W23 4 W25 4 W26 4 W30

Z>27 =W4 4W5 4W? 4W9 4W10 4Wjj 4 w12 4Wj3 4W14 4W15 4W16 4W1? 4 w20 4W21 4 W23 4 W24 4 W25 4 W27 4W28 4W31

¿>2g = W2 4W3 4 w5 4W6 4W? 4 W8 4Wjj 4W13 4W14 4Wj5 4Wj6 4W,g 4W19 4 W20 4 w21 4W25 4 w27 4W3)

¿>29 = w2 4w3 4w4 4w5 4w6 4 w7 4w9 4 Wjj 4Wj6 4Wj7 4 Wlg 4 W19 4 W21 4 W22 4 W25 +W26 4w2? 4W2g4W29

3̂0 = W2 4 Wjj 4 W15 4 W16 4 W18 4 W]9 4 W22 4 W23 4 W24 4 W26 + W29 + W30 4 W3]

¿>3j — W2 4 W4 4 Wj 4 Wg 4 W9 4 Wjj 4 Wj7 4 W2q 4 W22 4 W23 4 W27 4 W28 4 W29 4 W39

Figure A.6: State-Space Transformed Architecture B 3 2x32 equations.

1 2 2

c0 = X q + X ì + X 2 + X a + X s + X 1 + X g + X l 0 + Xj J 4- x 14 + x 15 4- xl6 + xl7 + JC21 + x 22 4- x 23 4- x 24 4- x 26 + x 27 4- x 29 + x 31

C\ = X(4" X3 4" Xg 4“ X9 4“ XJ4 + -£¡5 4" Xj9 + X20 + X21 4- X22 + X23 4" X24 + X25 + X26 4- X27 + X2g + X29

c2 = X y 4- x 2 + x 3 + x 4 4- x 5 4- x 6 + x 7 + x8 4- x 9 4- x 10 + Xj j + x 15 + x 17 + Xjg + x 21 + x 24 + x 25 4- x 27 4- x 28 + x 29 + x 31

c3 =x2 + x 5 + x 6 + x 9 + xn + x 12 + x 13 + x 14 + x 18 + x 19+ x 26 + x 29

c4 = X j + x 5 + x 7 4- x8 + x 9 4- xu 4- x13 4- x 14 4- x 16 4- x 17 4- x 25 4- x 27

c5 = Xj + x 3 + x 7 + Xg + x 10 + x 12 + x 13 + x 19 + x 20 4- x 23 + x 24 + x 25 + x 26 4- x 29 4- x3

c 7 = Xj + x 2 + x 7 + Xg + x 10 4- x12 + x 14 4- x 15 + x 19 4- x 20 4- x 21 4- x 24 + x 25 + x 26 + x 27 4- x 28 + x 29 + x 31

C 8 = *1 4 - X 2 4" X j + X 6 '

Cg = X 2 4 - X 3 4 - X 4 + x $

C 10 = X l 4 - X 2 + x 4 + X 6 '

C » = X l 4 - X 3 + x 6 + x n

C,2 = X 1 + x 4 + X j 4" X~j ■

C 13

II + x 3 + x 5 4 -X 9 ■

C 1 4 = X 2 + x 4 + x 6 4 - X ?

C,5 = x 3 + x 6 + x 9 + f 6

'9 1 *12 ' *\6 1 -*18 ' *21 1 *22 ' *24 ' *25 1 *21 1 3̂0
C g + x 13 4- x 14 4- x 15 + x 16 4- x 23 + x 26 + x 27 4- x 29 + x 30

:7 + Xg + x 9 + x 15 4- x 17 + x 20 4- x21 4- x 22 4- x 24 + x 26 + x 27 4- x 28 + x 31

xl2 + X13 + x 14 4- x 15 4- x 16 + x 18 4- x 22 4- x 23 + x 24 4- x 26 4- x 31

: 9 + Xj j 4- x 13 4- x14 4- x 18 + x 21 4- x 22 4- x 23 4- x 30 4- x 31

c l 2 + X14 + x 18 + x 19 4- x 24 4- x 26 4- x 27 4- X2g + x 29 + x 30 + x 31

Cg + x M + x 14 4- x 15 4- x 17 4- x 18 + x 21 + x 23 4- x 25 4- x 26 4- x 27 4- x31

Xi9 + x 20 4- x 21 4- x 22 + x 24 4- x 25 4- x 26 4- x27 + x2g + x 31

C16 = X l + x 2 + x 5 + x 6 + X10 + Xji 4- x 13 + x 14 + x 18 + x 19 4- x 24 4- x 27 + x 29 + x 31

C17 = ^5 + ^8 *̂ 10 **1 1 *̂ 13 *̂ 14 *̂ i6 *̂ 18 *̂ 20 *̂ 21 *̂ 22 *̂ 25 ^26 ^27 ^28 ^31

Cig = x 2 + x 4 + x 7 + Xg + x 10 + x 13 + Xj4 + Xj9 + x 23 + x 26 + x 27 4- x 28 + x 30 + x 31

Cj9 = x 2 + x6 + x 7 + Xg + X12 + X13 + x 14 4- x l7 + X20 4- X22 4- X24 4- X29 4- X30 4- X31

c20 = X5 4- x 6 + Xg + X10 + x u 4- X12 4- x 14 4- X15 4- XI8 4- X19 4- X20 4- X21 4- X29

c21 = x 4 4- x 6 + Xg + X12 4- X13 + x 14 + x 16 + x 17 4 -x 18 4- X21 4- X23 4- X25 4- X31

C22 = Xj + X5 + X9 4- Xj J + X13 4- X15 4- X21 4- X22 4- X23 4- X24 4- X25 4- X2? + X29 4- X30

C23 = Xj 4- x 4 4- x5 + x 6 4- x 7 4- Xg + X10 4- X14 4- X17 4- X,9 4- X21 4- X22 4- X23 4- X27 4- X29 + X30

C24 — X2 4“ X3 4- X6 4- X7 4“ Xg 4" X9 4" Xj3 4" Xj7 4- Xj9 4” X2q 4- X24 4- X23

c25 = X3 4- X5 4- Xg 4- X10 4- X13 4- X15 4- X16 4- X17 4- X19 4- X22 4- X25 4- X26 4- X27 4- X2g + X3Q 4- X31

C26 = + X5 + X6 4- X? 4- Xg 4- X10 4- X12 4- X13 4- XJ4 4- X16 4- X1? 4- X21 4- X23 4- X24 4- X25 + X26 4- X29 4- X30

c27 = X2 4” X4 4" X7 4~ X9 4” X12 4~ Xjg 4~ X2q 4” X24 4” X27 4- X28 4- X29 4- X3q
C28 — X3 4- Xj 4- X8 4- x 10 4- XJ3 4- X15 + X17 4- X19 4- X20 4“ X21 4- X23 4- X24 4- X26 4- X28 4- X29

C29 = X3 4- X4 4- X8 4- X9 4* X13 4- X14 4- X16 4- X20 4- X22 + X23 4- X26 4- X27 + X2g 4- X29 4- X30

C30 = X2 4- X3 4- X4 4- X6 4- X7 4- Xg 4- X10 4- X(1 4- X13 + X14 4- X y 5 4- X16 4- Xj 7 4- X19 4~ X20 4- X21 4- X22 4- X26 4- X27 4- X29

C3i = X3 + X4 4- X6 + X7 4- X9 4- Xn 4- X12 4- X15 4- X,6 4- X18 4- X20 4- X22 + X25 + X29

Figure A.7: State-Space Transformed Architecture C ' 3 2 x 3 2 equations.

123

A .4 Two-Step Architecture

An illustration of the Two-Step Architecture is shown in Figure 3.7. Here, the im
plementation equations are given for l = 8 using the CRC-32 multiple polynomial
M (x) = 1 + x 23 + x46 + x64 + x84 + x92 + x111 + x123. Figure A.8 displays the first step
equations, and Figures A.9, A.10, A .ll, and A.12 display the second step equations.

m'0 =u 0+m n5 " * 3 2 = " * 24 " * 6 4 = " * 5 6 " * 9 6 = " * 8 8 + " * 1 1 9

m[~u x +m n6 "4 = " * 2 5 " * 6 5 = " * 5 7 " * 9 7 = " * 8 9 + " * 1 2 0

m2 - u 2 + mni " * 3 4 = " * 2 6 " * 6 6 = " * 5 8 " * 9 8 = " * 9 0 + " * 1 2 1

m[= w 3 + w 118 "4 = " * 2 7 " * 6 7 = " * 5 9 " * 9 9 = w 91 + / w 122

rriA = u4 + mu9 " * 3 6 = " * 2 8 " * 6 8 = " * 6 0 " * 1 0 0 = " * 9 2

" * s =u 5+ mno " * 3 7 = " * 2 9 " * 6 9 = " * 6 1 " * l 'o i = " * 9 3

m'6 =u 6+m ni "4 = " * 3 0 " * 7 0 = " * 6 2 " * 1 0 2 = " * 9 4

m!j = w 7 + mn2 "4 = " * 3 1 " * 7 1 = " * 6 3 " * 1 0 3 = " * 9 5

" * s = " * o " * i o = " * 3 2 "4 = " * 6 4 " * 1 0 4 = " * 9 6

m9 -m x "4 = " * 3 3 "4 = " * 6 5 " * 1 0 5 = " * 9 7

m[0 =m 2 " * ; 2 = " * 3 4 " * 7 4 = " * 6 6 " * 1 0 6 = " * 9 8

" * i i = " * 3 m \ 3 = " * 3 5 "4 = " * 6 7 " * 1 0 7 = " * 9 9

m[2 = m4 " * ¡ 4 = " * 3 6 " * 7 6 = " * 6 8 " * 1 0 8 = " * 1 0 0

mn - m5 " * ¡ 5 = " * 3 7 "4 = " * 6 9 " * 1 0 9 = " * 1 0 1

m[4 = m6 " * 4 6 = " * 3 8 + " * 1 1 5 "4 = " * 7 0 " * l'lO = " * 1 0 2

m is = m - " * ¡ 7 = " * 3 9 + " * 1 1 6 " * 7 9 = " * 7 1 " * i l l = " * 1 0 3 + " * 1 1 5

m[6 = m% " * 4 8 = " * 4 0 + " * 1 1 7 " * 8 0 = " * 7 2 " * 1 1 2 = " * 1 0 4 + " * 1 1 6

rrixl = m9 " * 4 9 = " * 4 1 + " * 1 1 8 "4 = " * 7 3 " * 1 1 3 = " * 1 0 5 + " * 1 1 7

" * i'8 = " * i o " * 5 0 = " * 4 2 + " * 1 1 9 " * 8 2 = " * 7 4 " * i 14 = " * 1 0 6 + " * 1 1 8

m[9 =m u " * 5 1 = " * 4 3 + " * 1 2 0 "4 = " * 7 5 " * 1 1 5 = " * 1 0 7 + " * 1 1 9

" * 2 0 = mn "4 = " * 4 4 + " * 1 2 1 " * 8 4 = " * 7 6 + " * 1 1 5 " * 1 1 6 = " * 1 0 8 + " * 1 2 0

m ’2 1 = " * 1 3 "4 = " * 4 5 + " * 1 2 2 " * 8 5 = " * 7 7 + " * 1 1 6 " * 1 1 7 = " * 1 0 9 + " * 1 2 1

" * 2 2 = " * > 4 "4 = " * 4 6 " * 8 6 = " * 7 8 + " * 1 1 7 " * 1 1 8 = " * 1 1 0 + " * 1 2 2

"4 = " * i 5 + " * n 5 "4 = " * 4 7 " * 8 7 = W 7 9 + W n 8 " * 1 1 9 = " * 1 1 1

" 4 = " * i 6 + " * . i 6 " * 5 6 = " * 4 8 " * 8 8 = " * 8 0 + " * 1 1 9 " * 1 2 0 = " * 1 1 2

" * 2 5 = m \l + " * 1 1 7 " * 5 7 = " * 4 9 " * 8 9 = " * 8 1 + " * 1 2 0 " * 1 2 1 = " * 1 1 3

"4 = " * 1 8 + " * 1 1 8 " 4 = " * 5 0 " * 9 0 = " * 8 2 + " * 1 2 1 " * 1 2 2 = " * 1 1 4

" * 2 7 = " * 1 9 + " * 1 1 9 " * 5 9 = " * 5 1 " * 9 1 = " * 8 3 + " * 1 2 2

"4 = " * 2 0 + " * 1 2 0 "*60 = " * 5 2 "4 = " * 8 4 + " * 1 1 5

" * 2 9 = " * 2 1 + " * 1 2 1 " * 6 1 = " * 5 3 " * 9 3 = " * 8 5 + " * 1 1 6

" * 3 0 = " * 2 2 + " * 1 2 2 " * 6 2 = " * 5 4 " * 9 4 = " * 8 6 + " * 1 1 7

" * 3 1 = " * 2 3 "4 = "*55 " * 9 5 = " * 8 7 + " * 1 1 8

Figure A.8: Two-Step Architecture first step equations.

124

s'0 = m 0 + m:n + m3i + w 41 + mA1 + w 44 + m4f, + m56 + m51 + m5S + mm + m6l + m61 + m63 + m (A+ m66

+m69 + m16 + mv + m19 + m80 + mH2 + mK + /ng6 + m%1 + m90 + m92 + mgi + m95 + m91 + m9i + m99

+^100 +m i04 +m i05 + m\n+ m \n+ m \ u + m\\5 + m \\e + m\\i + m\\9
s[= mx + m32 + ml3 + m38 + m39 + m4X + m43 + + m45+ m 48+ m 49 + m56+ m S9 + m60 + m65 + m66

+m67 + m69 + m10 + m16 + m18 + m19 + m8x + m82 + m%% + m85 + m8S + w 90 + w 91 + m92 + w 94 + m95

+ m96 W104 + /W106 + + ̂ 112 + ̂ 113 "*"̂ 118 "*"̂ 119 1̂20

s2 ~ m 1 + m32 + ra33 + m34 + /m38 +/w39 + m40 +/w41 + /w45 +m 46 + m48 +m 49 + w 50 + m56 + ra58 +m 62

+W763 + m64 + tn61 + m68 + w 69 + /?i70 + wiix + /w76 + w 83 + tn84 + m85 + m81 + m89 + /w90 + m9X + tn96

+/W99 + mioo +/WjQ2 + 1̂04 "*” 1̂07 "*"̂ 111 W112 "*"̂ 115 1̂16 1̂17 ~*“W120 "*"̂ 121

53 = m3 + mi3 + t?734 + /w35 + A7739 + m40 + m4X + m42 + m46 + w 47 + m49 + m50 + m5X + m51 + m59 + m63

+m M + m65 + m68 + m69 + w 70 + mlx -f m72 + /w77 + m84 + /w85 + mS6 + w 88 + /w90 + m9x + m92 + m97

+/W100 +W 101 "̂ W103 "*"̂ 105 "*“ 1̂08 "*"̂ 112 "*"̂ *113 "*"W116 ^^117 "*"̂ 118 "*"̂ 121 W122

s ,4 = m 4 + m32 + m 34+ m35 + m36 + m38 + m40 + w 43 + m 44+ m41 + m50 + m5X + m52 + w 56 + m51 + m61

+m62 + m63 + w 65 + m1{) + m71 + m12 + m73 + w 76 + m77 + w 78 + m19 + w 80 + w 82 + m89 + m90 + /w91

+W95 W97 W99 +^100 ^101 W102 1̂05 W106 1̂09 ^111 1̂15 W116 1̂18 "*"^122

s ’5 = m5 + m32 + W33 + m25 + m36 + m31 + w 38 + m3g + w 42 + /w45 + w 5l + mS2 + w 53 + m56 + w 60 + w 61 + m69

+w71 + m12 + m13 + /w74 + m76 + m7g + w 81 + m82 + w 83 + m85 + m86 + /m87 + m9X + m93 + m95 + m96 +

+7W97 + W799 +7W101 + W102 1̂03 m\04 W105 ~*"W106 "̂ 1̂07 W110 "*"^11 W112 "*"̂ 113 W114 “̂ 1̂15

.s-; = mb + W33 + w 34 + w 36 + w 37 + m38 + m39 + m40 + m43 + m46 + m52 + m53 + m54 + /w57 + m61 + m62 + m70

+w72 + m73 + m14 + w 75 + m11 + w 79 + ̂ 2 + w 83 + m84 + m86 + m87 + mg8 + m92 + m94 + m96 + m91

+^98 + W 100 "*"^102 "*"̂ 103 "*"̂ 104 W105 “̂ 1̂06 "*"̂ 107 "*“ 1̂08 m\\ 1 ^ W112 W113 ^ W114 "*” 1̂15 "*"^16

s r7 - m1 + m32 + m34 + w 35 + w 37 + m39 + w 40 + m42 + m41 + w 48 + mS3 + m54 + m55 + m56 + m51 + m60

+m 6l + W64 + W66 + W69 + W71 + W73 + W74 + W75 + W77 + ̂ 78 + W79 + ™82 + W83 + W84 + W86 + W88

+77789 +Wî90 +/7292 +W7100 W101 "̂ 1̂03 m\06 1̂07 "*"W108 "*“ 1̂09 "^^112 W119

Figure A.9: Two-Step Architecture second step equations (1 of 4).

125

S's = «8 + «32 + «33 + «35 + «36 + «40 + «42 + 172 43 + «44 + «49 + «54 + «55 + «60 + «63 + «64 + «65 + «66 + «67
+m69 + w 70 + tt272 + m14 + »z75 + m77 + w 78 + w82 + mn + mH4 + tt286 + mg9 + m9t + m92 + m9s + m91 + m9i + m99

+ « 1 0 0 + « 1 0 1 + mia2 + m l05 + m l01 + m m + m m + m u o+ m lu + m U2 + mn4 + mns + mni + mni + mn9 + m no

s9 = m 9 + mri + mM + m}6 + w 37 + w 41 + w 43 + m 44+ m 45 + m S0+ m 5S + m 56 +m 6] + tm64 +m K + m 66 + m 61 + tm68

+ « 7 0 + « 7 . + m n + m 75 + « 76 + m l t + m 19 + 7 2 2 ,3 + « 8 4 + « 8 5 + « 8 7 + « 9 0
+ m 92 + 7?293 + « 9 6 + m 9% + m 9 9 + m]

+ « i o i + « i o 2 + « i o 3 + « 1 0 6 ^ 1 0 8 ^ 1 0 9 + « 1 1 0 + - » * 1 1 1 - * - « H 2
+ / ? 2 „ 3 + m U 5 + m v 1 6 + « : 117 " * " ^ 1 1 8 " * " ^ 1 2 0 " * " ^ 1 2 1

J 10 = « i o + m 32 + m 34 + « 3 5 + « 3 7 + m 4 l + m 45 + « 4 6 + « 4 8 + « s i
+ t? 2 5 8 + « 6 0 + « 6 1 + « 6 3 + « 6 4 + « 6 5

+ m 67 + « 6 8 + « 7 1 + m i2 + « 7 4 + « 82 + m u
+ « 8 7 + « 8 8 + m 90 + 7729 , + 7729 2 + « 9 4 + « 9 5 + « 9 8 + « 1 0 1

+ « 1 0 2 + « 1 0 3 + « 1 0 5 + « 1 0 7 ^ 1 0 9 W 1 1 0 « 1 1 2 + ‘ « I I S ' + « 1 1 8 + 7 7 2 ,2 , + « 1 2 2

* i l = « n + m 32 + m 33 + « 3 5 + m 3 6 + « 4 i + m 44 + « 4 6 + m 47 + m 4 i + « 4 9 + « 5 2 + « 5 6 + « 5 7 + « 5 8 + « 5 9 + « 6 0

+ « 6 3 + « 6 5 + « 6 8 + m n + m 73 + m 75 + m 76 + «77 + m 19 + « 8 0 + « 8 2 + « 8 3 + « 8 6 + « 8 7 + « 8 8 + « 8 9 + « 9 0

+ m g i + m 96 + m 97 + m 9 i + « 1 0 0 + « 1 0 2 + « 1 0 3 + « 1 0 5 ^ 1 0 6 ^ 1 0 8 « H O + - « 1 1 4 - + « 1 1 5 + « 1 1 7 + 7 7 2 ,2 2

512 = «12 + «32 + W233 + «34 + «36 + « 3 7 + «38 + «41 + «44 + «45 + «47 + «49 + «50 + «53 + «56 + «59

+«62 + «63 + m13 + «74 + «78 + « 7 9 + «81 + «82 + «83 + «84 + «85 + «86 + «88 + «89 + «91 + «93

+«95 + «100 +«101 + « 1 0 3 + « 105 m\06 + 1̂07 + «109 + «113 -+ «114 + «117 + « „ 8 + « 1 19
= 772,3 + «33 + «34 + «35 + /w37 + «38 + 77239 + «42 + «45 + «46 + «48 + «50 + «51 + «54 + «57 + «60

+«63 + «64 + «74 + «75 +/W79 + «80 + «82 + «83 + «84 + «85 + « 8 6 + «87 + «89 + «90 + «92 + «94

+«96 + « 1 0 1 1 + « 1 0 2 + « 1 0 4 + « 106 + m\07 +772108 + « 1 1 0 +-«114 + «115 + «1181 +«119 +«120

*.4 = «14 + «34 + «35 + «36 + «38 + m39 + «40 + «43 + «46 + «47 + «49 + «51 + «52 + W55 + «58 + «61

+«64 + «65 + «75 + «76 + «80 + W8 1 + «83 + «84 + «85 + « 8 6 + «87 + « 8 8 + «90 + m9x + «93 + «95

+«97 + «102 +«103 + « 1 0 5 + « i 07 ^108 '«109 + « 1 1 1 + «115 + «116 + «119■ + « 1 2 0 + « 1 2 1

^5 = «15 + «35 + «36 + m37 + /w39 + «40 + «41 + «44 + «47 + «48 + «50 + «52 + «53 + ^56 + «59 + «62

+«65 + « 6 6 + «76 + ™77 + w 81 + «82 + «84 + «85 + « 8 6 + «87 + « 8 8 + «89 + «91 + m92 + «94 + «96

+«98 + «103 + «104 + «106 + «108 + «109 + «110 + «112 + «116 + «117 + «120 + «121 + «122

Figure A. 10: Two-Step Architecture second step equations (2 of 4).

126

î« = « 1 6 + « 3 2 + « 3 6 + « 3 7 + « 4 0 + « 4 4 + « 4 5 + « 4 9 + « 5 1 + « 5 3 + "*54 + « 5 6 + « 5 8 + "*61 + "*62 + "*64

+ " * 6 7 + "*69 + "*76 + "*78 + "*79 + "*80 + "*83 + "*88 + "*89 + "*98 + "*100 + "*107 + "*109 + "*110 + "*114

+ "*115 +"*1 1 6+"*118+"*1 19 + "* 1 2 1 + " * 1 2 2
s;7 = mI7+m33 + m37 + m3S + mM + + w46 + mm + m52 + w54 + m55 + w57 + ffî59 + m62 + m63 + m65

+"*68 + " * 70 + "*77 + "*79 + "*80 + "*81 + "*84 + "*89 + "*90 + "*99 + "*101 + "*108 + "*110 + "*111 + "*115

+ "*116 + " * 1 1 7 + " * 1 1 9 + " * 1 2 0 + " * 1 2 2

S ’ig = "*18 + "*34 + "*38 + "*39 + "*42 + "*46 + « 4 7 + "*51 + "*53 + "*55 + "*56 + "*58 + "*60 + "*63 + " * 6 4 + "*66

+ " * 6 9 + "*71 + "*78 + "*80 + "*81 + "*82 + "*85 + "*90 + "*91 + "*100 + "*102 + "*109 + "*111 + "*112 + "*116

+ "*117 + " * 1 1 8 + " * 1 2 0 + "* 1 2 1

5 19 = « 1 9 + « 3 5 + « 3 9 + « 4 0 + « 4 3 + « 4 7 + « 4 8 + « 5 2 + "*54 + "*56 + "*57 + "*59 + "*61 + " * 6 4 + "*65 + "*67

+ «7 0 + «72 + «79 + «81 + «82 + "*83 + "*86 + "*91 + "*92 + "*101 +«103 + "*110 + «112 + "*113 + "*117

+"*118 +"*119 +«121 +«122

520 = «20 + «36 + «40 + «41 + «44 + «48 + «49 + «53 + «55 + «57 + «58 + «60 + «62 + «65 + «66 + «68

+ « 71 + « 7 3 + «80 +«82 + «83 + «84 + «87 + «92 + «93 + «102 + «104 + «111 + «113 + «114 + «118

+«119 +«120 +«122

521 = «21 + «37 + «41 + «42 + «45 + «49 + «50 + «54 + «56 + «58 + «59 + «61 + «63 + «66 + «67 + «69
+ « 72 + m74 + m81 + m %3 + w 84 + m85 + mHH + m93 + m94+ m m + m]05 + mU2+ m U4+ m U5 + m n9

+«120 +«121
s'22 = m22 + m32 + m4l + m43 + mu + m46 + m4t + m 50+ m 51+ m5S + m56 + m5H + m59 + m6l + m63 + m66

+m 67 + m6S + m69 + m70 + m7î + m15 + m76 + m77 + m19 + mw + mM + mH1 + mm + m90 + m92 + m93

+ « 9 4 +«97 +«98 + « 9 9 +«100 +«105 +«106 +«111 +«114 +«117 +«119 +«120 +«121 +«122

S23 = «23 + «32 + «33 + «38 + «41 + «45 + «47 + «48 + « 4 9 + « 5 1 + « 52 + « 5 8 + «59 + «61 + «63 + « 6 6 + «67
+/w6g + m10 + mn + m14 + m7i + m79 + mtl + m82 + w g6 + mi7 + + m9l + m91 + w 94 + m91 + tw101

+«104 +«105 +«106 +«107 +«111 +«112 +«113 +«114 +«116 +«117 + «118 + «119 + «120 +«121 +«122

Figure A. 11: Two-Step Architecture second step equations (3 of 4).

127

*24 = "*24 + "*33 + ***34+ m39 + "*42 + "*46 + "*48 + "*49 + "*50 + "*52 + "*53 + "*59 + "*60 + "*62 + "*64 + "*67
+"*68 + m69 + m7l + "*72 + "*75 + "*79 + "*80+ "*82 + "*83 + "*87 + "*88 + "*89 + m92 + "*9 3+ 77*95+ "*,8

-m m + m l06+m 307 12 + "*113 ‘ "*114 '+ "*115 + "*11-r+»118+»l 19+ 773120 + W121
s ’J25 w-><NsII + mM + mK + "*40 + "*43 + "*47 + "*49 + "*50+ "*51 + "*53 + "*54 + "*60 + "*61 + "*63 + "*65 + "*68

+m 69 + m10 + m12 + "*73 + "*76 + "*80 + "*81 + "*83 + "*84 + "*88 + "*89+ "*90 + "*93+ "*94 + 77*96+ 777,,
+"*103+"*106+"*107+"*108 +"*109+"*! 13 + »H4 + "*115 + "*116 + »US,+ 77̂119 + W2120+ 7«121 W122

•*26 = "*26 + mn + "*35 + "*36 + "*38 + w42+ "*50 + "*51 + »52 + "*54 + "*55 + "*56 + m57 + "*58+ "*60 + 77*63
+m 10 + m-n + m73 + "*74 + "*76 + m19 + "*80 + "*81 + "*84 + "*86 + "*87 + "*89 + mgx + "*92 + 777,3+ 777,4
+"*98 + m99 + mm + ml01+ m m + m 109+ "*110 +"*111 + "*1134' m i20 '+ "*121 + "*122

4 = m21 + /7J33+ "*36 + m37 + m39+ "*43 + »51 + "*52 + "*53 + "*55 + "*56 + "*57 + W58+ /M59+ "*61 + "*64
+m n + m12 + "*74 + m15 + m17 + "*80 + »81 + "*82 + "*85 + "*87 + "*88 + "*90 + m92 + "*93 + "i,4 + 77*95
+m 99 + "*100 +***106 +"*108+***109 +"*110 +"*111 + "*H2 4-"*114-+ »121 + "*122

2̂8 = WI28+ 77*34+ m37 + w38+ "*40 + "*44 + 77*52+ 77*53+ "*54 + "*56 + 77*5* + "*58 + "*59 + "*60 + 77*62+ "*65
+w72+ 77*73+ m75 + m ie + 77*78+ 77*81 + 77*82+ "*83 + "*86 + "*88 + "*89 + 77*9, + 77*93+ "*,4 + 777,5+ "*96
+"*ioo+"*io, +777107 + m109 ■*“ 1̂10 + 1̂11 + »112 +-77*113 -|-77*ii5 + 7?ii22

2̂9 = 77*39+ "*35 + 77*33+ m39 + "*41 + 7?*45+ 77*53+ "*54 + » 55+ 77*5, + 77*58+ "*59 + "*60 + "*61 + 77*53+ "*66
+77*73 + 77*74+ "*76 + m77 + 777,9+ 77*82+ 77*83+ 77*84+ 77*87 + "*89 + 77*90+ TTi,* + 77*94+ 77*95+ "*,6 + 77*9,
+"*10, + 77*io2 +77*io8 + mno + »m + tt*112 + "*113 + »114 -*"»116

3̂0 = 77*30+ 77*36+ /W39+ ™40 + 77*42+ "*46 + 77*54+ 77*55+ »56 + "*58 + 77*59+ "*60 + "*61 + 77*62+ "*64 + "*67
+7M74 + 77*75+ m n + ™78 + "*80+ 77*83+ 77*84+ 77*85+ "*88 + 77*90+ "*91 + 77*93+ "J,5 + "*96+ 77*9, + 77*98
+"*io2, + /«103 + ffll09 + m111 + wn2 +/wn3 + "*„4 + »115 -*-"*„ 7

3̂1 = »31 + "*37 + "*4o + m41 + 77*43+ "*47 + "*55 + "*56 + »57 + "*59 + "*60 + »61 + 77*62+ "*63 + "*65+ "*68
+77*75 + "*76 + 77*73+ m79 + 77*8, + 77*84+ 7?i85+ "*86 + 77*89+ 77*9, + 77*,2 + 77*94+ "*,6 + 77*9, + 77*98+ 77*,,
+77*103,+77*104 + 77*110+ m112 + W113 m \\A + "*115 + "*116-+ "*118

Figure A .12: Two-Step Architecture second step equations (4 of 4).

128

A ppendix B

C R C -32 Software A lgorithm D ata

IN this appendix, the software algorithm data for the various implementations of
the CRC computation using the generator polynomial CRC-32 G (x) = 1 + x +

x 2 + x4 + x 5 + x 7 + x 8 + x 10 + x11 + x12 + x16 + x22 + x23 + x26 + x32 [4] are presented.
For each of the look-up based software algorithms studied in this thesis, we list the
complete LUTs in hexadecimal notation. In addition, we provide the CRCF equations
in a form similar to what is shown in [13] for CRC-16.

Many of the assumptions stated in Chapter 3 concerning the bit ordering of the
software CRC computation are maintained, the two most important being

• the leading xm term of the generator polynomial is considered implicit; and

• reverse Endianness convention is employed.

Since our datapath is 32-bit, i.e., w = 32, the CRC-32 LUT entries each occupy a
single memory word. However, the LUT entries contained in this appendix are easily
generalized for use on smaller datapaths.

We note that, all of the LUT entries were obtained using the generation algorithms
presented in this thesis. Therefore, the content contained in this appendix can be used
by a designer who wishes to realize the CRC-32 computation as a software algorithm
and/or to verify the correctness of their LUT generation code.

The remainder of this appendix is organized as follows. In Section B.l, the LUT
entries of CRCT(8) are listed. In Section B.2, the LUT entries of CRCR(32) are
listed. In Section B.3, the LUT entries of CRCS4(32) are listed. In Section B.4,
the LUT entries of CRCAr(32) are listed. Finally, in Section B.5, the equations for
CRCF(8) are illustrated.

129

B .l Table Look-up Algorithm

An implementation of the Table Look-up Algorithm (CRCT) is shown in Algorithm
3.2. Figures B.l and B.2 display the LUT contents generated by Algorithm 3.5.

lut [0x00] = 0x00000000
lut [0x01] = 0x77073096
lut [0x02] = 0xee0e612c
lut [0x03] = 0x990951ba
lut [0x04] = 0x076dc419
lut [0x05] = 0x706af 48f
lut [0x06] = 0xe963a535
lut [0x07] = 0x9e6495a3

lut [0x08] = 0x0edb8832
lut [0x09] = 0x79dcb8a4
lut [0x0a] = 0xe0d5e91e
lut [0x0b] = 0x97d2d988
lut [0x0c] = 0x09b64c2b
lut [OxOd] = 0x7ebl7cbd
lut [0x0e] = 0xe7b82d07
lut [OxOf] — 0x90bf ld91

lut [0x10] = 0xldb71064
lut [Oxll] = 0x6ab020f 2
lut [0x12] = 0xf3b97148
lut [0x13] = 0x84be41de
lut [0x14] = 0xladad47d
lut [0x15] = 0x6ddde4eb
lut [0x16] = 0xf4d4b551
lut [0x17] = 0x83d385c7

lut [0x18] = 0xl36c9856
lut [0x19] = 0x646ba8c0
lut [Oxla] = 0xfd62f97a
lut [Oxlb] = 0x8a65c9ec
lut [Oxlc] = 0xl4015c4f
lut [Oxld] = 0x63066cd9
lut [Oxle] = Oxf aOf 3d63
lut [Oxlf] = 0x8d080df 5

lut [0x20] = 0x3b6e20c8
lut [0x21] = 0x4c69105e
lut [0x22] = 0xd56041e4
lut [0x23] = 0xa2677172
lut [0x24] = 0x3c03e4dl
lut [0x25] = 0x4b04d447
lut [0x26] = 0xd20d85fd
lut [0x27] = 0xa50ab56b

lut [0x28] = 0x35b5a8fa
lut [0x29] = 0x42b2986c
lut [0x2a] = 0xdbbbc9d6
lut [0x2b] = 0xacbcf940
lut [0x2c] = 0x32d86ce3
lut [0x2d] = 0x45df5c75
lut [0x2e] = 0xdcd60dcf
lut [0x2f] = 0xabdl3d59

lut [0x30] = 0x26d930ac
lut [0x31] = 0x51de003a
lut [0x32] = 0xc8d75180
lut [0x33] = 0xbfd06116
lut [0x34] = 0x21b4f4b5
lut [0x35] = 0x56b3c423
lut [0x36] = 0xcfba9599
lut [0x37] = 0xb8bda50f

lut [0x38] = 0x2802b89e
lut [0x39] = 0x5f 058808
lut [0x3a] = 0xc60cd9b2
lut [0x3b] = 0xbl0be924
lut [0x3c] = 0x2f6f 7c87
lut [0x3d] = 0x58684cll
lut [0x3e] = 0xcl611dab
lut [0x3f] = 0xb6662d3d

lut [0x40] = 0x76dc4190
lut [0x41] = 0x01db7106
lut [0x42] = 0x98d220bc
lut [0x43] — 0xefd5102a
lut [0x44] - 0x71bl8589
lut [0x45] = 0x06b6b51f
lut [0x46] = 0x9fbfe4a5
lut [0x47] = 0xe8b8d433

lut [0x48] = 0x7807c9a2
lut [0x49] = OxOfOOf 934
lut [0x4a] = 0x9609a88e
lut [0x4b] = 0xel0e9818
lut [0x4c] = 0x7f6a0dbb
lut [0x4d] = 0x086d3d2d
lut [0x4e] = 0x91646c97
lut [0x4f] = 0xe6635c01

lut [0x50] = 0x6b6b51f 4
lut [0x51] = 0xlc6c6162
lut [0x52] = 0x856530d8
lut [0x53] = Oxf 262004e
lut [0x54] = 0x6c0695ed
lut [0x55] = 0xlb01a57b
lut [0x56] = 0x8208f4cl
lut [0x57] = 0xf50fc457

lut [0x58] = 0x65b0d9c6
lut [0x59] = 0xl2b7e950
lut [0x5a] = 0x8bbeb8ea
lut [0x5b] = Oxf cb9887c
lut [0x5c] = 0x62ddlddf
lut [0x5d] = 0xl5da2d49
lut [0x5e] = 0x8cd37cf3
lut [0x5f] = 0xfbd44c65

lut [0x60] = 0x4db26158
lut [0x61] = 0x3ab551ce
lut [0x62] = 0xa3bc0074
lut [0x63] = 0xd4bb30e2
lut [0x64] = 0x4adfa541
lut [0x65] = 0x3dd895d7
lut [0x66] = 0xa4dlc46d
lut [0x67] = 0xd3d6f 4fb

lut [0x68] = 0x4369e96a
lut [0x69] — 0x346ed9f c
lut [0x6a] = 0xad678846
lut [0x6b] = 0xda60b8d0
lut [0x6c] = 0x44042d73
lut [0x6d] = 0x3303 lde5
lut [0x6e] = 0xaa0a4c5f
lut [0x6f] = 0xdd0d7cc9

lut [0x70] = 0x5005713c
lut [0x71] = 0x270241aa
lut [0x72] = OxbeOblOlO
lut [0x73] = 0xc90c2086
lut [0x74] = 0x5768b525
lut [0x75] = 0x206f85b3
lut [0x76] = 0xb966d409
lut [0x77] = 0xce61e49f

lut [0x78] = 0x5edef90e
lut [0x79] = 0x29d9c998
lut [0x7a] = 0xb0d09822
lut [0x7b] = 0xc7d7a8b4
lut [0x7c] = 0x59b33dl7
lut [0x7d] = 0x2eb40d81
lut [0x7e] = 0xb7bd5c3b
lut [0x7f] = 0xc0ba6cad

Figure B.l: CRCT(8) LUT entries (1 of 2).

lut [0x80] = 0xedb88320 lut [OxaO] = 0xd6d6a3e8 lut [OxcO] = 0x9b64c2b0 lut [OxeO]
lut [0x81] 0x9abfb3b6 lut [Oxal] = 0xaldl937e lut [Oxcl] = 0xec63f226 lut [Oxel]
lut [0x82] = 0x03b6e20c lut [0xa2] = 0x38d8c2c4 lut [0xc2] = 0x756aa39c lut [0xe2]
lut [0x83] = 0x74bld29a lut [0xa3] = 0x4fdff252 lut [0xc3] = 0x026d930a lut [0xe3]
lut [0x84] = 0xead54739 lut [0xa4] = 0xdlbb67f1 lut [0xc4] = 0x9c0906a9 lut [0xe4]
lut [0x85] = 0x9dd277af lut [0xa5] = 0xa6bc5767 lut [0xc5] = 0xeb0e363f lut [0xe5]
lut [0x86] = 0x04db2615 lut [0xa6] = 0x3fb506dd lut [0xc6] 0x72076785 lut [0xe6]
lut [0x87] 0x73dcl683 lut [0xa7] = 0x48b2364b lut [0xc7] =r 0x05005713 lut [0xe7]

lut [0x88] — 0xe3630bl2 lut [0xa8] — 0xd80d2bda lut [0xc8] = 0x95bf4a82 lut [0xe8]
lut [0x89] 0x94643b84 lut [0xa9] = Oxaf0alb4c lut [0xc9] = 0xe2b87al4 lut [0xe9]
lut [0x8a] = 0x0d6d6a3e lut [Oxaa] = 0x36034af6 lut [Oxea] = 0x7bbl2bae lut [Oxea]
lut [0x8b] = 0x7a6a5aa8 lut [Oxab] 0x41047a60 lut [Oxcb] = 0x0cb61b38 lut [Oxeb]
lut [0x8c] = 0xe40ecf0b lut [Oxac] = 0xdf60efc3 lut [Oxee] = 0x92d28e9b lut [Oxee]
lut [0x8d] — 0x9309ff9d lut [Oxad] = 0xa867df55 lut [Oxcd] = 0xe5d5be0d lut [Oxed]
lut [0x8e] = 0x0a00ae27 lut [Oxae] = 0x316e8eef lut [Oxee] = 0x7cdcefb7 lut [Oxee]
lut [0x8f] 0x7d079ebl lut [Oxaf] = 0x4669be79 lut [Oxcf] = OxObdbdf21 lut [Oxef]

lut [0x90] — OxfOOf9344 lut [OxbO] — 0xcb61b38c lut [OxdO] — 0x86d3d2d4 lut [OxfO]
lut [0x91] = 0x8708a3d2 lut [Oxbl] = 0xbc66831a lut [Oxdl] = OxfId4e242 lut [Oxf l]
lut [0x92] = OxleOlf268 lut 0xb2 = 0x256fd2a0 lut [0xd2] = 0x68ddb3f8 lut [Oxf 2]
lut [0x93] = 0x6906c2fe lut coXo = 0x5268e236 lut [0xd3] = Oxlfda836e lut [Oxf 3]
lut [0x94] = Oxf762575d lut [0xb4] = 0xcc0c7795 lut [0xd4] = 0x81bel6cd lut [Oxf 4]
lut [0x95] = 0x806567cb lut [0xb5] — 0xbb0b4703 lut [0xd5] = Oxf6b9265b lut [Oxf 5]
lut [0x96] 0xl96c3671 lut [0xb6] = 0x220216b9 lut [0xd6] =z 0x6fb077el lut [Oxf 6]
lut [0x97] 0x6e6b06e7 lut [0xb7] = 0x5505262f lut [0xd7] = 0xl8b74777 lut [Oxf 7]

lut [0x98] — Oxfed41b76 lut [0xb8] — 0xc5ba3bbe lut [0xd8] 0x88085ae6 lut [Oxf 8]
lut [0x99] = 0x89d32be0 lut [0xb9] = 0xb2bd0b28 lut [0xd9] = OxffOf6a70 lut [Oxf 9]
lut [0x9a] = 0xl0da7a5a lut [Oxba] = 0x2bb45a92 lut [Oxda] = 0x66063bca lut [Oxf a]
lut [0x9b] = 0x67dd4acc lut [Oxbb] = 0x5cb36a04 lut [Oxdb] = 0xll010b5c lut [Oxfb]
lut [0x9c] 0xf9b9df6f lut [Oxbc] = 0xc2d7ffa7 lut [Oxdcj = 0x8f659eff lut [Oxf c]
lut [0x9d] = 0x8ebeeff9 lut [Oxbd] = 0xb5d0cf31 lut [Oxdd] = 0xf862ae69 lut [Oxf d]
lut [0x9e] = 0xl7b7be43 lut [Oxbe] = 0x2cd99e8b lut [Oxde] 0x616bffd3 lut [Oxf e]
lut [0x9f]= 0x60b08ed5 lut [Oxbf] 0x5bdeaeld lut [Oxdf] = 0xl66ccf45 lut [Oxff]

Figure B.2: CRCT(8) LUT entries (2 of 2).

0xa0Qae278
0xd70dd2ee
0x4e048354
0x3903b3c2
0xa7672661
0xd06016f7
0x4969474d
0x3e6e77db

0xaedl6a4a
0xd9d65adc
0x40df0b66
0x37d83bf0
0xa9bcae53
0xdebb9ec5
0x47b2cf7f
0x30b5ffe9

0xbdbdf21c
0xcabac28a
0x53b39330
0x24b4a3a6
0xbad03605
0xcdd70693
0x54de5729
0x23d967bf

0xb3667a2e
0xc4614ab8
0x5d681b02
0x2a6f2b94
0xb40bbe37
0xc30c8eal
0x5a05dfIb
0x2d02ef8d

B.2 Reduced Table Look-up Algorithm

An implementation of the Reduced Table Look-up Algorithm (CRCR) is shown in
Algorithm 3.3. Figure B.3 displays the LUT contents generated by Algorithm 3.6.

lut [0x00] = 0xedb88320
lut [0x01] = 0x76dc4190
lut [0x02] = 0x3b6e20c8
lut [0x03] = 0xldb71064
lut [0x04] = 0x0edb8832
lut [0x05] = 0x076dc419
lut [0x06] = 0xee0e612c
lut [0x07] = 0x77073096

lut [0x08] = 0x3b83984b
lut [0x09] = 0xf0794f05
lut [0x0a] = 0x958424a2
lut [0x0b] = 0x4ac21251
lut [0x0c] = 0xc8d98a08
lut [0x0d] = 0x646cc504
lut [0x0e] = 0x32366282
lut [0x0f] = 0xl91b3141

lut [0x10] = 0xel351b80
lut [0x11] = 0x709a8dc0
lut [0x12] = 0x384d46e0
lut [0x13] = 0xlc26a370
lut [0x14] = 0x0el351b8
lut [0x15] = 0x0709a8dc
lut [0x16] = 0x0384d46e
lut [0x17] =0x01c26a37

lut [0x18] = 0xed59b63b
lut [0x19] = 0x9bl4583d
lut [Oxla] = 0xa032af 3e
lut [Oxlb] = 0x5019579f
lut [0x1c] = 0xc5b428ef
lut [Oxld] = 0x8f 629757
lut [Oxle] = 0xaa09c88b
lut [Oxlf] = 0xb8bc6765

Figure B.3: CRCR(32) LUT entries.

132

B.3 Slicing-by-4 Algorithm

An implementation of the Slicing-by-4 Algorithm (CRCS4) is shown in Algorithm
3.4. Figures B.4, B.5, B.6, B.7, B.8, and B.9 display the LUT contents for LUT_56,
LUT_48, and LUT_40, all generated by Algorithm 3.7. The entries for LUT_32 can
be found in Figures B.l and B.2.

lut [0x00] = 0x00000000
lut [0x01] = 0xb8bc6765
lut [0x02] = 0xaa09c88b
lut [0x03] = 0xl2b5afee
lut [0x04] = 0x8f629757
lut [0x05] = 0x37def032
lut [0x06] = 0x256b5fdc
lut [0x07] = 0x9dd738b9

lut [0x08] = 0xc5b428ef
lut [0x09] = 0x7d084f8a
lut [0x0a] = 0x6fbde064
lut [0x0b] = 0xd7018701
lut [0x0c] = 0x4ad6bfb8
lut [0x0d] = Oxf 26ad8dd
lut [OxOe] = 0xe0df7733
lut [OxOf] = 0x58631056

lut [0x10] = 0x5019579f
lut [Oxll] = 0xe8a530fa
lut [0x12] = Oxf al09f 14
lut [0x13] = 0x42acf871
lut [0x14] = Oxdf 7bc0c8
lut [0x15] = 0x67c7a7ad
lut [0x16] = 0x75720843
lut [0x17] = 0xcdce6f 26

lut [0x18] = 0x95ad7f70
lut [0x19] = 0x2dlll815
lut [Oxla] = 0x3fa4b7fb
lut [Ox lb] = 0x8718d09e
lut [Oxlc] = 0xlacfe827
lut [OxId] = 0xa2738f42
lut [Oxlej = 0xb0c620ac
lut [Oxlf] = 0x087a47c9

lut [0x20] = 0xa032af 3e
lut [0x21] = 0xl88ec85b
lut [0x22] = 0x0a3b67b5
lut [0x23] = 0xb28700d0
lut [0x24] = 0x2f503869
lut [0x25] = 0x97ec5f0c
lut [0x26] = 0x8559f0e2
lut [0x27] = 0x3de59787

lut [0x28] = 0x658687dl
lut [0x29] = 0xdd3ae0b4
lut [0x2a] = Oxcf 8f4f5a
lut [0x2b] = 0x7733283f
lut [0x2cj = 0xeae41086
lut [0x2d] = 0x525877e3
lut [0x2e] = 0x40edd80d
lut [0x2f] = 0xf851bf 68

lut [0x30] = 0xf02bf 8al
lut [0x31] = 0x48979f c4
lut [0x32] = 0x5a22302a
lut [0x33] = 0xe29e574f
lut [0x34] = 0x7f496f f 6
lut [0x35] = 0xc7f50893
lut [0x36] = 0xd540a77d
lut [0x37] = 0x6df cc018

lut [0x38] = 0x359f d04e
lut [0x39] = 0x8d23b72b
lut [0x3a] = 0x9f9618c5
lut [0x3b] = 0x272a7f aO
lut [0x3c] = 0xbafd4719
lut [0x3d] = 0x0241207c
lut [0x3e] = 0xl0f48f 92

lut [0x40] = 0x9b 14583d
lut [0x41] = 0x23a83f58
lut [0x42] = 0x311d90b6
lut [0x43] = 0x89alf 7d3
lut [0x44] = 0xl476cf6a
lut [0x45] = 0xaccaa80f
lut [0x46] = 0xbe7f07el
lut [0x47] = 0x06c36084

lut [0x48] = 0x5ea070d2
lut [0x49] = 0xe61cl7b7
lut [0x4a] = 0xf4a9b859
lut [0x4b] = 0x4cl5df3c
lut [0x4c] = 0xdlc2e785
lut [0x4d] = 0x697e80e0
lut [0x4e] = 0x7bcb2f0e
lut [0x4f] = 0xc377486b

lut [0x50] = 0xcb0d0fa2
lut [0x51] = 0x73bl68c7
lut [0x52] = 0x6104c729
lut [0x53] = 0xd9b8a04c
lut [0x54] = 0x446f98f5
lut [0x55] = Oxf cd3ff90
lut [0x56] = 0xee66507e
lut [0x57] = 0x56da371b

lut [0x58] = 0x0eb9274d
lut [0x59] = 0xb6054028
lut [0x5a] = 0xa4b0efc6
lut [0x5b] = 0xlc0c88a3
lut [0x5c] = 0x81dbb01a
lut [0x5d] = 0x3967d77f
lut [0x5e] = 0x2bd27891
lut [0x5f] = 0x936elff4

lut [0x60] = 0x3b26f 703
lut [0x61] = 0x839a9066
lut [0x62] = 0x912f 3f88
lut [0x63] = 0x299358ed
lut [0x64] = 0xb4446054
lut [0x65] = OxOcf80731
lut [0x66] = 0xle4da8df
lut [0x67] = 0xa6f lcfba

lut [0x68] = 0xfe92df ec
lut [0x69] = 0x462eb889
lut [0x6a] = 0x549bl767
lut [0x6b] = 0xec277002
lut [0x6c] = 0x71f048bb
lut [0x6d] = 0xc94c2fde
lut [0x6e] = Oxdbf98030
lut [0x6f] = 0x6345e755

lut [0x70] = 0x6b3fa09c
lut [0x71] = 0xd383c7f 9
lut [0x72] = 0xcl366817
lut [0x73] = 0x798a0f 72
lut [0x74] = 0xe45d37cb
lut ¡0x75] = 0x5cel50ae
lut [0x76] = 0x4e54ff40
lut [0x77] = Oxf 6e89825

lut [0x78] = 0xae8b8873
lut [0x79] = 0xl637ef 16
lut [0x7a] = 0x048240f 8
lut [0x7b] = 0xbc3e279d
lut [0x7c] = 0x21e91f24
lut [0x7d] = 0x99557841
lut ¡0x7e] = 0x8be0d7af
lut [0x7f j = 0x335cb0calut [0x3f] = 0xa848e8f7

Figure B.4: CRCS4(32) LUT_56 entries (1 of 2).

133

lut [0x80] = 0xed59b63b
lut [0x81] = 0x55e5dl5e
lut [0x82] = 0x47507eb0
lut [0x83] = 0xffecl9d5
lut [0x84] = 0x623b216c
lut [0x85] = 0xda874609
lut [0x86] = 0xc832e9e7
lut [0x87] = 0x708e8e82

lut [0x88] = 0x28ed9ed4
lut [0x89] = 0x9051f 9bl
lut [0x8a] = 0x82e4565f
lut [0x8b] = 0x3a58313a
lut [0x8c] = 0xa78f 0983
lut [0x8d] = 0xlf336ee6
lut [0x8e] = 0x0d86cl08
lut [0x8f] = 0xb53aa66d

lut [0x90] = 0xbd40ela4
lut [0x91] — 0x05f c86cl
lut [0x92] = 0xl749292f
lut [0x93] = 0xaff54e4a
lut [0x94] = 0x322276f 3
lut [0x95] = 0x8a9ell96
lut [0x96] = 0x982bbe78
lut [0x97] = 0x2097d91d

lut [0x98] — 0x78f4c94b
lut [0x99] = 0xc048ae2e
lut [0x9a] = 0xd2fd01c0
lut [0x9b] = 0x6a4166a5
lut [0x9c] = 0xf7965elc
lut [0x9d] = 0x4f 2a3979
lut [0x9e] = 0x5d9f9697
lut [0x9f] = 0xe523flf2

lut [OxaO] = 0x4d6bl905
lut [Oxal] = Oxf 5d77e60
lut [0xa2] = 0xe762dl8e
lut [0xa3] — 0x5fdeb6eb
lut [0xa4] = 0xc2098e52
lut [0xa5] = 0x7ab5e937
lut [0xa6] = 0x680046d9
lut [0xa7] = 0xd0bc21bc

lut [0xa8] = 0x88df31ea
lut [0xa9] = 0x3063568f
lut [Oxaa] = 0x22d6f961
lut [Oxab] = 0x9a6a9e04
lut [Oxac] = 0x07bda6bd
lut [Oxad] = 0xbf01cld8
lut [Oxae] = 0xadb46e36
lut [Oxaf] = 0x15080953

lut [OxbO] = 0xld724e9a
lut [Oxblj — 0xa5ce29ff
lut [0xb2] = 0xb77b8611
lut [0xb3] = OxOf c7el74
lut [Oxb4] = 0x9210d9cd
lut [0xb5] = 0x2aacbea8
lut [0xb6] = 0x38191146
lut [0xb7] = 0x80a57623

lut [0xb8] = 0xd8c66675
lut [0xb9] = 0x607a0110
lut [Oxba] = 0x72cfaefe
lut [Oxbb] = 0xca73c99b
lut [Oxbc] = 0x57a4f122
lut [Oxbd] = Oxef 189647
lut [Oxbe] = 0xfdad39a9
lut [Oxbf] = 0x45115ecc

lut [OxcO] = 0x764dee06
lut [Oxcl] — Oxcef 18963
lut [0xc2] = 0xdc44268d
lut [0xc3] = 0x64f841e8
lut [0xc4] = Oxf 92f 7951
lut [0xc5] = 0x41931e34
lut [0xc6] = 0x5326blda
lut [0xc7] = 0xeb9ad6bf

lut [0xc8] = 0xb3f 9c6e9
lut [0xc9] = 0x0b45al8c
lut [Oxea] — 0xl9f00e62
lut [Oxcbj = 0xal4c6907
lut [Oxee] = 0x3c9b51be
lut [Oxcd] = 0x842736db
lut [Oxee] = 0x96929935
lut [Oxef] = 0x2e2efe50

lut [OxdO] = 0x2654b999
lut [Oxdl] = 0x9ee8def c
lut [0xd2] = 0x8c5d7112
lut [0xd3] = 0x34ell677
lut [0xd4] = 0xa9362ece
lut [0xd5] = 0xll8a49ab
lut [0xd6] = 0x033fe645
lut [0xd7] = 0xbb838120

lut [0xd8] = 0xe3e09176
lut [0xd9] = 0x5b5cf 613
lut [Oxda] = 0x49e959fd
lut [Oxdb] = Oxf 1553e98
lut [Oxdc] = 0x6c820621
lut [Oxdd] = 0xd43e6144
lut [Oxde] = 0xc68bceaa
lut [Oxdfj = 0x7e37a9cf

lut [OxeO] = 0xd67f4138
lut [Oxel] = 0x6ec3265d
lut [0xe2] = 0x7c7689b3
lut [0xe3] — 0xc4caeed6
lut [0xe4] = 0x591dd66f
lut [0xe5] = OxelalblOa
lut [0xe6] = 0xf3141ee4
lut [0xe7] = 0x4ba87981

lut [0xe8] = 0xl3cb69d7
lut [0xe9] — 0xab770eb2
lut [Oxea] = 0xb9c2al5c
lut [Oxeb] = 0x017ec639
lut [Oxee] = 0x9ca9fe80
lut [Oxed] = 0x241599e5
lut [Oxee] = 0x36a0360b
lut [Oxef] = 0x8elc516e

lut [Oxf 0] = 0x866616a7
lut [Oxf 1] = 0x3eda71c2
lut [Oxf 2] = 0x2c6fde2c
lut [Oxf 3] = 0x94d3b949
lut [Oxf 4] = 0x090481f O
lut [Oxf 5] = 0xblb8e695
lut [Oxf 6] = 0xa30d497b
lut [Oxf7] = 0xlbbl2ele

lut [Oxf 8] = 0x43d23e48
lut [Oxf9] = 0xfb6e592d
lut [Oxf a] = 0xe9dbf6c3
lut [Oxfb] = 0x51679 la6
lut [Oxf c] = 0xccb0a91f
lut [Oxfd] = 0x740cce7a
lut [Oxf e] = 0x66b96194
lut [Oxf f] = 0xde0506f 1

Figure B.5: CRCS4(32) LUT_56 entries (2 of 2).

134

lut [0x00] = 0x00000000
lut [0x01] = 0x01c26a37
lut [0x02] = 0x0384d46e
lut [0x03] = 0x0246be59
lut [0x04] = 0x0709a8dc
lut [0x05] = 0x06cbc2eb
lut [0x06] = 0x048d7cb2
lut [0x07] = 0x054f 1685

lut [0x08] = 0x0el351b8
lut [0x09] = OxOf dl3b8f
lut [0x0a] = 0x0d9785d6
lut [OxOb] = 0x0c55ef el
lut [0x0c] = 0x091af 964
lut [OxOd] = 0x08d89353
lut [OxOe] = 0x0a9e2d0a
lut [OxOf] = 0x0b5c473d

lut [0x10] = 0xlc26a370
lut [Oxll] = 0xlde4c947
lut [0x12] = 0xlfa2771e
lut [0x13] = 0xle601d29
lut [0x14] = 0xlb2f Obac
lut [0x15] = 0xlaed619b
lut [0x16] = 0xl8abdfc2
lut [0x17] = 0xl969b5f5

lut [0x18] = 0xl235f 2c8
lut [0x19] = 0x13f798ff
lut [Oxla] = 0xllbl26a6
lut [Oxlb] = 0xl0734c91
lut [Oxlc] = 0xl53c5al4
lut [Oxld] = 0xl4f e3023
lut [Oxle] = 0xl6b88e7a
lut [Oxlf] = 0xl77ae44d

lut [0x20] = Ox384d46eO
lut [0x21] = 0x398f2cd7
lut [0x22] = 0x3bc9928e
lut [0x23] = 0x3a0bf 8b9
lut [0x24] = 0x3f44ee3c
lut [0x25] = 0x3e86840b
lut [0x26] = 0x3cc03a52
lut [0x27] = 0x3d025065

lut [0x28] = 0x365el758
lut [0x29] = 0x379c7d6f
lut [0x2a] = 0x35dac336
lut [0x2b] = 0x3418a901
lut [0x2c] = 0x3157bf84
lut [0x2d] = 0x3095d5b3
lut [0x2e] = 0x32d36bea
lut [0x2f] = 0x33110 ldd

lut [0x30] = 0x246be590
lut [0x31] = 0x25a98fa7
lut [0x32] = 0x27ef 31f e
lut [0x33] = 0x262d5bc9
lut [0x34] = 0x23624d4c
lut [0x35] = 0x22a0277b
lut [0x36] = 0x20e69922
lut [0x37] = 0x2124f 315

lut [0x38] = 0x2a78b428
lut [0x39] = 0x2bbadelf
lut [0x3a] = 0x29f c6046
lut [0x3b] = 0x283e0a71
lut [0x3c] = 0x2d711cf4
lut [0x3d] = 0x2cb376c3
lut [0x3e] = 0x2ef5c89a
lut [0x3f] = 0x2f37a2ad

lut [0x40] = 0x709a8dc0
lut [0x41] = 0x7158e7f 7
lut [0x42] = 0x731e59ae
lut [0x43] = 0x72dc3399
lut [0x44] = 0x7793251c
lut [0x45] = 0x76514f 2b
lut [0x46] = 0x7417f 172
lut [0x47] = 0x75d59b45

lut [0x48] = 0x7e89dc78
lut [0x49] = 0x7f4bb64f
lut [0x4a] = 0x7d0d0816
lut [0x4b] = 0x7ccf6221
lut [0x4c] = 0x798074a4
lut [0x4d] = 0x78421e93
lut [0x4e] = 0x7a04a0ca
lut [0x4f] = 0x7bc6cafd

lut [0x50] = 0x6cbc2eb0
lut [0x51] = 0x6d7e4487
lut [0x52] = 0x6f 38f ade
lut [0x53] = 0x6efa90e9
lut [0x54] = 0x6bb5866c
lut [0x55] = 0x6a77ec5b
lut [0x56] = 0x68315202
lut [0x57] = 0x69f33835

lut [0x58] = 0x62af 7f08
lut [0x59] = 0x636dl53f
lut [0x5a] = 0x612bab66
lut [0x5b] = 0x60e9cl51
lut [0x5c] = 0x65a6d7d4
lut [0x5d] = 0x6464bde3
lut [0x5e] = 0x662203ba
lut [0x5f] = 0x67e0698d

lut [0x60] = 0x48d7cb20
lut [0x61] = 0x4915all7
lut [0x62] = 0x4b531f4e
lut [0x63] = 0x4a917579
lut [0x64] = 0x4fde63f c
lut [0x65] = 0x4elc09cb
lut [0x66] = 0x4c5ab792
lut [0x67] = 0x4d98dda5

lut [0x68] = 0x46c49a98
lut [0x69] = 0x4706f0af
lut [0x6a] = 0x45404ef 6
lut [0x6b] = 0x448224cl
lut [0x6c] = 0x41cd3244
lut [0x6d] = 0x400f 5873
lut [0x6e] = 0x4249e62a
lut [0x6f] = 0x438b8cld

lut [0x70] = 0x54f 16850
lut [0x71] = 0x55330267
lut [0x72] = 0x5775bc3e
lut [0x73] = 0x56b7d609
lut [0x74] = 0x53f8c08c
lut [0x75] = 0x523aaabb
lut [0x76] = 0x507cl4e2
lut [0x77] = 0x51be7ed5

lut [0x78] = 0x5ae239e8
lut [0x79] = 0x5b2053df
lut [0x7a] = 0x5966ed86
lut [0x7b] = 0x58a487bl
lut [0x7c] = 0x5deb9134
lut [0x7d] = 0x5c29fb03
lut [0x7e] = 0x5e6f455a
lut [0x7f] = 0x5fad2f6d

Figure B.6: CRCS4(32) LUT_48 entries (1 of 2).

135

lut [0x80] = 0xel351b80
lut [0x81] = 0xe0f771b7
lut [0x82] — 0xe2blcfee
lut [0x83] — 0xe373a5d9
lut [0x84] = 0xe63cb35c
lut [0x85] = 0xe7f ed96b
lut [0x86] = 0xe5b86732
lut [0x87] = 0xe47a0d05

lut [0x88] = Oxef264a38
lut [0x89] = 0xeee4200f
lut [0x8a] = 0xeca29e56
lut [0x8b] = 0xed60f461
lut [0x8c] = 0xe82fe2e4
lut [0x8d] = 0xe9ed88d3
lut [0x8e] = 0xebab368a
lut [0x8f] = 0xea695cbd

lut [0x90] = Oxf dl3b8f0
lut [0x91] = Oxf cdld2c7
lut [0x92] == 0xfe976c9e
lut [0x93] = 0xff5506a9
lut [0x94] = 0xfalal02c
lut [0x95] = 0xfbd87alb
lut [0x96] = Oxf 99ec442
lut [0x97] = 0xf85cae75

lut [0x98] = Oxf 300e948
lut [0x99] - Oxf 2c2837f
lut [0x9a] = Oxf0843d26
lut [0x9b] = Oxf 1465711
lut [0x9c] = Oxf4094194
lut [0x9d] = Oxf 5cb2ba3
lut [0x9e] = Oxf 78d95f a
lut [0x9f] = 0xf64fff cd

lut [OxaO] = 0xd9785d60
lut [Oxal] = 0xd8ba3757
lut [0xa2] = Oxdaf c890e
lut [0xa3] = 0xdb3ee339
lut [0xa4] = 0xde71f5bc
lut [0xa5] = 0xdfb39f8b
lut [0xa6] = Oxddf 521d2
lut [0xa7] = 0xdc374be5

lut [0xa8] = 0xd76b0cd8
lut [0xa9] = 0xd6a966ef
lut [Oxaa] = 0xd4efd8b6
lut [Oxab] = 0xd52db281
lut [Oxac] — 0xd062a404
lut [Oxad] = 0xdla0ce33
lut [Oxae] = 0xd3e6706a
lut [Oxaf] = 0xd2241a5d

lut [OxbO] = 0xc55efel0
lut [Oxbl] = 0xc49c9427
lut [0xb2] = 0xc6da2a7e
lut [0xb3] = 0xc7184049
lut [0xb4] = 0xc25756cc
lut [0xb5] = 0xc3953cfb
lut [0xb6] = 0xcld382a2
lut [0xb7] = 0xc011e895

lut [0xb8] = 0xcb4dafa8
lut [0xb9] — 0xca8f c59f
lut [Oxba] = 0xc8c97bc6
lut [Oxbb] = 0xc90bllf 1
lut [Oxbc] = 0xcc440774
lut [Oxbd] = 0xcd866d43
lut [Oxbe] = Oxcf c0d31a
lut [Oxbf] = 0xce02b92d

lut [OxcO] = 0x91af9640
lut [Oxcl] — 0x906df c77
lut [0xc2] = 0x922b422e
lut [0xc3] = 0x93e92819
lut [0xc4] = 0x96a63e9c
lut [0xc5] = 0x976454ab
lut [0xc6] = 0x9522eaf2
lut [0xc7] = 0x94e080c5

lut [0xc8] = 0x9fbcc7f8
lut [0xc9] = 0x9e7eadcf
lut [Oxea] = 0x9c381396
lut [Oxcb] = 0x9dfa79al
lut [Oxee] = 0x98b56f 24
lut [Oxcd] = 0x99770513
lut [Oxee] = 0x9b31bb4a
lut [Oxcf] = 0x9af 3dl7d

lut [OxdO] = 0x8d893530
lut [Oxdl] = 0x8c4b5f07
lut [0xd2] = 0x8e0del5e
lut [0xd3] = 0x8fcf8b69
lut [Oxd4] = 0x8a809dec
lut [0xd5] = 0x8b42f7db
lut [0xd6] = 0x89044982
lut [0xd7] = 0x88c623b5

lut [0xd8] = 0x839a6488
lut [0xd9] = 0x82580ebf
lut [Oxdaj = 0x801eb0e6
lut [Oxdb] = 0x81dcdadl
lut [Oxdcj = 0x8493cc54
lut [Oxdd] — 0x8551a663
lut [Oxde] = 0x8717183a
lut [Oxdf] = 0x86d5720d

lut [OxeO] = 0xa9e2d0a0
lut [Oxel] = 0xa820ba97
lut [0xe2] = 0xaa6604ce
lut [0xe3] = 0xaba46ef9
lut [0xe4] = 0xaeeb787c
lut [0xe5] = 0xaf29124b
lut [0xe6] = 0xad6facl2
lut [0xe7] = 0xacadc625

lut [0xe8] = 0xa7f 18118
lut [0xe9] = 0xa633eb2f
lut [Oxea] = 0xa4755576
lut [Oxeb] = 0xa5b73f41
lut [Oxee] = OxaOf829c4
lut [Oxed] = 0xal3a43f 3
lut [Oxee] = 0xa37cfdaa
lut [Oxef] = 0xa2be979d

lut [Oxf 0] = 0xb5c473d0
lut [Oxf 1] = 0xb40619e7
lut [Oxf 2] = 0xb640a7be
lut [Oxf 3] = 0xb782cd89
lut [Oxf 4] = 0xb2cddb0c
lut [Oxf5] = 0xb30fbl3b
lut [Oxf 6] = 0xbl490f 62
lut [Oxf 7] = 0xb08b6555

lut [Oxf 8] = 0xbbd72268
lut [Oxf 9] = 0xbal5485f
lut [Oxf a] = 0xb853f 606
lut [Oxfb] = 0xb9919c31
lut [Oxf cj = 0xbcde8ab4
lut [Oxfd] = 0xbdlce083
lut [Oxfe] = 0xbf5a5eda
lut [Oxff] = 0xbe9834ed

Figure B.7: CRCS4(32) LUT_48 entries (2 of 2).

136

lut [0x00] = 0x00000000
lut [0x01] = 0xl91b3141
lut [0x02] = 0x32366282
lut [0x03] = 0x2b2d53c3
lut [0x04] = 0x646cc504
lut [0x05] = 0x7d77f 445
lut [0x06] = 0x565aa786
lut [0x07] = 0x4f4196c7

lut [0x08] = 0xc8d98a08
lut [0x09] = 0xdlc2bb49
lut [0x0a] = Oxfaefe88a
lut [OxOb] = 0xe3f4d9cb
lut [OxOcj = 0xacb54f0c
lut [OxOd] = 0xb5ae7e4d
lut [0x0e] = 0x9e832d8e
lut [OxOf] — 0x87981ccf

lut [0x10] = 0x4ac21251
lut [0x11] = 0x53d92310
lut [0x12] = 0x78f470d3
lut [0x13] = 0x61ef4192
lut [0x14] = 0x2eaed755
lut [0x15] = 0x37b5e614
lut [0x16] = 0xlc98b5d7
lut [0x17] = 0x05838496

lut [0x18] = 0x821b9859
lut [0x19] = 0x9b00a918
lut [Oxla] = 0xb02df adb
lut [Oxlb] = 0xa936cb9a
lut [Oxlc] = 0xe6775d5d
lut [Oxldj = 0xff6c6clc
lut [Oxle] = 0xd4413fdf

lut [0x20] = 0x958424a2
lut [0x21] = 0x8c9f 15e3
lut [0x22] = 0xa7b24620
lut [0x23] = 0xbea97761
lut [0x24] = Oxf Ie8ela6
lut [0x25] = 0xe8f3d0e7
lut [0x26] = 0xc3de8324
lut [0x27] = 0xdac5b265

lut [0x28] — 0x5d5daeaa
lut [0x29] = 0x44469f eb
lut [0x2a] = 0x6f 6bcc28
lut [0x2b] = 0x7670fd69
lut [0x2c] = 0x39316bae
lut [0x2d] = 0x202a5aef
lut [0x2e] = 0x0b07092c
lut [0x2f] = 0xl21c386d

lut [0x30] = 0xdf4636f 3
lut [0x31] = 0xc65d07b2
lut [0x32] = 0xed705471
lut [0x33] = Oxf 46b6530
lut [0x34] = 0xbb2af 3f 7
lut [0x35] = 0xa231c2b6
lut [0x36] = 0x891c9175
lut [0x37] = 0x9007a034

lut [0x38] = 0xl79fbcfb
lut [0x39] = 0x0e848dba
lut [0x3a] = 0x25a9de79
lut [0x3b] = 0x3cb2ef38
lut [0x3c] = 0x73f 379f f
lut [0x3d] = 0x6ae848be
lut [0x3e] = 0x41c51b7d
lut [0x3f] — 0x58de2a3c

lut [0x40] = 0xf0794f05
lut [0x41] = 0xe9627e44
lut [0x42] = 0xc24f 2d87
lut [0x43] = 0xdb541cc6
lut [0x44] = 0x94158a01
lut [0x45] = 0x8d0ebb40
lut [0x46] = 0xa623e883
lut [0x47] = 0xbf38d9c2

lut [0x48] = 0x38a0c50d
lut [0x49] = 0x21bbf44c
lut [0x4a] — 0x0a96a78f
lut [0x4b] = 0xl38d96ce
lut [0x4c] = 0x5ccc0009
lut [0x4d] = 0x45d73148
lut [0x4e] = 0x6ef a628b
lut [0x4f] = 0x77el53ca

lut [0x50] = 0xbabb5d54
lut [0x51] = 0xa3a06cl5
lut [0x52] = 0x888d3fd6
lut [0x53] = 0x91960e97
lut [0x54] = 0xded79850
lut [0x55] = 0xc7cca911
lut [0x56] = 0xecelfad2
lut [0x57] = Oxf 5f acb93

lut [0x58] = 0x7262d75c
lut [0x59] = 0x6b79e61d
lut [0x5a] = 0x4054b5de
lut [0x5b] = 0x594f849f
lut [0x5c] = 0xl60el258
lut [0x5d] = OxOf 152319
lut [0x5e] = 0x243870da
lut [0x5f] = 0x3d23419b

lut [0x60] = 0x65fd6ba7
lut [0x61] = 0x7ce65ae6
lut [0x62] = 0x57cb0925
lut [0x63] = 0x4ed03864
lut [0x64] = 0x0191aea3
lut [0x65] = 0xl88a9fe2
lut [0x66] = 0x33a7cc21
lut [0x67] = 0x2abcf d60

lut [0x68] = 0xad24elaf
lut [0x69] = 0xb43fd0ee
lut [0x6a] =0x9fl2832d
lut [0x6b] = 0x8609b26c
lut [0x6c] = 0xc94824ab
lut [0x6d] = 0xd05315ea
lut [0x6e] = 0xfb7e4629
lut [0x6f] = 0xe2657768

lut [0x70] = 0x2f 3f 79f6
lut [0x71] = 0x362448b7
lut [0x72] = 0xld091b74
lut [0x73] = 0x04122a35
lut [0x74] = 0x4b53bcf2
lut [0x75] = 0x52488db3
lut [0x76] = 0x7965de70
lut [0x77] = 0x607eef31

lut [0x78] = 0xe7e6f3fe
lut [0x79] = 0xfefdc2bf
lut [0x7a] = 0xd5d0917c
lut [0x7b] = 0xcccba03d
lut [0x7c] = 0x838a36fa
lut [0x7d] = 0x9a9107bb
lut [0x7e] = 0xblbc5478
lut [0x7f] = 0xa8a76539lut [Oxlf] = 0xcd5a0e9e

Figure B.8: CRCS4(32) LUT_40 entries (1 of 2).

137

lut [0x80j = 0x3b83984b lut [OxaO] 0xae07bce9 lut [OxcO] = 0xcbfad74e lut [OxeO] — 0x5e7ef3ec
lut [0x81] = 0x2298a90a lut [Oxal] = 0xb71c8da8 lut [Oxcl] — 0xd2ele60f lut [Oxel] = 0x4765c2ad
lut [0x82] = 0x09b5fac9 lut [0xa2] = 0x9c31de6b lut [0xc2] = Oxf9ccb5cc lut [0xe2] — 0x6c48916e
lut [0x83] = 0xl0aecb88 lut [0xa3] = 0x852aef2a lut [0xc3] = 0xe0d7848d lut [0xe3] = 0x7553a02f
lut [0x84] = 0x5fef5d4f lut [0xa4] = 0xca6b79ed lut [0xc4] = 0xaf96124a lut [0xe4] = 0x3al236e8
lut [0x85] = 0x46f46c0e lut [0xa5] = 0xd37048ac lut [0xc5] = 0xb68d230b lut [0xe5] = 0x230907a9
lut [0x86] = 0x6dd93fcd lut [0xa6] = Oxf85dlb6f lut [0xc6] = 0x9da070c8 lut [0xe6] = 0x0824546a
lut [0x87] = 0x74c20e8c lut [0xa7] = 0xel462a2e lut [0xc7] 0x84bb4189 lut [0xe7] = 0xll3f652b

lut [0x88] — Oxf35al243 lut [0xa8] — 0x66de36el lut [0xc8] = 0x03235d46 lut [0xe8] — 0x96a779e4
lut [0x89] — 0xea412302 lut [0xa9] = 0x7fc507a0 lut [0xc9] 0xla386c07 lut [0xe9¡ — 0x8fbc48a5
lut [0x8a] = 0xcl6c70cl lut [Oxaa] = 0x54e85463 lut [Oxea] = 0x31153fc4 lut [Oxea] = 0xa4911b66
lut [0x8b] = 0xd8774180 lut [Oxab] = 0x4df36522 lut [Oxcb] = 0x280e0e85 lut [Oxeb] = 0xbd8a2a27
lut [0x8c] = 0x9736d747 lut [Oxac] = 0x02b2f3e5 lut [Oxee] = 0x674f9842 lut [Oxee] = Oxf 2cbbce0
lut [0x8d] = 0x8e2de606 lut [Oxad] = 0xlba9c2a4 lut [Oxcd] = 0x7e54a903 lut [Oxed] 0xebd08dal
lut [0x8e] = 0xa500b5c5 lut [Oxae] = 0x30849167 lut [Oxee] = 0x5579facO lut [Oxee] = 0xc0fdde62
lut [0x8f] = 0xbclb8484 lut [Oxaf] = 0x299fa026 lut [Oxcf] __ 0x4c62cb81 lut [Oxef] = 0xd9e6ef23

lut [0x90] = 0x71418ala lut [OxbO] = 0xe4c5aeb8 lut [OxdO] = 0x8138c51f lut [OxfO] = 0xl4bcelbd
lut [0x91] = 0x685abb5b lut [Oxbl] = 0xfdde9ff9 lut [Oxdl] = 0x9823f45e lut [Oxf 1] = 0x0da7d0fc
lut [0x92] = 0x4377e898 lut [0xb2] = 0xd6f3cc3a lut [0xd2] = 0xb30ea79d lut [Oxf 2] = 0x268a833f
lut [0x93] = 0x5a6cd9d9 lut [0xb3] = Oxcfe8fd7b lut [0xd3] = 0xaal596dc lut [Oxf 3] = 0x3f91b27e
lut [0x94] = 0xl52d4fle lut [0xb4] = 0x80a96bbc lut [0xd4] = 0xe554001b lut [Oxf 4] = 0x70d024b9
lut [0x95] = 0x0c367e5f lut [0xb5] = 0x99b25afd lut [0xd5] = 0xfc4f315a lut [Oxf 5] = 0x69cbl5f8
lut [0x96] = 0x271b2d9c lut [0xb6] 0xb29f093e lut [0xd6] = 0xd7626299 lut [Oxf 6] = 0x42e6463b
lut [0x97] = 0x3e001cdd lut [0xb7] = 0xab84387f lut [0xd7] = 0xce7953d8 lut [0xf7] 0x5bfd777a

lut [0x98] = 0xb9980012 lut [0xb8] — 0x2clc24b0 lut [0xd8] — 0x49el4f17 lut [Oxf 8] — 0xdc656bb5
lut [0x99] = 0xa0833153 lut [0xb9] = 0x350715f1 lut [0xd9] = 0x50fa7e56 lut [Oxf 9] = 0xc57e5af4
lut [0x9a] = 0x8bae6290 lut [Oxba] = 0xle2a4632 lut [Oxda] — 0x7bd72d95 lut [Oxf a] = 0xee530937
lut [0x9b] 0x92b553dl lut [Oxbb] = 0x07317773 lut [Oxdb] = 0x62cclcd4 lut [Oxf b] Oxf7483876
lut [0x9c] = 0xddf4c516 lut [Oxbc] = 0x4870elb4 lut [Oxdc] = 0x2d8d8al3 lut [Oxfc] = 0xb809aebl
lut [0x9d] = 0xc4eff457 lut [Oxbd] = 0x516bd0f5 lut [Oxdd] = 0x3496bb52 lut [Oxfd] = 0xall29ff0
lut [0x9e] = Oxefc2a794 lut [Oxbe] = 0x7a468336 lut [Oxde] = 0xlfbbe891 lut [Oxf e] 0x8a3fcc33
lut [0x9f] = Oxf6d996d5 lut [Oxbf] = 0x635db277 lut [Oxdf] = 0x06a0d9d0 lut [Oxff] 0x9324fd72

Figure B.9: CRCS4(32) LUT_40 entries (2 of 2).

138

B.4 Lambda Gamma Algorithm

An implementation of the Lambda Gamma Algorithm (CRCAr) is shown in Algo
rithm 4.1. Figures B.lOa and B.lOa display the Lambda LUT and Gamma LUT
contents, respectively. The Lambda LUT entries are generated by Algorithm 4.2,
whereas the Gamma LUT entries are obtained directly from the coefficients of the
generator polynomial.

lut [0x00] = 0x00 lut [0x00] = 0x00
lut [0x01] = 0x06 lut [0x01] = 0x01
lut [0x02] = 0x09 lut [0x02] = 0x02
lut [0x03] = 0x0a lut [0x03] = 0x04
lut [0x04] = 0x0c lut [0x04] = 0x05
lut [0x05] = 0x10 lut [0x05] = 0x07
lut [0x06] = 0x18 lut [0x06] = 0x08
lut [0x07] = 0x19 lut [0x07] = 0x0a
lut [0x08] = Oxla lut [0x08] = 0x0b
lut [0x09] = Oxlc lut [0x09] = OxOc
lut [0x0a] = Oxld lut [0x0a] = 0x10
lut [0x0b] = Oxle lut [0x0b] = 0x16
lut [OxOc] = Oxlf lut [OxOc] = 0x17

lut [OxOd] = Oxla

(a) (b)

Figure B.10: CRCAr(32) LUT entries: (a) A LUT, (b) T LUT.

B.5 On-the-Fly Algorithm

To implement the On-the-Fly Algorithm (CRCF), the designer must use bit opera
tions to realize the parallel expressions in software. Figure B .ll illustrates the parallel
expressions for CRCF(8).

so b' s'2 *3 4 4 s '6s'l s'%4 S10 b'i S\2 b '3 b\ b '5 4 s'm*̂ 18 si9 S20 *̂ 21 *̂ 22 2̂3 *̂ 24 *̂ 25 *̂ 26 2̂7 *̂ 29 *̂ 30 3̂1

so b 2̂ b b b b b b b 1̂0 b l S\2 b 3 b4 bs b« b 7 1̂8 *̂ 19 *̂ 20 2̂1 2̂2 2̂3

0̂ b h b b b b b b b b 0̂ b b h b 0̂ b b b b b b 0̂ b b b b 2̂ b b
b b b h 2̂ b b ¿2 A h h b h h b b h h t7 b 2̂ b h b 5̂ 6̂ 7̂

h b h h h b h h h b h 2̂ h b h h h 7̂ b /? h 5̂ 6̂ 7̂

b h h b b b 5̂ b b b b b h b h b b
b b h b h *5 h b

b b b b
b

Figure B .ll: CRCF(8) equations.

139

A ppendix C

z-Transform Approach

In this appendix, we review the approach taken in [21] to obtain parallel LFSR2
equations. It consists of first modeling the serial LFSR2 Architecture (see Figure
2.3b) as a discrete-time system to obtain the serial-input/serial-output transfer func
tion using ^-transforms. Then the serial-input/multiple-output transfer functions are
obtained. The serial-input/multiple-output transfer functions are then generalized
to solve for the multiple-input/multiple-output transfer functions and the parallel
LFSR2 expressions are subsequently extracted.

The derivation presented in this section takes a slightly different approach than
the one presented by the authors of [21]. They introduce a parallel architecture
and some additional notations that we have found not to be necessary and tend to
distract the reader. By omitting this parallel architecture, we feel the presentation of
this approach is more straightforward and easily understood.

Serial Input/Serial Output Transfer Function

In Figure C.l we reproduce the discrete-time representation of the serial LFSR2
Architecture that is illustrated in Figure 2 in [21] with some small notational changes.
In this case, i denotes the iteration number, gj for 0 < j < m — 1 are the coefficients of
the generator polynomial, and x [i] and y [z] represent the input, and output sequences,

Figure C.l: Discrete-time system illustration of the serial LFSR2 Architecture.

140

respectively.

From the Figure C.l, one can write equations for the outputs of the delay elements
Uj [f] for 0 < j < m — 1, as

2/o [¿] = 9 o - y [i ~ l]

2/1 [*] = g o - y [i - 2] + g i - y [i - l]

ym-2 [i] = 90 ■ y[i - (m - 1)] + 91 ■ y[i - (m - 2)] -\------ h gm - 2 ■ 2/ [* - 1]
2/m-i [*] = 9o ■ y [i - m] + gi ■ y [i - (m - 1)] H------- h gm - 1 - y [i - 1],

(C.l)

which can be generalized as1

3
Vi {i\ = ^ 9 k - y [i - (j + 1) + k}.

k= 0

Observing that
y[i] = x [*] + ym - 1 [¿],

and the difference equation of the system is obtained as

y H + 9m- 1 - y [i — l \ + gm- 2 • y [i — 2] H------- \-go ■ y[i - m] = x [i] . (C.2)

After obtaining the difference equation of the serial LFSR2 Architecture in [21],
the authors then proceed to show that the system is linear time-invariant (LTI), and
they note that LTI systems can be completely described by their impulse response
h [¿]. The modulo-2 convolution and z-transform operations are then defined as

O O

x [z] * h [i] = n[i] ■ h[i — k]
k=—00

and
O O

Z { h [z]} = H (z) = ^ h [¿] z~\
i=—OO

respectively.

1A similar equation in [21] on page 66 is developed using a different approach and has a typo. It
should be (n) = YX=o 9k j (n - i - l + k).

141

Now, taking the 2 -transform of (C.2), and one obtains

Z { y [i] + gm - 1 • y [« - 1] + gm-2 ■ y[i - 2] + • • • + gQ ■ y[i - m}}

y (z) + gm- i z - Y (z) + gm- 2Z~2 - Y (z) - i ------- h goz~m ■ Y (z)

Y (z) • (l + gm- i z 1 + gm—2z 2 + • • • + goz m)

z { x m

X { z)

X { z) .

(C.3)

From (C.3), the transfer function of the system is obtained as

Y (z)
H z =

X (z)

zm + + gm-2 Zm~ ‘ + • • • + go
~ m

G (z) '

where G (z) is the generator polynomial of the system.

(C.4)

Next, consider the Ar-bit input sequence, {x[i]} = {xo,Xi, ■■■ ,Xk- i } 2, whose z-

transform is

Z { x { i] } = X (z)

= Xq -f- X\Z 1 -f- • • • + Xk-lz ^

Assuming that the initial content of all the delay elements to be Os, then the output
sequence of the system y [n] with the input x [n] applied is computed from (C.4) as,

Y (z) = X (z) - H (z)

z m ■ (x0 + X i2_1 -1---- h x k- iZ ~ k+1)

= G (z) ’

which is the quotient of zm ■ (x0 + Xi2 _1 H------ h x k_ xz~k+l) divided by the generator
polynomial, and the remainder is stored in the delay elements [21].

2Note that x [z] corresponds to the message bit being inputted to the LFSR at the i-th iteration,
i.e., the coefficient of the term of the message polynomial.

142

Serial Input/Parallel Output Transfer Functions

Define Hj (z) for 0 < j < m — 1 to be the group of transfer functions from the serial
input x [z] in Figure C.l to the output of the j-th delay element yj [z], i.e.,

g0z k’+1) • Y (z) + g\z b'+1)+1 • Y (z) H-----+ gjz 1 - Y (z)

X (z)

= (9»Z- U+1> + 9l* - ° +1)+I + ■ ■ • + Si*'1) •
ym

= (9 o z -{j+1) + g i z ~ ^ +1 + ■ ■ ■ + gjZ~l) ■ (C.5)

where Yj (z) = Z { y j [i] } and yj[i] was defined in (C.l). To find the inverse z-

transform of Hj (2), i.e., hj [«], one can perform the division in (C.5), and to illustrate
this concept the authors of [21] provide an example for CRC-16 and j = 2. For
convenience we reproduce it here:

H 2 (z) z 15 + z 13
z 16 + z 15 + z2 + 1
z~x + + z~ 15 + z~29 4----- .

Thus, the first 16 values of h2 [¿] are

{ h2 [i\} = {0,1,1,0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0,1} ,

and later it will be shown that the first l values of the Hj (z) transfer functions for
0 < j < m — 1 are sufficient for finding the parallel CRC equations.

Parallel Input/Parallel Output Transfer Functions

Now that the transfer functions hj [i] have been obtained for the serial input x [i] to
the outputs of each delay element yj [z], the next step is to generalize those transfer
functions after l input bits have been processed. Then, the parallel input/parallel
output transfer functions can be obtained along with the desired parallel CRC equa
tions.

From the theory of recursive equations, the expression of the z-transform of yj [z]

143

is

Yi{z) = (X (z) + I (z)) ■ Hj (z)

= W (z) - Hi (z) , (C.6)

where I (z) represents the contribution due to the initial contents of the delay elements
and W (z) = X (z) + I (z). It can be determined by observing Figure C.l that

TO—1
1 (z)= y [°] z ~ k •

fc= 0

Thus, one can obtain W (z) as3

TO—1 00

W (Z) = (x + i/m-l-fe [0]) 2 k + ^ 2 x [k]z k,
k=m

and the inverse ^-transform of W (z) can be computed as

Z 1 { W (2)} = w[i

X [i] + Vm-l-i [0] , i < m

x z 1 > m.

Finally, the discrete-time convolution operation is used to compute the inverse
^-transform of (C.6), and the following result is obtained

yj[i] =
00

= ^ 2 w [k } - h j [i - k } .
k = —oo

Considering the fact that hj [z] = 0 for z < 0 (causality) and evaluating the case when
i = 1 — 1, the parallel CRC equations for degree of parallelism / can be obtained from

1

Vi il ~ !] = ^ 2 W [k] ■ hi [l ~ k]-
k= 0

Note that hj [i] must be developed for 0 < i < l — 1 using (C.5).

3A similar equation in [21] on page 66 is developed using a different approach and has a typo. It
should be W (z) = lx (q) 0 yr- i - q (0)] z~q © Y^=r x (?) z~q•

144

The approach in [21] does not place any restrictions on the degree of parallelism
and results in primitive equations. It is conceivable that this approach could be
developed for an LFSR1 formulation. One could go about this by modifying the
discrete time system in Figure C.l for the serial LFSR1 Architecture by swapping
the input to the left side and the output to the right side of the delay elements, and
following similar steps to obtain the transfer functions.

145

A ppendix D

Literature Errata

In this appendix, we identify and correct the various errors and typos that we no
ticed in the literature throughout this research project. Most of these mistakes are
rather trivial and do not warrant a comment to be published. They are ordered
chronologically, with the most recently published articles first.

Complexity Reduction of Constant Matrix
Computations

In [65], a complexity reduction reduction scheme is proposed. There exist two small
typos in the provided example on page 109 of the paper. The formation of the set C3

should be

C 3 — C 2 U <

(1 1 1 1 0 0),
(1 1 1 0 0 1),
(1 1 0 0 1 0),
(1 0 1 1 1 0) ,
(0 0 1 1 1 1),
(0 0 0 1 0 0)

(1 1 1 0 1 0)
(0 1 0 0 0 0)

(1 1 0 1 1 0)
(0 1 1 1 1 0) ’
(1 0 0 1 1 0)

/
with the typos marked in boldface. The authors omitted the coordinate (0 0 0 1 0 0)
which is formed from the addition of (0 0 1 1 1 0) G C 2 H R 2 and (0 0 1 0 1 0) G V3 .
The coordinate (1 1 0 11 0) was included in the final position of C3 . However, to be
consistent with the other Ci sets, it should appear in the marked position.

146

High-Speed Parallel CRC Implementation Based on
Unfolding, Pipelining, and Retiming

In [10], the claim is made in the introduction that the two parallel architectures,
derived from LFSR1 [26] and LFSR2 [22] have equal CPD. We have shown in Chapter
5 that this is not the case, and the CPD of the LFSR1 Architecture is less than or
equal to the CPD of the LFSR2 Architecture.

Also, a comparison table is presented at the end of the paper (Table V), and the
CPD entries for LFSR2 [2 2] using the CRC-1 2 , CRC-16, CRC-16 Reverse, and CRC-
32 generator polynomials should be increased by one (see Table 5.1 for the correct
CPD values). This effectively improves their results. Finally, the column reporting
the CPD before applying the tree structure is misleading, because all the LFSR2
wires have delay Tx , therefore all entries in that column should be reduced by one.

Parallel CRC Realization

In [26], the formulation does not match the illustration of the hardware architecture.
This point is mentioned in our conference paper [41], and elaborated here. Recalling
the example provided in [26]: P = { 1 ,0 ,0 ,1 ,1} <=$• G (x) = 1 + x 3 + xA, and

" 0 1 1 1 ^3 X 3
1 1 0 0 Xo X 2 , D = d 2

F i = , X ' = 1 , x =
1 1 1 0 x\ Xi d i

1 1 1 1 . x o . Xo do

From the formulation in the paper X ' = F A ■ X + D , shown in (4), and one obtains,

X3 — X2 + X\ + Xq + (¿3

X*2 = X 3 + X 2 + (¿2

(D.l)

X 3 H- X 2 d\

#3 + x 2 + X\ + X q + do?

147

which is verified to be correct by our implementations. However, writing the parallel
equations from the illustrated architecture (Figure 4 in the paper), one obtains

x o — eo,o • Xo + eo,x • Xi + eo,2 • ^ 2 + 0̂,3 • X3

x'i = ei;o • Xq + eip • X\ + eij2 • £ 2 + ei,3 ■ £ 3

x '2 = 62,0 • ri) + e2,l • X\ + e2,2 • X2 + e2,3 ■ X3

x '3 = ,0 • Xo + e3ti • Xi + e2,2 ■ X2 + • X3, (D.2)

where eTyC is defined to correspond to the entry in F 4 at the r-th row and c-th column
[26]. Substituting er;C into (D.2) and one obtains

x'o = X\ T X2 T 2-3 4“ do

x\ = xo + xi + di

x 2 = Xo + X\ + x 2 + £¿2

X3 = Xo + X\ + x 2 + X3 + (¿3 . (D.3)

The set of equations obtained from the Figure 4 in [26] and shown in (D.3) are
different than the set (D.l) obtained from the formulation. We note that Figure 4 in
the paper can be used if one adopts our matrix G conventions, or one can vertically
flip the coordinates in the F 4 matrix as well as the X ' , X , and D vectors.

Generation of Parallel Circuits

In [23], an illustration error is made in Figure 3b. Here, in Figure D.l, we provide
the error and its correction. Writing the equations from Figure 2b in [23] and one
obtains,

s'2 = Si + (S2 + U)

= s 0

So = s2 + u.

148

Combinational network Combinational network

Figure D.l: Cascade literature error: (a) typo, (b) correction.

However, writing the equations from Figure D.la and one obtains,

4 = S2 + i

4 = so

4 = S1 + (s2 + *) •

Therefore it is concluded that there exists a wiring typo in that Figure D.la, and it
is corrected in Figure D.lb. We note that the later figures in [23] are correct.

High-Speed CRC Computation Using State-Space
Transformations

In [24], the inverse transformation matrix presented at the end of the paper is a typo.
This is noted in our conference paper [53], and the correction is also provided in
Figure D.2. The reader can easily verify this claim by inputting the coefficients of
the matrices into a CAS and performing the matrix multiplication mod2.

1 1 0 0 0 1 0 1 1 1 1 0 1 0 1
0 0 1 0 0 1 1 0 1 1 0 1 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 1 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0 0 1 1 0 0 0
0 0 0 1 1 1 1 1 1 0 1 0 1 0 0
0 0 1 1 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
0 1 1 1 1 1 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0 1 0 1 0 1 0 0
0 1 0 1 1 0 0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 1 1 1 1 1
0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0 1 1 0 1 1
0 1 0 0 1 0 1 1 1 1 0 1 1 1 1
0 1 1 1 1 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 1 1 1 1 1 0
0 0 1 1 0 0 0 0 1 0 1 0 1 0 1
0 1 1 1 0 1 0 1 1 1 0 1 0 1 0
0 0 0 1 0 0 1 1 0 1 0 0 0 1 1
0 1 1 0 0 1 0 1 1 0 0 0 0 0 1
0 1 0 1 0 1 X 1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 1 0 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1 0 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 0

1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1
1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1
0 1 0 0 1 1 1 1 1 0 0 0 0 1 1 1
0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1
0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1
1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1
0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1
0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0
0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0
0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0
0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0
0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0
1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0
1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1
0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 0
0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0
0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1
1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1
1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1
1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0
1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1
0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1

0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
0
1
1
0
1
0
1
1
1
1
0
1
1
0
1
0
1

Figure D.2: State-Space Transformation literature correction: matrix T

150

Bibliography

[1] W. W. Peterson and D. T. Brown, “Cyclic Codes for Error Detection,” Proceed

ings of the IRE , vol. 49, no. 1, pp. 228-235, 1961.

[2] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications.

Englewood Cliffs, NJ: Prentice-Hall, 1983.

[3] B-ISDN A T M Layer Specification. ITU-T Recommendation 1.361, 1999.

[4] IEEE Standard for Information Technology: Carrier Sense Multiple Access with

Collision Detection (C S M A /C D) Access Method and Physical Layer Specifica

tions. ANSI/IEEE Std 802.3-2005.

[5] Wireless L A N Medium Access Control (M AC) and Physical Layer (PHY) Spec

ifications. ANSI/IEEE Std 802.11-1999.

[6] IEEE Standard for Local and Metropolitan Area Networks: Air Interface for

Fixed and Mobile Broadband Wireless Access Systems. ANSI/IEEE Std 802.16-
2004.

[7] M. E. Kounavis and F. L. Berry, “Novel Table Lookup-Based Algorithms for
High-Performance CRC Generation,” IEEE Transactions on Computers, vol. 57,
no. 11, pp. 1550-1560, 2008.

[8] T. S. Baicheva, “Determination of the Best CRC Codes with up to 1 0 -bit Redun
dancy,” IEEE Transactions on Communications, vol. 56, no. 8 , pp. 1214-1220,
2008.

[9] S.-L. Shieh, P.-N. Chen, and Y. Han, “Flip CRC Modification for Message Length
Detection,” IE E E Transactions on Communications, vol. 55, no. 9, pp. 1747-
1756, 2007.

151

[10] C. Cheng and K. K. Parhi, “High-Speed Parallel CRC Implementation Based
on Unfolding, Pipelining, and Retiming,” IEEE Transactions on Circuits and

Systems II: Express Briefs, voi. 53, no. 10, pp. 1017-1021, 2006.

[11] J. Satran, D. Sheinwald, and I. Shimony, “Out of Order Incremental CRC Com
putation,” IEEE Transactions on Computers, voi. 54, no. 9, pp. 1178-1181, 2005.

[12] G. D. Nguyen, “Error-Detection Codes: Algorithms and Fast Implementation,”
IEEE Transactions on Computers, voi. 54, no. 1, pp. 1-11, 2005.

[13] T. V. Ramabadran and S. S. Gaitonde, “A Tutorial on CRC Computations,”
IEEE Micro, voi. 8 , no. 4, pp. 62-75, 1988.

[14] R. Lidi and H. Niederreiter, Introduction to Finite Fields and Their Applications.

New York, NY: Cambridge University Press, 1994.

[15] J. Ray and P. Koopman, “Efficient High Hamming Distance CRCs for Embedded
Networks,” in the Proceedings of The 2006 International Conference on Depend

able Systems and Networks (DSN ’06), 2006, pp. 3-12.

[16] S. M. Joshi, P. K. Dubey, and M. A. Kaplan, “A New Parallel Algorithm for CRC
Generation,” in the Proceedings of The 2000 IEEE International Conference on

Communications (ICC 2000), voi. 3, 2000, pp. 1764-1768.

[17] M. A. Patel, “A Multi-Channel CRC Register,” in the Proceedings of The Spring

Joint Computer Conference, 1971, pp. 11-14.

[18] A. W. Maholick and R. B. Freeman, “A Universal Cyclic Division Circuit,” in
the Proceedings of The Fall Joint Computer Conference, voi. 39, 1971, pp. 1-8.

[19] A. K. Pandeya and T. J. Cassa, “Parallel CRC Lets Many Lines Use One Circuit,”
Computer Design, voi. 14, no. 9, pp. 87-97, 1975.

[20] M. C. Nielson, “Method for High Speed CRC Computation,” IB M Technical

Disclosure Bulletin, voi. 27, no. 6 , pp. 3572-3576, 1984.

[21] G. Albertengo and R. Sisto, “Parallel CRC Generation,” IEEE Micro, voi. 10,
no. 5, pp. 63-71, 1990.

[22] T.-B. Pei and C. Zukowski, “High-Speed Parallel CRC Circuits in VLSI,” IEEE

Transactions on Communications, voi. 40, no. 4, pp. 653-657, 1992.

152

[23] M. Sprachmann, “Automatic Generation of Parallel CRC Circuits,” IEEE Design

and Test of Computers, vol. 18, no. 3, pp. 108-114, 2001.

[24] J. H. Derby, “High-Speed CRC Computation Using State-Space Transforma
tions,” in the Proceedings of The 2001 IEEE Global Telecommunications Confer

ence (G LO B EC O M ’01), vol. 1, 2001, pp. 166-170.

[25] M.-D. Shieh, M.-H. Sheu, C.-H. Chen, and H.-F. Lo, “A Systematic Approach for
Parallel CRC Computations,” Journal of Information Science and Engineering,

vol. 17, no. 3, pp. 445-461, 2001.

[26] G. Campobello, G. Patane, and M. Russo, “Parallel CRC Realization,” IEEE

Transactions on Computers, vol. 52, no. 1 , pp. 1312-1319, 2003.

[27] P. Koopman and T. Chakravarty, “Cyclic Redundancy Code (CRC) Polynomial
Selection for Embedded Networks,” in the Proceedings of The 2004 International

Conference on Dependable Systems and Networks (D SN ’04) , 2004, pp. 145-154.

[28] J. J. Kong and K. K. Parhi, “Interleaved Cyclic Redundancy Check (CRC) Code,”
in the Proceedings of The 37th Asilomar Conference on Signals, Systems, and

Computers, vol. 2 , 2003, pp. 2137-2141.

[29] G. Castagnoli, J. Ganz, and P. Gräber, “Optimum Cyclic Redundancy-Check
Codes with 16-bit Redundancy,” IEEE Transactions on Communications, vol. 38,
no. 1, pp. 111-114, 1990.

[30] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of Cyclic
Redundancy-Check Codes with 24 and 32 Parity Bits,” IEEE Transactions on

Communications, vol. 41, no. 6 , pp. 883-892, 1993.

[31] D. Chun and J. K. Wolf, “Special Hardware for Computing the Probability of
Undetected Error for Certain Binary CRC Codes and Test Results,” IEEE Trans

actions on Communications, vol. 42, no. 10, pp. 2769-2772, 1994.

[32] B. Baicheva, S. Dodunekov, and P. Kazakov, “On the Cyclic Redundancy-Check
Codes with 8 -bit Redundancy,” Computer Communications, vol. 2 1 , no. 1 1 , pp.
1030-1033, 1998.

[33] T. Baicheva, S. Dodunekov, and P. Kazakov, “Undetected Error Probability
Performance of Cyclic Redundancy-Check Codes of 16-bit Redundancy,” IEE

Proceedings Communications, vol. 147, no. 5, pp. 253-256, 2000.

153

[34] P. Koopman, “32-bit Cyclic Redundancy Codes for Internet Applications,” in the

Proceedings of The 2002 International Conference on Dependable Systems and

Networks (DSN ’02), 2002, pp. 459-468.

[35] D. R. Irvin, “Cyclic Redundancy Checks with Factorable Generators,” IEE Pro

ceedings Communications, vol. 150, no. 1, pp. 17-20, 2003.

[36] J. E. Mazo and B. R. Saltzberg, “Error-Burst Detection With Tandem CRC’s,”
IEEE Transactions on Communications, vol. 39, no. 8 , pp. 1175-1178, 1991.

[37] M.-L. Yin and B. Orenstein, “Assessment on Undetectable Burst Errors in Tan
dem CRCs,” in the Proceedings of The 12th IEEE Pacific Rim International

Symposium on Dependable Computing (P R D C ’06), 2006, pp. 89-96.

[38] T. Mattes, J. Pfahler, F. Schiller, and T. Honold, “Analysis of Combinations of
CRC in Industrial Communication,” in the Proceedings of The 26th International

Conference on Computer Safety, Reliability, and Security (SAFECO M P 2007),

vol. 4680. Springer, 2007, pp. 329-341.

[39] S. Shukla and N. W. Bergmann, “Single Bit Error Correction Implementation in
CRC-16 on FPGA,” in the Proceedings of The 2004 IEEE International Confer

ence on Field-Programmable Technology (F P T ’04), 2004, pp. 319-322.

[40] R. J. Glaise and X. Jacquart, “Fast CRC Calculation,” in the Proceedings of The

IEEE International Conference on Computer Design: VLSI in Computers and

Processors (IC C D ’93), 1993, pp. 602-605.

[41] C. Kennedy and A. Reyhani-Masoleh, “High-Speed Parallel CRC Circuits,” in in

the Proceedings of The 42nd Annual Asilomar Conference on Signals, Systems,

and Computers, 2008.

[42] M. Walma, “Pipelined Cyclic Redundancy Check (CRC) Calculation,” in the

Proceedings of The 16th IEEE International Conference on Computer Commu

nications and Networks (ICCCN 2007), 2007, pp. 365-370.

[43] Z. Xu, K. Yi, and Z. Liu, “A Universal Algorithm for Parallel CRC Computation
and its Implementation,” Journal of Electronics (China), vol. 23, no. 4, pp. 528-
531, 2006.

[44] M. S. Santina, A. R. Stubberud, and G. H. Hostetter, Digital Control System

Design. Orlando, FL: Saunders College Publishing, 1994.

154

[45] R. F. Hobson and K. L. Cheung, “A High-Performance CMOS 32-bit Parallel
CRC Engine,” IE E E Journal of Solid-State Circuits, vol. 34, no. 2 , pp. 233-235,
1999.

[46] R. J. Glaise, “A Two-Step Computation of Cyclic Redundancy Code CRC-32 for
ATM Networks,” IB M Journal of Research and Development, vol. 41, no. 6 , pp.
705-709, 1997.

[47] F. Monteiro, A. Dandache, A. M’sir, and B. Lepley, “A Fast CRC Implementation
on FPGA Using a Pipelined Architecture for the Polynomial Division,” in the

Proceedings of The 8th International IEEE Conference on Electronics, Circuits,

and Systems (ICECS 2001), vol. 3, 2001, pp. 1231-1234.

[48] J. M. N. Serrano, “5x4 Gbps 0.35 Micron CMOS CRC Generator Designed with
Standard Cells,” in the Proceedings of The 11th IEEE Mediterranean Electrotech

nical Conference (M ELE CO N ’02), 2002, pp. 215-219.

[49] C. Toal, S. Sezer, X. Yang, K. McLaughlin, D. Burns, and T. Seceleanu,
“Progammable CRC Circuit Architecture,” in the Proceedings of The 20th IEEE

International SO C Conference (SOCC 2007), 2007, pp. 123-126.

[50] A. Sobski and A. Albicki, “Parallel Encoder, Decoder, Detector, Corrector for
Cyclic Redundancy Checking,” in the Proceedings of The 1992 IEEE Interna

tional Symposium on Circuits and Systems (ISCAS 1992), vol. 6 , 1992, pp.
2945-2948.

[51] ------ , “Partitioned and Parallel Cyclic Redundancy Checking,” in the Proceedings

of The 36th Midwest Symposium on Circuits and Systems (M W S C A S ’9 3), vol. 1,
1993, pp. 538-541.

[52] ------ , “High Throughput Error Control Using Parallel CRC,” VLSI Design, vol. 2,
no. 1, pp. 33-50, 1994.

[53] C. Kennedy and A. Reyhani-Masoleh, “High-Speed CRC Computations Using
Improved State-Space Transformations,” in the Proceedings of The 2009 IEEE

International Conference on Electro/Information Technology (EIT 2009), 2009.

[54] J.-S. Lin, C.-K. Lee, M.-D. Shieh, and J.-H. Chen, “High-Speed CRC Design
for 10 Gbps Applications,” in the Proceedings of The 2006 IEEE International

Symposium on Circuits and Systems (ISCAS 2006), 2006, pp. 3177-3180.

155

[55] R. Lee, “Cyclic Code Redundancy,” Digital Design, vol. 11, no. 7, pp. 77-85,
1981.

[56] A. Perez, “Byte-Wise CRC Calculations,” IEEE Micro, vol. 3, no. 3, pp. 40-46,
1983.

[57] G. Griffiths and G. C. Stones, “The Tea-Leaf Reader Algorithm: An Efficient
Implementation of CRC-16 and CRC-32,” Communications of the ACM , vol. 30,
no. 7, pp. 617-620, 1987.

[58] D. V. Sarwate, “Computation of Cyclic Redundancy Checks Via Table Look-Up,”
Communications of the ACM , voi. 31, no. 8 , pp. 1008-1013, 1988.

[59] J. Crenshaw, “Implementing CRCs,” Embedded Systems Programming, voi. 5,
no. 1, pp. 18-45, 1992.

[60] Y. Do, S.-R. Yoon, T. Kim, K. E. Pyun, and S.-C. Park, “High-speed Parallel
Architecture for Software-based CRC,” in the Proceedings of The Fifth Annual

IEEE Consumer Communications and Networking Conference (CCN C 2008),

2008, pp. 74-78.

[61] D. C. Feldmeier, “Fast Software Implementation of Error Detection Codes,”
IE E E /A C M Transactions on Networking, voi. 3, no. 6 , pp. 640-651, 1995.

[62] K. K. Saluja and C.-F. See, “An Efficient Signature Computation Method,” IEEE

Design and Test of Computers, voi. 9, no. 4, pp. 22-26, 1992.

[63] C.-F. See and K. K. Saluja, “An Efficient Method for Computation of Signatures,”
in the Proceedings of The 5th International Conference of VLSI Design, 1992,
pp. 245-250.

[64] B. Narendran, M. Franklin, and K. K. Saluja, “Parallel Computation of LFSR
Signatures,” in the Proceedings of The 2nd Asian Test Symposium (A TS’93),

1993, pp. 75-80.

[65] O. Gustafsson and M. Olofsson, “Complexity Reduction of Constant Matrix
Computations over the Binary Field,” in International Workshop on The Arith

metic of Finite Fields (W AIFI 2007), voi. 4547. Springer, 2007, pp. 103-115.

[6 6] C. Paar, “A New Architecture for a Parallel Finite Field Multiplier with Low
Complexity Based on Composite Fields,” IEEE Transactions on Computers,

voi. 45, no. 7, pp. 856-861, 1996.

156

[67] ------ , “Optimized Arithmetic for Reed-Solomon Encoders,” in the Proceedings of

The 1997 IEEE International Symposium on Information Theory (ISIT 1997),

1997, p. 250.

[6 8] H. Yi, J. Song, S. Park, and C. Park, “Parallel CRC Logic Optimization Algo
rithm for High Speed Communication Systems,” in the Proceedings of The 10th

IEEE International Conference on Communication Systems (ICCS 2006), 2006,
pp. 1-5.

[69] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova, “A New
Algorithm for Elimination of Common Subexpressions,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 1, pp.
58-68, 1999.

[70] A. Reyhani-Masoleh, “A New Bit-Serial Architecture for Field Multiplication Us
ing Polynomial Bases,” in the Proceedings of Workshop on Cryptographic Hard

ware and Embedded Systems (CHES 2008), vol. 5154. Springer, 2008, pp. 300-
314.

[71] S. M. Sait and M. S. K. Tanvir, “VLSI Layout Generation of a Programmable
CRC Chip,” IEEE Transactions on Consumer Electronics, vol. 39, no. 4, pp.
911-916, 1993.

[72] S. M. Sait and W. Hasan, “Hardware Design and VLSI Implementation of a
Byte-Wise CRC Generator Chip,” IEEE Transactions on Consumer Electronics,

vol. 41, no. 1, pp. 195-200, 1995.

[73] T. Henriksson, H. Eriksson, U. Nordqvist, P. Larsson-Edefors, and D. Liu,
“VLSI Implementation of CRC-32 for 10 Gigabit Ethernet,” in the Proceedings

of The 8th International IEEE Conference on Electronics, Circuits, and Systems

(ICECS 2001), vol. 3, 2001, pp. 1215-1218.

[74] S. H. Li and C. A. Zukowski, “A Self-Timed Cyclic Redundancy Check (CRC)
in VLSI,” in the Proceedings of The fOth Midwest Symposium on Circuits and

Systems (M W S C A S ’97), vol. 2 , 1997, pp. 1021-1025.

[75] M. Braun, J. Friedrich, T. Gran, and J. Lembert, “Parallel CRC Computa
tions in FPGAs,” in the Proceedings of The 6th International Workshop on

Field-Programmable Logic, Smart Applications, New Paradigms and Compilers

(F P L ’96), 1996, pp. 156-165.

157

[76] J. M. McGuiness and P. J. Naughter, “The Ultimate System Timer vl.2,” 10/25
1997. [Online]. Available: http://www.hussar.demon.co.uk/mathszon.htm

[77] N. J. Rubenking, “EndltAll 2: A True Killer App,” 10/16 2001. [Online].
Available: http://www.pcmag.com/article2/0,2817,1935,00.asp

http://www.hussar.demon.co.uk/mathszon.htm
http://www.pcmag.com/article2/0,2817,1935,00.asp

	High-Performance Hardware and Software Implementations of the Cyclic Redundancy Check Computation
	Recommended Citation

	tmp.1690597969.pdf.EbXnD

