5 research outputs found

    Coded transmit diversity in CDMA over Nakagami-m fading channels

    Get PDF
    With applications such as video conferencing, extensive web browsing and live video streaming, future wireless systems become extremely demanding in terms of high data rates and improved signal quality. In this thesis the performance of a space-time spreading transmit diversity scheme is examined over a frequency-flat Nakagami- m fading channel. The Nakagami- m channel model is considered as it is well known for modeling signal fading conditions ranging from severe to moderate, to light fading or no fading, through its parameter m. We also propose in this thesis a coded transmit diversity scheme which is based on a combination of a convolutional code with a space-time transmit diversity scheme that uses direct-sequence code division multiple access (DS-CDMA) for multiuser access. Our focus will be on the uplink of the communication system. The space-time scheme employs N = 2 and N r antennas at the mobile station (MS) side and at the base station (BS) side respectively. DS-CDMA is used to support many users and a linear decorrelator detector is used to combat the effect of multiuser interference. We study the performance of both the uncoded and coded transmit diversity schemes over slow fading and fast fading channels. In all cases, the investigations start by determining the probability density function (PDF) of the signal to interference and noise ratio at the output of the space-time combiner at the BS receiver side. Using this PDF we derive a closed-form (or an approximation) expression for the bit error rate (BER) of the system under consideration. The accuracy of the PDF and BER expressions are verified when compared to simulation results for different values of the fading figure m and for different combinations of transmit and receive antennas. In the case of the coded space-time transmit diversity scheme, the pairwise error probability and the corresponding BER upper bounds are obtained for fast and slow fading channels. The derived error bounds, when compared to system simulations, are shown to be tight at high signal-to-noise ratios. Furthermore, our analytical results explicitly show the achieved system diversity in terms of the number of transmit and receive antennas and the fading figure m. When the coded space-time scheme is considered, its diversity is shown to be a function of the minimum free distance d free of the convolutional code used. Furthermore we show that the diversity of the different schemes considered is always independent of the system loa

    Distributed space-time block coding in cooperative relay networks with application in cognitive radio

    Get PDF
    Spatial diversity is an effective technique to combat the effects of severe fading in wireless environments. Recently, cooperative communications has emerged as an attractive communications paradigm that can introduce a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. In this thesis, a new approach to cooperative communications via distributed extended orthogonal space-time block coding (D-EO-STBC) based on limited partial feedback is proposed for cooperative relay networks with three and four relay nodes and then generalized for an arbitrary number of relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain, and it has certain properties that make it alluring for practical systems such as orthogonality, flexibility, low computational complexity and decoding delay, and high robustness to node failure. Versions of the closed-loop D-EO-STBC scheme based on cooperative orthogonal frequency division multiplexing type transmission are also proposed for both flat and frequency-selective fading channels which can overcome imperfect synchronization in the network. As such, this proposed technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, this scheme is extended for two-way relay networks through a three-time slot framework. On the other hand, to substantially reduce the feedback channel overhead, limited feedback approaches based on parameter quantization are proposed. In particular, an optimal one-bit partial feedback approach is proposed for the generalized D-O-STBC scheme to maximize the array gain. To further enhance the end-to-end bit error rate performance of the cooperative relay system, a relay selection scheme based on D-EO-STBC is then proposed. Finally, to highlight the utility of the proposed D-EO-STBC scheme, an application to cognitive radio is studied

    Soft-demodulation of QPSK and 16-QAM for turbo coded WCDMA mobile communication systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Code-aided iterative techniques in OFDM systems

    Get PDF
    Inspired by the 'turbo principle', this thesis deals with two iterative technologies in orthogonal frequency division multiplexing (OFDM) systems: iterative interference cancelation in space-frequency block coded OFDM (SFBC-OFDM) and iterative channel estimation/ tracking in OFDM Access (OFDMA) with particular application to Worldwide Inter-operability for Microwave Access (WiMAX) systems. The linear matched filter (MF) decoding in SFBC-OFDM is simple yet obtains maximumlikelihood (ML) performance based on the assumption that the channel frequency response remains constant within a block. However, frequency response variations gives rise to inter-channel interference (lCI). In this thesis, a parallel interference cancelation (PIC) approach with soft iterations will be proposed to iteratively eliminate ICI in G4 SFBC-OFDM. Furthermore, the information from outer convolutional decoder is exploited and fed back to aid the inner PIC process to generate more accurate coded bits for the convolutional decoder. Therefore, inner and outer iterations work in a collaborative way to enhance the performance of interference cancelation. Code-aided iterative channel estimation/tracking has the ability of efficiently improving the quality of estimation/tracking without using additional pilots/training symbols. This technique is particularly applied to OFDMA physical layer ofWiMAX systems according to the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard. It will be demonstrated that the performance of the pilot-based channel estimation in uplink (UL) transmission and the channel tracking based on the preamble symbol in downlink (DL) transmission can be improved by iterating between the estimator and the detector the useful information from the outer convolutional codes. The above two issues will be discussed in Chapter 5 and Chapter 6, and before this, Chapter 2 to Chapter 4 will introduce some background techniques that are used throughout the thesis
    corecore