21,504 research outputs found

    On the Complexity of Local Distributed Graph Problems

    Full text link
    This paper is centered on the complexity of graph problems in the well-studied LOCAL model of distributed computing, introduced by Linial [FOCS '87]. It is widely known that for many of the classic distributed graph problems (including maximal independent set (MIS) and (Δ+1)(\Delta+1)-vertex coloring), the randomized complexity is at most polylogarithmic in the size nn of the network, while the best deterministic complexity is typically 2O(logn)2^{O(\sqrt{\log n})}. Understanding and narrowing down this exponential gap is considered to be one of the central long-standing open questions in the area of distributed graph algorithms. We investigate the problem by introducing a complexity-theoretic framework that allows us to shed some light on the role of randomness in the LOCAL model. We define the SLOCAL model as a sequential version of the LOCAL model. Our framework allows us to prove completeness results with respect to the class of problems which can be solved efficiently in the SLOCAL model, implying that if any of the complete problems can be solved deterministically in logO(1)n\log^{O(1)} n rounds in the LOCAL model, we can deterministically solve all efficient SLOCAL-problems (including MIS and (Δ+1)(\Delta+1)-coloring) in logO(1)n\log^{O(1)} n rounds in the LOCAL model. We show that a rather rudimentary looking graph coloring problem is complete in the above sense: Color the nodes of a graph with colors red and blue such that each node of sufficiently large polylogarithmic degree has at least one neighbor of each color. The problem admits a trivial zero-round randomized solution. The result can be viewed as showing that the only obstacle to getting efficient determinstic algorithms in the LOCAL model is an efficient algorithm to approximately round fractional values into integer values

    Independent Set Reconfiguration in Cographs

    Get PDF
    We study the following independent set reconfiguration problem, called TAR-Reachability: given two independent sets II and JJ of a graph GG, both of size at least kk, is it possible to transform II into JJ by adding and removing vertices one-by-one, while maintaining an independent set of size at least kk throughout? This problem is known to be PSPACE-hard in general. For the case that GG is a cograph (i.e. P4P_4-free graph) on nn vertices, we show that it can be solved in time O(n2)O(n^2), and that the length of a shortest reconfiguration sequence from II to JJ is bounded by 4n2k4n-2k, if such a sequence exists. More generally, we show that if XX is a graph class for which (i) TAR-Reachability can be solved efficiently, (ii) maximum independent sets can be computed efficiently, and which satisfies a certain additional property, then the problem can be solved efficiently for any graph that can be obtained from a collection of graphs in XX using disjoint union and complete join operations. Chordal graphs are given as an example of such a class XX

    Towards optimal kernel for connected vertex cover in planar graphs

    Full text link
    We study the parameterized complexity of the connected version of the vertex cover problem, where the solution set has to induce a connected subgraph. Although this problem does not admit a polynomial kernel for general graphs (unless NP is a subset of coNP/poly), for planar graphs Guo and Niedermeier [ICALP'08] showed a kernel with at most 14k vertices, subsequently improved by Wang et al. [MFCS'11] to 4k. The constant 4 here is so small that a natural question arises: could it be already an optimal value for this problem? In this paper we answer this quesion in negative: we show a (11/3)k-vertex kernel for Connected Vertex Cover in planar graphs. We believe that this result will motivate further study in search for an optimal kernel
    corecore