8 research outputs found

    A true time-delay-based bandpass multi-beam array at mm-waves supporting instantaneously wide bandwidths

    No full text

    A CMOS Digital Beamforming Receiver

    Full text link
    As the demand for high speed communication is increasing, emerging wireless techniques seek to utilize unoccupied frequency ranges, such as the mm-wave range. Due to high path loss for higher carrier frequencies, beamforming is an essential technology for mm-wave communication. Compared to analog beamforming, digital beamforming provides multiple simultaneous beams without an SNR penalty, is more accurate, enables faster steering, and provides full access to each element. Despite these advantages, digital beamforming has been limited by high power consumption, large die area, and the need for large numbers of analog-to-digital converters. Furthermore, beam squinting errors and ADC non-linearity limit the use of large digital beamforming arrays. We address these limitations. First, we address the power and area challenge by combining Interleaved Bit Stream Processing (IL-BSP) with power and area efficient Continuous-Time Band-Pass Delta-Sigma Modulators (CTBPDSMs). Compared to conventional DSP, IL-BSP reduces both power and area by 80%. Furthermore, the new CTBPDSM architecture reduces ADC area by 67% and the energy per conversion by 43% compared to previous work. Second, we introduce the first integrated digital true-time-delay digital beamforming receiver to resolve the beam squinting. True-time-delay beamforming eliminates squinting, making it an ideal choice for large-array wide-bandwidth applications. Third, we present a new current-steering DAC architecture that provides a constant output impedance to improve ADC linearity. This significantly reduces distortion, leading to an SFDR improvement of 13.7 dB from the array. Finally, we provide analysis to show that the ADC power consumption of a digital beamformer is comparable to that of the ADC power for an analog beamformer. To summarize, we present a prototype phased array and a prototype timed array, both with 16 elements, 4 independent beams, a 1 GHz center frequency, and a 100 MHz bandwidth. Both the phased array and timed array achieve nearly ideal conventional and adaptive beam patterns, including beam tapering and adaptive nulling. With an 11.2 dB array gain, the phased array achieves a 58.5 dB SNDR over a 100 MHz bandwidth, while consuming 312 mW and occupying 0.22 mm2. The timed array achieves an EVM better than -37 dB for 5 MBd QAM-256 and QAM-512, occupies only 0.29 mm2, and consumes 453 mW.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147716/1/smjang_1.pd

    Circuit Design Techniques For Wideband Phased Arrays

    Get PDF
    University of Minnesota Ph.D. dissertation.June 2015. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xii, 143 pages.This dissertation focuses on beam steering in wideband phased arrays and phase noise modeling in injection locked oscillators. Two different solutions, one in frequency and one in time, have been proposed to minimize beam squinting in phased arrays. Additionally, a differential current reuse frequency doubler for area and power savings has been proposed. Silicon measurement results are provided for the frequency domain solution (IBM 65nm RF CMOS), injection locked oscillator model verification (IBM 130nm RF-CMOS) and frequency doubler (IBM 65nm RF CMOS), while post extraction simulation results are provided for the time domain phased array solution (the chip is currently under fabrication, TSMC 65nm RF CMOS). In the frequency domain solution, a 4-point passive analog FFT based frequency tunable filter is used to channelize an incoming wideband signal into multiple narrowband signals, which are then processed through independent phase shifters. A two channel prototype has been developed at 8GHz RF frequency. Three discrete phase shifts (0 & +/- 90 degrees) are implemented through differential I-Q swapping with appropriate polarity. A minimum null-depth of 19dB while a maximum null-depth of 27dB is measured. In the time domain solution, a discrete time approach is undertaken with signals getting sampled in order of their arrival times. A two-channel prototype for a 2GHz instantaneous RF bandwidth (7GHz-9GHz) has been designed. A QVCO generates quadrature LO signals at 8GHz which are phase shifted through a 5-bit (2 extra bits from differential I-Q swapping with appropriate polarity) cartesian combiner. Baseband sampling clocks are generated from phase shifted LOs through a CMOS divide by 4 with independent resets. The design achieves an average time delay of 4.53ps with 31.5mW of power consumption (per channel, buffers excluded). An injection locked oscillator has been analyzed in s-domain using Paciorek's time domain transient equations. The simplified analysis leads to a phase noise model identical to that of a type-I PLL. The model is equally applicable to injection locked dividers and multipliers and has been extended to cover all injection locking scenarios. The model has been verified against a discrete 57MHz Colpitt's ILO, a 6.5GHz ILFD and a 24GHz ILFM with excellent matching between the model and measurements. Additionally, a differential current reuse frequency doubler, for frequency outputs between 7GHz to 14GHz, design has been developed to reduce passive area and dc power dissipation. A 3-bit capacitive tuning along with a tail current source is used to better conversion efficiency. The doubler shows FOMT_{T} values between 191dBc/Hz to 209dBc/Hz when driven by a 0.7GHz to 5.8GHz wide tuning VCO with a phase noise that ranges from -114dBc/Hz to -112dBc/Hz over the same bandwidth

    Integrated millimeter-wave broadband phased array receiver frontend in silicon technology

    Get PDF

    IMPLEMENTATION OF CMOS RF CIRCUITS WITH OCTAVE & MULTI-OCTAVE BANDWIDTH FOR PHASED ARRAY ANTENNAS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore