8,365 research outputs found

    Mobile Formation Coordination and Tracking Control for Multiple Non-holonomic Vehicles

    Full text link
    This paper addresses forward motion control for trajectory tracking and mobile formation coordination for a group of non-holonomic vehicles on SE(2). Firstly, by constructing an intermediate attitude variable which involves vehicles' position information and desired attitude, the translational and rotational control inputs are designed in two stages to solve the trajectory tracking problem. Secondly, the coordination relationships of relative positions and headings are explored thoroughly for a group of non-holonomic vehicles to maintain a mobile formation with rigid body motion constraints. We prove that, except for the cases of parallel formation and translational straight line formation, a mobile formation with strict rigid-body motion can be achieved if and only if the ratios of linear speed to angular speed for each individual vehicle are constants. Motion properties for mobile formation with weak rigid-body motion are also demonstrated. Thereafter, based on the proposed trajectory tracking approach, a distributed mobile formation control law is designed under a directed tree graph. The performance of the proposed controllers is validated by both numerical simulations and experiments

    Formation control of a group of micro aerial vehicles (MAVs)

    Get PDF
    Coordinated motion of Unmanned Aerial Vehicles (UAVs) has been a growing research interest in the last decade. In this paper we propose a coordination model that makes use of virtual springs and dampers to generate reference trajectories for a group of quadrotors. Virtual forces exerted on each vehicle are produced by using projected distances between the quadrotors. Several coordinated task scenarios are presented and the performance of the proposed method is verified by simulations

    Coordinated motion of UGVs and a UAV

    Get PDF
    Coordination of autonomous mobile robots has received significant attention during the last two decades. Coordinated motion of heterogenous robot groups are more appealing due to the fact that unique advantages of different robots might be combined to increase the overall efficiency of the system. In this paper, a heterogeneous robot group composed of multiple Unmanned Ground Vehicles (UGVs) and an Unmanned Aerial Vehicle (UAV) collaborate in order to accomplish a predefined goal. UGVs follow a virtual leader which is defined as the projection of UAV’s position onto the horizontal plane. The UAV broadcasts its position at certain frequency. The position of the virtual leader and distances from the two closest neighbors are used to create linear and angular velocity references for each UGV. Several coordinated tasks have been presented and the results are verified by simulations where certain amount of communication delay between the vehicles is also considered. Results are quite promising

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference
    corecore