19,515 research outputs found

    A tool for fast ground truth generation for object detection and tracking from video

    Full text link
    Object detection and tracking is one of the most important components in computer vision applications. To carefully evaluate the performance of detection and tracking algorithms, it is important to develop benchmark data sets. One of the most tedious and error-prone aspects when developing benchmarks, is the generation of the ground truth. This paper presents FAST-GT (FAst Semi-automatic Tool for Ground Truth generation), a new generic framework for the semiautomatic generation of ground truths. FAST-GT reduces the need for manual intervention thus speeding-up the ground-truthing process

    Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking

    Get PDF
    Object-to-camera motion produces a variety of apparent motion patterns that significantly affect performance of short-term visual trackers. Despite being crucial for designing robust trackers, their influence is poorly explored in standard benchmarks due to weakly defined, biased and overlapping attribute annotations. In this paper we propose to go beyond pre-recorded benchmarks with post-hoc annotations by presenting an approach that utilizes omnidirectional videos to generate realistic, consistently annotated, short-term tracking scenarios with exactly parameterized motion patterns. We have created an evaluation system, constructed a fully annotated dataset of omnidirectional videos and the generators for typical motion patterns. We provide an in-depth analysis of major tracking paradigms which is complementary to the standard benchmarks and confirms the expressiveness of our evaluation approach

    An Empirical Evaluation of Deep Learning on Highway Driving

    Full text link
    Numerous groups have applied a variety of deep learning techniques to computer vision problems in highway perception scenarios. In this paper, we presented a number of empirical evaluations of recent deep learning advances. Computer vision, combined with deep learning, has the potential to bring about a relatively inexpensive, robust solution to autonomous driving. To prepare deep learning for industry uptake and practical applications, neural networks will require large data sets that represent all possible driving environments and scenarios. We collect a large data set of highway data and apply deep learning and computer vision algorithms to problems such as car and lane detection. We show how existing convolutional neural networks (CNNs) can be used to perform lane and vehicle detection while running at frame rates required for a real-time system. Our results lend credence to the hypothesis that deep learning holds promise for autonomous driving.Comment: Added a video for lane detectio
    corecore