5 research outputs found

    Climate, Land, Energy and Water systems interactions – From key concepts to model implementation with OSeMOSYS

    Get PDF
    The Climate, Land, Energy and Water systems (CLEWs) approach guides the development of integrated assessments. The approach includes an analytical component that can be performed using simple accounting methods, soft-linking tools, incorporating cross-systems considerations in sectoral models, or using one modelling tool to represent CLEW systems. This paper describes how a CLEWs quantitative analysis can be performed using one single modelling tool, the Open Source Energy Modelling System (OSeMOSYS). Although OSeMOSYS was primarily developed for energy systems analysis, the tool’s functionality and flexibility allow for its application to CLEWs. A step-by-step explanation of how climate, land, energy, and water systems can be represented with OSeMOSYS, complemented with the interpretation of sets, parameters, and variables in the OSeMOSYS code, is provided. A hypothetical case serves as the basis for developing a modelling exercise that exemplifies the building of a CLEWs model in OSeMOSYS. System-centred scenario analysis is performed with the integrated model example to illustrate its application. The analysis of results shows how integrated insights can be derived from the quantitative exercise in the form of conflicts, trade-offs, opportunities, and synergies. In addition to the modelling exercise, using the OSeMOSYS-CLEWs example in teaching, training and open science is explored to support knowledge transfer and advancement in the field

    Diagnóstico de las herramientas de gestión socioambiental de la normativa ecuatoriana para la regularización ambiental y comparación con la normativa peruana

    Get PDF
    Universidad Nacional Agraria La Molina. Facultad de Ciencias. Departamento Académico de Ingeniería Ambiental, Física y MeteorologíaActualmente, debido a los diversos impactos causados por las actividades antropogénicas, las comunidades se exponen a cambios socioeconómicos y biofísicos que generan consecuencias sobre las mismas. Por ello, es necesario que las iniciativas asuman un enfoque basado en la interacción entre los actores involucrados, lo que reduce la exposición de amenazas al desarrollo del proyecto. En consecuencia, las herramientas de gestión socioambiental establecidas en los marcos legales o guías definidas por los gobiernos deberían considerar aspectos que permitan incorporar estas interacciones como parte del proceso de elaboración del estudio ambiental. El presente trabajo monográfico pretende identificar aquellas herramientas de gestión socioambiental del marco legal para lograr la aprobación de los estudios ambientales. Para ello, se identificó un contexto específico que permita definir las características básicas de dichas herramientas, asimismo se seleccionó otro contexto a modo comparativo. La identificación de los casos se realizó tomando en cuenta la experiencia profesional de la autora y la relevancia de los casos en el ámbito sudamericano: se decidió analizar las herramientas de gestión socioambiental del proyecto minero Mirador en Ecuador, y una vez definidas sus características principales en relación con el marco legal ambiental ecuatoriano, establecer la comparación con lo presentado en el marco legal peruano. De acuerdo con lo desarrollado a nivel laboral, se pudo identificar las características principales del proyecto minero Mirador, el cual forma parte del grupo de proyectos mineros que buscan abrir paso a la producción minera a gran escala en Ecuador, específicamente a la producción de concentrado de cobre. Mirador se localiza en la provincia de ZamoraChinchipe, una de las principales zonas que alberga depósitos minerales con potencial económico. Este proyecto presentó sus estudios complementarios para las fases de explotación y beneficio en 2019, elaborados para solicitar la aprobación del Ministerio del Ambiente y Agua, y que incluyen las modificaciones asociadas al proyecto. En ese sentido, se tomó como referencia ambos estudios complementarios para presentar las características del proyecto y lo que conlleva la aprobación de sus modificaciones en ambas fases. Para lograr el análisis de las herramientas de gestión socioambiental, primero se xii identificaron los hitos de la historia de la industria minera y el desarrollo de su marco legal en Ecuador, siendo uno de estos la creación del Texto Único de la Legislación Secundaria Ambiental en el 2015 y el Código Orgánico del Ambiente en el año 2017. Con dicha información, se pudo describir el proceso de regularización ambiental general y, aplicado al proyecto Mirador. Se identificó que el proceso legal de regularización ambiental, permite obtener el permiso ambiental de actividades extractivas y sus modificaciones a través de la emisión de un registro, certificado o licencia ambiental dependiendo de la actividad. Asimismo, se realizó una aproximación al contexto socioambiental del proyecto Mirador a través de la identificación de sus componentes y actores principales o stakeholders que participan del proceso de regularización ambiental. Por otro lado, la descripción del Proyecto permitió definir los conflictos socioambientales asociados a este. Adicionalmente, el caso comparativo elegido en función a su cercanía geográfica, histórica, características socio-culturales y experiencia laboral sobre la actividad minera en el país de la autora, fue el contexto legal ambiental y minero del Perú. Sobre todo, se compararon las características generales del marco legal para la regularización ambiental y las definiciones de aspectos socioambientales plasmados en estos. Identificándose similitudes entre el proceso de regularización ambiental ecuatoriano y el peruano. Con respecto del marco legal ecuatoriano, el permiso ambiental de mayor categoría emitido por las autoridades ambientales se denomina Licencia Ambiental y en el caso peruano se denomina Certificación Ambiental. Uno está a cargo del Ministerio del Ambiente y Agua, y en el otro a cargo del Servicio Nacional de Certificación Ambiental. En ambos, se requiere la elaboración de un Estudio de Impacto Ambiental, incluyendo las modificaciones de estos estudios cuando sea necesario. A nivel de la región sudamericana, la normativa peruana refleja una experiencia en minería más amplia, ya que el ingreso de Ecuador a la actividad minera como actividad estratégica y como parte de su modelo económico es reciente. El diagnóstico de las herramientas de gestión socioambiental se dividió en herramientas o instrumentos de gestión ambiental y herramientas de gestión social, considerando que ambas forman parte del proceso para lograr obtener la aprobación del proceso de regularización ambiental, y planificar un proyecto que pueda considerarse sustentable en diversos ámbitos, ambiental, social y económico. xiii En ambos casos los instrumentos de gestión ambiental presentan un acercamiento a los conceptos relacionados con los sistemas socioambientales y su desarrollo desde las políticas nacionales, no se identificó un enfoque socioambiental transversal y constante. Evidentemente, y como recomendación final del estudio, es necesario evaluar la efectividad de estos lineamientos, aplicación y sus características, para definir mediante ejemplos concretos el nivel de su carácter holístico, adaptable, práctico y viable. Asimismo, se recomienda ahondar el análisis tomando en cuenta otros contextos con realidades contrastantes para identificar más oportunidades de mejora. En el ámbito profesional, identificar aquellas herramientas de gestión socioambiental relevantes para el proyecto Mirador tiene un elevado valor social, ambiental y político, ya no solo se trata de uno de los proyectos más importantes del Ecuador, sino la posibilidad de verificar la evolución de un marco legal ambiental en minería dentro de la región. Su comparación con el contexto legal peruano permite identificar oportunidades de enriquecer ambos marcos legales y los procedimientos. Adicionalmente, a nivel profesional contribuye a ampliar la experiencia y el conocimiento sobre diversos contextos y abre la posibilidad de incluir diversos métodos de trabajo en futuros servicios

    Considerations for the interdisciplinary development of environmental system models

    Get PDF
    Effective decision making and policy development requires holistic consideration of the modelling context. This thesis explores how consideration of multiple disciplinary perspectives and concerns lead to an integrative model development process for the purpose of socio-environmental systems (SES) management. The research is presented through two frames: (1) Integrated Environmental Model (IEM) development through a System-of-Systems (SoS) approach, and (2) the socio-technical considerations within an interdisciplinary modelling process. The presented research incorporates the perspectives of the modelling, systems engineering, and software development paradigms. IEMs are developed for the purpose of integrating knowledge across the various disciplines involved, whereas traditional approaches focus on single systems within the SES, such as hydrology, economics, social dynamics, or climatic drivers. Use of IEMs allows for the consideration of the flow-on effects due to system changes and interaction, and how these may affect long-term SES behaviour. Pathways that are robust - i.e., lead to beneficial or desirable outcomes - under a range of plausible but uncertain conditions can then be identified and assessed. An interconnected network of system models thus makes up an SoS model allowing consideration of higher-order effects. In practice, however, the decisions and approaches taken in developing constituent models may influence integrated system behaviour once coupled. The socio-technical modelling concerns within the SoS/SES modelling context, including the methods to assess and manage model validity, complexity, and uncertainty, with respect to model purpose and intended outcomes are explored through a series of publications. This thesis contributes to the growing body of knowledge through: 1. An expansive overview of the currently available software for model uncertainty and sensitivity analysis, and the techniques they encompass 2. An integrated environmental model for the Lower Campaspe catchment in North-Central Victoria, Australia. The model explores long-term implications of water management decisions and potential policy changes (primarily through an agricultural lens), including conjunctive use of surface and groundwater under a range of uncertain futures. 3. Demonstration of a property-based sensitivity analysis approach to model diagnostics that combines software testing and sensitivity analysis to validate model behaviour. The approach is useful as a first-pass screening tool. Failure to reproduce expected model behaviour indicates issues with the model to be corrected and avoids the necessity of more computationally demanding diagnostics. 4. A pragmatic step-by-step framework for the sensitivity analysis of spatially distributed environmental models 5. Exploration and discussion of the modelling practices, issues and challenges that arise when dealing with the various influences and effects of scale within the interdisciplinary SoS context through a socio-technical lens. The discussion leads to a call for a grander vision for SoS-IEM modelling (and commensurate funding) to better enable interdisciplinary, and integrative, socio-environmental research to occur. 6. A shared reflexive account of two case studies that draws out the considerations and decisions regarding scale to arrive at five shared lessons learnt to foster an effective interdisciplinary modelling process. The key conclusion is the need for researchers involved in SoS modelling of SESs to actively consider and address cross-disciplinary concerns through improved interdisciplinary communication, documentation practices, and explicit consideration of the interplay between defined scales and resulting influence on uncertainty. Integrative consideration of these would then lower or avoid barriers that hamper the development and application of integrated environmental system models

    An Approach for Building Efficient Composable Simulation Models

    Full text link
    Models are becoming invaluable instruments for comprehending and resolving the problems originating from the interactions between humans, mainly their social and economic systems, and the environment. These interactions between the three systems, i.e. the socio-economic-natural systems, lead to evolving systems that are infamous for being extremely complex, having potentially conflicting goals, and including a considerable amount of uncertainties over how to characterize and manage them. Because models are inextricably linked to the system they attempt to represent, models geared towards addressing complex systems not only need to be functional in terms of their use and expected result but rather, the modeling process in its entirety needs to be credible, practically feasible, and transparent. In order to realize the full potential of models, the modeling workflow needs to be seen as an integral part of the model itself. Poor modeling practices at any stage of the model-building process, from conceptualization to implementation, can lead to adverse consequences when the model is in operation. This can undermine the role of models as enablers for tackling complex problems and lead to skepticism about their effectiveness. Models need to possess a number of qualities in order to be effective enablers for dealing with complex systems and addressing the issues that are associated with them. These qualities include being constructed in a way that supports model reuse and interoperability, having the ability to integrate data, scales, and algorithms across multiple disciplines, and having the ability to handle high degrees of uncertainty. Building models that fulfill these requirements is not an easy endeavor, as it usually entails performing problem description and requirement analysis tasks, assimilating knowledge from different domains, and choosing and integrating appropriate technique(s), among other tasks that require the utilization of a significant amount of time and resources. This study aims to improve the efficiency and rigor of the model-building process by presenting an artifact that facilitates the development of probabilistic models targeting complex socioeconomic-environmental systems. This goal is accomplished in three stages. The first stage deconstructs models that attempt to address complex systems. We use the Sustainable Development Goals (SDG) as a model problem that includes economic, social, and environmental systems. The SDG models are classified and mapped against the desirable characteristics that need to be present in models addressing such a complex issue. The results of stage one are utilized in the second stage to create an Object-Oriented Bayesian Networks (OOBN) model that attempts to represent the complexity of the relationships between the SDGs, long-term sustainability, and the resilience of nations. The OOBN model development process is guided by existing modeling best practices, and the model utility is demonstrated by applying it to three case studies, each relevant to a different policy analysis context. The final section of this study proposes a Pattern Language (PL) for developing OOBN models. The proposed PL consolidates cross-domain knowledge into a set of patterns with a hierarchical structure, allowing its prospective user to develop complex models. Stage three, in addition to the OOBN PL, presents a comprehensive PL validation framework that is used to validate the proposed PL. Finally, the OOBN PL is used to rebuild and address the limitations of the OOBN model presented in stage two. The proposed OOBN PL resulted in a more fit-for-purpose OOBN model, indicating the adequacy and usefulness of such an artifact for enabling modelers to build more effective models

    Scotland's freshwater landscape and its resilience to change: an assessment to support future policy

    Get PDF
    Future changes in climate, land use, and population are likely to lead to significant impacts on freshwater quality and quantity. To increase the resilience of freshwaters to the impact of future change, tools are required to investigate and communicate the complexity and uncertainty associated with future-focussed decision-making. To address this need, a robust collaborative decision-making framework was developed to inform the identification of resilient water management options. As a first stage in the collaborative framework, 27 stakeholders across Scotland were interviewed to understand their knowledge needs. The need for a greater understanding of the cumulative impacts of climatic and socio-economic change on freshwaters was an overarching ‘knowledge need’ identified. To address the overarching ‘knowledge need’, a Bayesian Network (BN) model was developed as a tool for understanding the resilience of the freshwaters to the impacts of future change. Co-development of the tool was applied using the case study of the River Eden catchment, in eastern Scotland to address water quality issues - particularly reactive phosphorus concentrations from both diffuse and point sources - identified by stakeholders. Representatives from multiple sectors participated in a series of meetings, focus groups and workshops aimed at building the BN model and identifying management options for improving water conditions in the catchment both now and in the future. Plausible diverse future change scenarios to 2050 were developed to investigate their impacts on water quality issues in the catchment. Measuring the impacts of uncertain future change pathway scenarios on the catchment system informed the identification of five different management scenarios. Management scenario testing, using the BN model, supported stakeholders in understanding that standard siloed approaches to water management would not increase catchment system resilience to the impacts of future change. Instead, collaborative and innovative action was required to improve freshwater conditions in the catchment, both now and in the future. The thesis addressed gaps in the need for improved methods for involving stakeholders in problem identification stages and methods for measuring and communicating the uncertainty associated with future-focused water management. Policy, management and research recommendations are identified, addressing the need to review collaborative processes to improve future applications. The recommendations include the need for an implementation stage within the decision-making framework. Future BN applications should incorporate wider measures of success aligned with sector goals, such as detailed carbon accounting and financial considerations to support implementation. The development of a network of catchment partnerships to provide appropriate governance structures that ensure sectors are accountable for the implementation of management actions identified was recommended. Reflecting on the collaborative decision-making framework highlighted the need for higher resolution water quality monitoring and a central data hub to improve the representation of uncertainty in future modelling efforts
    corecore