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Abstract 

Effective decision making and policy development requires holistic consideration of the 

modelling context. This thesis explores how consideration of multiple disciplinary perspectives 

and concerns lead to an integrative and holistic model development process for the purpose of 

socio-environmental systems (SES) management. The research is presented through two frames: 

(1) Integrated Environmental Model (IEM) development through a System-of-Systems (SoS) 

approach, and (2) the socio-technical considerations within an interdisciplinary modelling 

process. This is accomplished by incorporating the perspectives of the modelling, systems 

engineering, and software development paradigms. 

IEMs are developed for the purpose of integrating knowledge across the various disciplines 

involved, whereas traditional approaches focus on single systems within the SES, such as 

hydrology, economics, social dynamics, or climatic drivers. Use of IEMs allows for the 

consideration of the flow-on effects due to system changes and interaction, and how these may 

affect long-term SES behaviour. Pathways that are robust – i.e., lead to beneficial or desirable 

outcomes – under a range of plausible but uncertain conditions can then be identified and 

assessed. 

An SoS approach to IEM development leverages the separate specialized disciplinary 

knowledge to enable parallel development of the multiple models that make up an IEM. An 

interconnected network of such models thus makes up an SoS model allowing consideration of 

higher-order effects. In practice, however, the method and approach used in the development of 

constituent models may influence integrated system behaviour once coupled. 

The socio-technical modelling concerns within the SoS/SES modelling context, including 

the methods to assess and manage model validity, complexity, and uncertainty, with respect to 

model purpose and intended outcomes are explored through a series of publications. This thesis 

contributes to the growing body of knowledge through: 

1. An expansive overview of the currently available software for model uncertainty and 

sensitivity analysis, and the techniques they encompass. 

2. The development of an integrated environmental model for the Lower Campaspe 

catchment in North-Central Victoria, Australia. The model explores long-term 

implications of water management decisions and potential policy changes (primarily 

through an agricultural lens), including conjunctive use of surface and groundwater 

under a range of uncertain futures. 

3. Demonstration of a property-based sensitivity analysis approach to model diagnostics 

that combines software testing and sensitivity analysis to validate model behaviour. The 

approach is useful as a first-pass screening tool. Failure to reproduce expected model 

behaviour indicates issues with the model to be corrected and avoids the necessity of 

more computationally demanding diagnostics. 
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4. A pragmatic step-by-step framework for the sensitivity analysis of spatially distributed 

environmental models. 

5. Exploration and discussion of the modelling practices, issues and challenges that arise 

when dealing with the various influences and effects of scale within the interdisciplinary 

SoS context. The discussion adopts a socio-technical lens incorporating knowledge and 

experiences of 20 co-authors and calls for a grander vision for SoS-IEM modelling (and 

commensurate funding) to better enable interdisciplinary, and integrative, socio-

environmental research to occur. 

6. A shared reflexive account of two case studies that draws out the considerations and 

decisions regarding scale to arrive at five shared lessons learnt to foster an effective and 

interdisciplinary modelling process. 

 

The key conclusion is the need for researchers involved in SoS modelling of SESs to actively 

consider and address cross-disciplinary concerns through improved interdisciplinary 

communication, documentation practices, and explicit consideration of the interplay between 

defined scales and resulting influence on uncertainty. Integrative consideration of these would 

then lower or avoid barriers that hamper the development and application of integrated 

environmental system models. 
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Chapter 1: Introduction 

Modelling of socio-environmental systems is a complex endeavour given the multitude of 

social, technical, and natural systems involved. Models constructed to represent socio-

environmental systems (SESs) are often used to inform long-term policy and management 

decisions which require careful, and continual, consideration and planning due to a high risk of 

unintended consequences. The act of addressing concerns may in turn exacerbate or be the cause 

of further issues, a concept known as “wicked problems” (Peters, 2017). Discovery and 

consideration of the flow-on effects due to system drivers as early as possible requires holistic 

consideration of the interlinked relationships between the systems at play; known as an integrated 

assessment (Risbey et al., 1996). These include considerations of the social, economic, ecological, 

agricultural, (geo)hydrological and climate systems as well as the systemic uncertainties and the 

engineering concerns that underlie the modelling (Laniak et al., 2013). Here the social system 

refers to the networks of people and their relationships involved in both the modelling processes 

(e.g. the modellers themselves) as well as those being modelled (e.g. the people “on the ground”). 

1.1 Environmental Software and Model Development 

Model development is commonly described as undergoing a “cycle”, in which multiple and 

often concurrent activities are conducted (Hamilton et al., 2015; Jakeman et al., 2006). To those 

with a software engineering background, the modelling cycle has parallels with the iterative spiral 

model of development (Boehm, 1986) in which, broadly speaking: (1) requirements towards 

meeting objectives are gathered; (2) the model designed; (3) prototype constructed; and (4) the 

process and/or results evaluated by stakeholders and risks analysed, where risk relates to sources 

of uncertainty that threaten successful project completion. Project cost is additionally recognized 

to cumulatively increase with each iteration. The process allows for earlier phases to be revisited, 

and that subsequent iterations build on previous efforts where feasible such that the lessons learnt 

and new knowledge and information are incorporated (Boehm, 1986; Jakeman et al., 2006).  

Although there are now many alternative conceptualisations of iterative software 

development cycles (overviews may be found in Ambler, 2002; Ruparelia, 2010) in most, if not 

all, modern conceptualisations, it is recognised that the development process is not only iterative 

but can also be concurrently applied, and that input of stakeholders and experts are more often 

than not crucial to informing and validating the process. Once a minimum set of requirements are 

known, the subsequent phases of design, construction, and evaluation for each model component 

can begin in parallel, each with their own iterative processes, with stakeholder input considered 

throughout.  

In environmental modelling, the practice of iterative and concurrent model development is 

coupled with the explicit consideration of the complexity and uncertainty inherent in 

environmental systems management (Jakeman et al., 2006; Kragt et al., 2013; Robson et al., 
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2008). Stakeholder knowledge is leveraged to verify the validity, appropriateness, and plausibility 

of the modelling particularly around the scenarios and parameter ranges considered – in a sense 

reducing model and scenario uncertainty – thereby improving the chances of achieving beneficial 

outcomes (Jakeman and Letcher, 2003; McIntosh et al., 2011; Voinov et al., 2016). The process 

introduced for environmental modelling in Jakeman et al. (2006) bridges the engineering 

(represented by the above described iterative and concurrent model development) with the social 

and scientific concerns to allow a holistic integrated environmental assessment and modelling to 

be conducted. 

Development of environmental models often adopt two broad pathways: an integral or an 

integrated approach (Voinov and Shugart, 2013). An integral approach is characterised by the 

application of a single modelling paradigm (e.g., agent-based, systems dynamics, etc), and is often 

purpose-developed for a specific context with no further re-use envisioned. An integrated 

approach to model development may leverage existing models and computational frameworks, 

mix multiple modelling paradigms, and are commonly intended as general-purpose applications 

with the intentions of further re-use and development. The approach originates from Component-

Based Software Engineering (cf. Vale et al., 2016) and treats individual scientific models as 

composable, and reusable, blocks allowing for quick development and application relative to 

starting development from scratch (Holzworth et al., 2015; Midingoyi et al., 2020; Whelan et al., 

2014). 

A further perspective from the field of systems engineering is the System-of-Systems (SoS) 

approach which has stemmed from the need to model the interactions between “sectors”, for 

example the transport, electrical production, and agricultural systems (Nielsen et al., 2015). From 

the perspective of the system engineer, each constituent model is a separate and independently 

functioning entity that represents a specific system. Thus, a point of distinction between integrated 

models and SoS models is that the former does not imply that its components represent separate 

systems. 

Connecting these individual models together, referred to as “coupling” or “integrating”, for 

the purpose of integrated assessment results in an Integrated Environmental Model (IEM) that 

can represent the interactions between systems and their flow-on effects. Such IEMs can be 

regarded as an SoS model as each individual model is separable, independently functional, and 

represents individual systems within the SES. As these representations are computational in 

nature, environmental SoS models can therefore be characterised as a collection of interoperating 

software which represents the salient properties of the SES under investigation. 

1.2 Considerations within an SoS approach 

A shared concern amongst SoS practitioners is ensuring the validity of system 

representations under integrated contexts (Belete et al., 2017; Nielsen et al., 2015). As each 

constituent model operates independently the overall emergent behaviour of the SoS model is not 
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prescribed (Kinder et al., 2012). Validity and plausibility of the emergent behaviour may be 

compromised if the conceptual linkages between systems are not appropriate, even if technical 

integration (e.g., data interoperation between models) is achieved (Nielsen et al., 2015; Wirtz and 

Nowak, 2017; Voinov and Shugart, 2013). 

The situation is more complex compared to the single-system context given the independent 

and concurrent development cycle that each model, and its components, undergo. Decisions made 

in the development of one constituent model may affect the operation or validity of another due 

to the interactions between models. Each model is likely developed by a team of specialists with 

preferred (often disciplinary-specific) terminologies and language such that inter-team 

communication is made difficult. Moreover, each model developer may have different concerns 

to address and differing levels of resources allocated to accomplish their goal(s). Opportunities to 

ensure validity of both technical and conceptual integration may be scarce and may only be 

guaranteed for a model version several iterations behind. Resolving such issues requires that those 

involved in the modelling process must work in tandem to construct plausible (1) system 

representations, (2) representations of their interactions, as well as (3) behaviour of the overall 

SES being represented. 

Once constructed, the behaviour of the SoS model can then be explored through an 

Exploratory Scenario Modelling (ESM) approach. The ESM approach involves the simulation of 

multiple scenarios, with each scenario representing a plausible “future”. The overarching “theme” 

for scenarios should be co-developed with stakeholders (Mahmoud et al., 2009). Exploring the 

range of possible futures allows system vulnerabilities under the given range of scenarios to be 

assessed and the robustness and sensitivity of decision pathways to a range of (uncertain) 

conditions to be considered and described (Horne et al., 2019; Maier et al., 2016). Application of 

ESM with SoS models requires the consideration of three intertwined aspects: 

• that model complexity is manageable for its purpose 

• the represented relationship and interactions between systems are conceptually and 

technically valid, and 

• that the model, system, and scenario uncertainties are adequately assessed or 

addressed, and communicated 

The first, unwarranted complexity, can exacerbate the latter two, as excessive complexity 

interferes with the validation and verification of model behaviour (Nielsen et al., 2015), 

assessment of uncertainty (Tscheikner-Gratl et al., 2019), and consequently can compromise the 

interpretability and effectivity of the modelling (John et al., 2020; Voinov and Shugart, 2013). 

For exploratory purposes, technical implications of an unnecessarily complex (computational) 

model include increased runtimes, and a codebase that requires (significantly) more testing and 

maintenance. Conceptual implications include difficulties in interpreting and communicating 
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results and ensuring validity of the interactions that the SoS model represents. These have the 

effect of impeding the overall development cycle. 

Given SoS models are constructed through a mix of constituent models, both pre-existing 

and purpose-built, each constituent model may be complex in and of themselves. Valid and 

appropriate model behaviour in the unintegrated context does not necessarily translate to the same 

when models are integrated. It is then challenging to determine if modelled representations of a 

system, when coupled, are valid and adequate for the given purpose. Determining correct 

functionality of constituent models, even in the decoupled context, may not be possible at all, or 

at least compromised, if the original model developers are not involved, or otherwise available. 

It is often the case that models are treated as black or, at best, grey boxes, and issues of appropriate 

model complexity for integration may not be addressed given the resources available. 

Usual recommendations for managing model complexity include screening for 

unimportant model parameters through uncertainty and sensitivity analysis (Norton, 2009; 

Pianosi et al., 2016; Razavi et al. 2021) or the development of, and subsequent replacement with, 

surrogate models so as to have a simplified, but behaviourally similar, constituent model (Lam et 

al., 2020). Note that these two activities are not mutually exclusive. The nature of SoS modelling 

implies that its constituent models must be integrated before such activities are conducted as 

parameters that appear to be insensitive – and thus have little impact on model output – may in 

fact be highly sensitive depending on the scenarios being considered. 

Complexity in SoS models are not completely addressable nor avoidable, resulting in 

uncertainty. High uncertainty, however, does not necessarily preclude effective decision making 

or policy development (Reichert and Borsuk, 2005). A necessity is that the treatment of 

uncertainty, and communication of its influence on model results, be outlined clearly lest the 

lessons learnt be lost or otherwise render the modelling ineffectual in resolving the issues of 

concern. In the context and general purpose of IEMs – that is, to provide information towards the 

development of policy and aid in decision making – insufficient attention to any one of the above 

will likely compromise the effectivity of the modelling for its purpose and in achieving intended 

outcomes. From a “big picture” perspective these serve as barriers that slow down development 

effective policies and actions (Arnold et al., 2020; Arnold et al., 2016). How these concerns of 

model complexity, validity, and uncertainty are managed with available resources then shapes the 

path forward. 

1.3 Scope of thesis 

Integrated modelling requires interdisciplinary involvement and collaboration to provide a 

holistic assessment of the socio-environmental system under study. This thesis explores how 

cohesive consideration of multiple disciplinary perspectives leads to an integrative IEM 

development process. These perspectives include not just the modelling concerns but additionally 

the systems engineering and software development that underpins modern computational science 
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such as for environmental modelling. Consideration across these multiple perspectives can lower 

or avoid barriers that preclude successful management of model complexity, validity, and 

uncertainty. The bulk of the thesis revolves around a case study conducted in the Lower Campaspe 

catchment in North-Central Victoria, Australia. The case study serves as a springboard from 

which ideas and their implications are explored to clear a path towards holistic socio-

environmental systems modelling. 

The pathway taken represented as a sequence of publications is depicted in Figure 1. Not all 

publications depicted in this figure are included in this thesis but it serves to showcase the 

development of ideas and their inter-relation. Publications related to this thesis are marked with 

their respective chapter number. The primary modelling themes of each chapter are also outlined 

in Figure 2. 

1.4 Thesis Outline 

The structure of the thesis is as follows. In Chapter 2 the current state of uncertainty and 

sensitivity analysis (UA/SA) as applied to environmental research is explored through a hybrid 

bibliometric approach. The primary theme of the chapter are the approaches and methods for 

uncertainty and sensitivity analysis within the environmental sciences, with a focus on the 

software available to conduct such analyses.  

A key contribution of Chapter 2 are descriptions of the current state of available UA/SA 

tooling for common programming environments used in the sciences, and an overview of needed 

improvements in terms of usability and accessibility to further increase uptake of such tooling. 

Common terms used in UA/SA research are described and defined therein. The chapter was 

published in the journal Environmental Modelling and Software as a review paper. 

Chapter 3 describes the participatory development process undertaken for an IEM for the 

investigation of possible water management futures in the Lower Campaspe basin of North-

Central Victoria, Australia. The model, then undergoing development was designed to examine 

the influence of hypothetical conjunctive water use policies and a changing climate to future water 

security, farm productivity, and the consequent impact on recreational and ecological outcomes. 

The chapter was published as a refereed conference paper in the Proceedings of the International 

Association of Hydrological Sciences (PIAHS) and serves to provide context for the following 

chapter. 

Chapter 4 expands on the previous chapter with the application of the IEM through an 

exploratory scenario modelling approach. The paper details the choices made in the technical 

implementation and subsequent application of the model as well as the findings from the 

modelling and its management implications. The paper further details the complexities 

encountered in the development of an expansive IEM and associated model, system, and scenario 

uncertainties. The paper was published as a research article in the Journal of Hydrology: Regional 
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Studies. A supplement is included as Chapter 4b which addresses concerns raised regarding the 

calibration of the hydrological model during the thesis examination process. 

Chapter 5 illustrates a practical and effective diagnostic testing approach for complex IEMs 

that utilises property-based sensitivity analysis. The approach takes a software testing perspective 

of sensitivity analysis to aid in reducing the overall computational effort expended in the model 

development and validation process. The paper illustrates the use of a form of diagnostic 

screening referred to as “extremity testing” and, separately, uses an “activity threshold” to 

qualitatively confirm correctness of model behaviour. Such tests ensure the existence of known 

conceptual relationships between parameters and quantities of interest can be checked. It is 

intended to complement a more expansive global analyses by first confirming expected model 

behaviour within a restricted area of parameter space. The paper has been published in 

Environmental Modelling and Software. 

Chapter 6 takes an overarching view of the socio-technical scales involved in the 

interdisciplinary socio-environmental SoS modelling process. The practices and challenges that 

arise in the consideration of scale are explored. Here, “scale” is defined as the scope of work to 

be conducted in the treatment and representation of the system under investigation. The variety 

and disparity of models, modelers and their disciplinary perspectives then leads to issues of 

conceptual and technical mismatches and constrains the level of knowledge integration achieved. 

A key contribution here is the view that socio-technical scales encompass the interactions between 

the people involved and their choices in scale, not simply the technical decisions made. Such scale 

choices must be actively considered when developing a holistic system representation. Key paths 

forward are identified to resolve socio-technical scale issues. The paper is published in 

Environmental Modelling and Software. 

Chapter 7 furthers the viewpoint introduced in Chapter 6 by outlining the process of 

considering scale in two separate integrated modelling case studies. The implications for future 

SoS modelling studies in practical terms are additionally explored and discussed. It is unusual in 

the sense that a reflexive approach is used to explore the experiences had and to elicit the lessons 

learnt. Such in-depth reflexive analyses are a rarity in the environmental sciences. The paper has 

been published in the open-access journal Elementa: Science of the Anthropocene. 

Chapter 8 then concludes with a summary and overview of the contributions presented in 

this thesis. 

An addendum to the thesis details a pragmatic step-by-step sensitivity analysis framework. 

The framework guides modellers in the assessment of the strength of potential sources of 

uncertainty with respect to spatially distributed environmental models (SDEMs), with a focus on 

spatial datasets. The paper was published as a Position Paper in Environmental Modelling and 

Software. The addendum was originally included as Chapter 6 but has since been appended 

instead to conform with Section 5 of ANU procedure 003405 
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(https://policies.anu.edu.au/ppl/document/ANUP_003405). 
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Figure 1. Publication timeline with thesis chapters indicated. Not all publications 
are included as part of this thesis. Those that are included are marked 
with their respective chapter numbers. Note that the chapters do not 
match publication order. 
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Figure 2. Each chapter can be associated with three core themes of sensitivity and 
uncertainty analysis (aqua blue; Chapters 2, 5, and the addendum), model 
development processes (light orange; Chapters 3 and 4), and the social 
and socio-technical factors in model development (red orange; Chapters 6 
and 7). 
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Chapter 2: Certain trends in uncertainty and 
sensitivity analysis 

Assessment of uncertainty and sensitivity are regarded as crucial practices that aid in 

determining the level of (model) complexity that is warranted for a given purpose, and the level 

of trust one can have in model predictions. Yet, typical analyses have repeatedly been found not 

to be sufficiently expansive to fulfil this role. A higher degree of mathematical and statistical 

knowledge is required to conduct a sufficiently rigorous analysis. At the same time, software tools 

that ease the cognitive burden of more robust approaches are now available such that a lack of 

awareness of such tools may be one possible contributing factor to the current situation. 

In this chapter the research trends regarding uncertainty analysis techniques and the software 

underpinning such work is examined through a hybrid bibliometric literature review. In this 

process we investigated the general research trends through the lens of environmental science and 

synthesised an overview of the available software tools, techniques, and their apparent uptake. 

This chapter was peer-reviewed by three anonymous reviewers and published in 

Environmental Modelling and Software. The publication additionally introduced a purpose-built 

software package called “Wosis”, for Web of Science Analysis, to ease interaction and analysis 

of data obtained through the Web of Science platform (operated by Clarivate Analytics). The 

work is openly accessible, with the software used hosted in a publicly accessible code repository. 

Representative datasets and the code used for analysis are also made available in a separate code 

repository. The publication itself is open-access under the creative commons CC-BY-4.0 licence. 

The authors acknowledge the use of funding from the Fenner School Publication Fund to make 

this possible. 

Douglas-Smith, D., Iwanaga, T.*, Croke, B.F.W., Jakeman, A.J., 2020. Certain trends in uncertainty 

and sensitivity analysis: An overview of software tools and techniques. Environmental 

Modelling & Software 124, 104588. https://doi.org/10.1016/j.envsoft.2019.104588 

 

Software:  

Iwanaga, T.*, Douglas-Smith, D., 2019. Wosis: beta-release (v0.1.3). 

https://github.com/ConnectedSystems/Wosis. Zenodo. doi: 10.5281/zenodo.3406947 

 

Data and Analysis: 

Douglas-Smith, D., Iwanaga, T., 2019. UASA Trends. https://github.com/frog7/uasa-trends. doi: 
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A B S T R A C T   

Uncertainty and sensitivity analysis (UA/SA) aid in assessing whether model complexity is warranted and under 
what conditions. To support these analyses a variety of software tools have been developed to provide UA/SA 
methods and approaches in a more accessible manner. This paper applies a hybrid bibliometric approach using 
11 625 publications sourced from the Web of Science database to identify software packages for UA/SA used 
within the environmental sciences and to synthesize evidence of general research trends and directions. Use of 
local sensitivity approaches was determined to be prevalent, although adoption of global sensitivity analysis 
approaches is increasing. We find that interest in uncertainty management is also increasing, particularly in 
improving the reliability and effectiveness of UA/SA. Although available software is typically open-source and 
freely available, uptake of software tools is apparently slow or their use is otherwise under-reported. Longevity is 
also an issue, with many of the identified software appearing to be unmaintained. Improving the general us-
ability and accessibility of UA/SA tools may help to increase software longevity and the awareness and adoption 
of purpose-appropriate methods. Usability should be improved so as to lower the "cost of adoption" of incor-
porating the software in the modelling workflow. An overview of available software is provided to aid modelers 
in choosing an appropriate software tool for their purposes. Code and representative data used for this analysis 
can be found at https://github.com/frog7/uasa-trends (10.5281/zenodo.3406946).   

1. Introduction 

Computational modeling has become a key activity in many areas of 
research. In the environmental sciences the amount of available 
computational power and speed has led to the development of envi-
ronmental models with ever-increasing level of detail and complexity. In 
this context complexity is reflected by the number of parameters a model 
incorporates as inputs. These parameters may also be referred to as 
‘parameter factors’, ‘factors’ or simply ‘inputs’ in the literature (Norton, 
2015). Increasing the number of parameters allows for a more detailed 
representation of the investigated system while also increasing compu-
tational cost and model complexity at an exponential rate. Increased 
detail (and thus complexity) may reduce the identifiability of parame-
ters - the ability to apportion model results to specific parameter values – 
but is not always justified or necessary with respect to the aims of the 
modeling exercise. 

Increased complexity has led modelers to better appreciate the issue 
of model identifiability (Guillaume et al., 2019) and to recognize the 

importance of understanding the contribution of model inputs with 
respect to model performance and purpose. Uncertainty and Sensitivity 
Analysis (UA/SA) refer to the methods and approaches used to help 
researchers better understand the relative importance of each parameter 
factor within a given problem context. Put simply, “[S]ensitivity anal-
ysis assesses how variations in input parameters, model parameters or 
boundary conditions affect the model output” (Bennett et al., 2013). 
With these approaches, it is possible to better understand how sensitive 
model results are to parameter factors and how uncertain the model 
results are (Saltelli et al., 2019; Saltelli and Annoni, 2010). Individual 
parameter factors may influence one or more outputs and could 
(conditionally) affect the importance of other factors; referred to as 
parameter interaction. The practice of analyzing uncertainty and 
sensitivity is now considered standard modeling practice. The interested 
reader is directed to (Bennett et al., 2013; Norton, 2015; Pianosi et al., 
2016; Razavi and Gupta, 2015) for introductory overviews and further 
information. 

Understanding the relative ‘sensitivity’ of parameters can aid in the 
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development of better monitoring strategies and experiment design, for 
example indicating the priority and amount of data to be collected 
(Saltelli and Tarantola, 2002). The practice of SA can also help to 

constrain the parameter space by identifying parameters that may be 
‘insensitive’ or ‘inactive’, having little to no effect on model results, at 
least for the purpose of the modeling. Identifying such parameters can 

Table 1 
Descriptions of common UA/SA sampling and analysis techniques and key texts. Qualitative assessment and indications of sampling requirements are provided. Where 
indicated, p refers to the number of parameters and N the number of parameter sets.  

Name Abbreviation Description More information 
One-at-a-time SA OAT Each parameter is perturbed from its baseline point. May also be known as 

variations of the name such as one-factor-at-a-time, one-variable-at-a-time, 
etc. 
Required number of model evaluations range from pþ 1 to ðN� pÞ þ 1 where 
p is the number of parameters and N is the number of desired perturbations.  

Czitrom (1999) 

Derivative-based SA – Family of methods that take partial derivatives of each input parameter with 
respect to the output. 

(Helton, 1993; Norton, 2015) 

Variance-based SA – Family of methods that attempt to map statistical properties of the output 
distribution to the inputs used – how variance in the inputs explains variance 
in the outputs. Variance-based approaches may require an exponentially 
increasing number of N samples with increasing p to obtain reliable results (e. 
g. Razavi and Gupta, 2016).  

(Norton, 2015; Pianosi et al., 2015) 

Monte Carlo sampling MC Random sampling: statistically independent samples of the parameter space. 
Used for variance-based SA. 

(Fedra, 1983; Metropolis and Ulam, 1949) 

Latin Hypercube 
sampling 

LHS The range of each parameter in the parameter space is partitioned into N 
equal-probability divisions. One sample is taken from each of the N 
partitions, generating N samples per parameter, and a sample from each set of 
N samples is chosen for each parameter. The process is repeated to obtain the 
desired number of samples (Norton, 2015).  

McKay et al. (1979) 

Importance/stratified 
sampling 

– Estimate the probability density of the parameters, usually uniform or 
Gaussian, and determine the importance of resulting outcomes in order to 
define regions in the parameter space. Each region is given an equal quota of 
randomly distributed samples. Used for variance-based GSA. 

Castaings et al. (2012) 

Morris method Morris An elementary effects method, derivative-based GSA. Ranks parameters by 
influence on output and non-linearity. Each parameter is stepped along 
trajectories. The starting points are random and uniformly distributed. The 
parameters are perturbed once in succession along the trajectory, in random 
order. The resulting sample consists of the changes in model output caused by 
each parameter’s perturbation (Norton, 2015).  
Several variations have been proposed (Pianosi et al., 2016) and convergence 
of sensitivity indices are said to occur with a relatively small number of model 
evaluations and so is commonly used for factor screening (Gan et al., 2014;  
Sun et al., 2012). It requires Nðpþ1Þmodel evaluations, where typically N �
p or less (Norton, 2015)  

(Campolongo et al., 2011; Morris, 1991) 

Derivative-based Global 
Sensitivity Measure 

DGSM Derivative-based GSA. Sensitivity indices are computed by taking the integral 
over the function domain of the square of the partial derivatives of each 
factor with respect to the function (Sobol and Kucherenko, 2009). 
The method is described as being effective at screening parameters for 
high-dimensional models with low sample sizes (Becker et al., 2018). 

Sobol and Kucherenko (2009) 

Sobol’ method Sobol’ Variance-based GSA. An MC-based method: analyzes how the variability of a 
parameter or combination of parameters influences the variability of the 
output. 

Sobol (1993) 

Fourier Amplitude 
Sensitivity Test 

FAST Variance-based GSA. By estimating the output by a sum of sinusoids, each 
parameter becomes a function of a chosen variable ranging from � π to π. 
Rather than computing the variance and mean of the output as multiple 
integrals, these now become a single integral with respect to the chosen 
variable. Variations include eFAST and Random Balance Design (RBD).  

FAST: (Cukier et al., 1973) eFAST: (Saltelli et al., 1999;  
Wang et al., 2013) 
RBD: (Tarantola et al., 2006) 

Distributed Evaluation 
of Local Sensitivity 

DELSA Derivative- and variance-based GSA. An elementary effects method. DELSA is 
a multiple starts perturbation method in which squared finite differences are 
the metric of sensitivity. DELSA is said to be able to obtain the full 
distribution of sensitivities at a lower cost compared to the Sobol’ method (i. 
e. a comparatively lower N).  

Rakovec et al. (2014) 

Regression- and 
correlation-based SA 

– Statistical-based GSA. The sensitivity metric is the regression/correlation 
coefficient between the input parameters and output after Monte Carlo 
sampling. 

(Iman and Helton, 1988), (Saltelli and Marivoet, 1990) 

Regional SA RSA Statistical-based GSA. A binary split of the input parameters from a Monte 
Carlo sample is determined by whether the resulting output respective to an 
input sample exhibit required behaviors. A cumulative distribution function 
is applied to the non-behavioral input samples as a metric of sensitivity. Said 
to have low computational requirements (Sun et al., 2012). 

(Spear and Hornberger, 1980; Young et al., 1978) 

Generalized Likelihood 
Uncertainty Estimate 

GLUE Model results are given as probability distributions of possible outcomes. 
Assesses how accurate these model results are as a representation of 
uncertainty. 

Beven and Binley (1992) 

Emulators – A simplified model is fit to a sample in order to give a general indication of 
parameter sensitivity. 

(Crestaux et al., 2009; Oakley and O’Hagan, 2004;  
Oladyshkin and Nowak, 2012; Ratto and Pagano, 2010;  
Storlie and Helton, 2008)  
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help constrain model complexity which in turn eases the computational 
cost of model evaluations, for example to facilitate uncertainty analysis 
and the development of surrogate models. 

In recent years a wide variety of software tools to support UA/SA 
processes have become available that make such analyses more acces-
sible to modelers. To gain an overview of the available methods and 
tools, we applied a hybrid bibliometric approach using publications 
from the Web of Science database. While reviews of sensitivity analysis 
practice have been published (see for example Ferretti et al., 2016; 
Saltelli et al., 2019) and comparisons between UA/SA methods con-
ducted (for example Gan et al., 2014; Sun et al., 2012), to our knowledge 
there does not appear to be an overview of the available UA/SA tools 
currently in use across different platforms and programming languages. 
This paper follows on from and is distinguished from existing reviews 
(such as Matott et al., 2009; Refsgaard et al., 2007) as it surveys UA/SA 
in environmental modeling, with a specific focus on SA. We then provide 
information on the available tools, as revealed through the bibliometric 
analysis and expert knowledge, including implemented UA/SA methods, 
programming language, and software features. The aim here is then to 
provide 1) a brief introduction to the field of UA/SA and its relevance to 
environmental modeling for those new to the field, 2) an overview of 
UA/SA research trends, and 3) a guide to the development trends of 
UA/SA tools, their availability, and relevance. 

2. Key UA/SA terminologies and methods 

Often the first hurdle for those new to a research area is to grasp the 
multitude of acronyms and terms used. In this section we briefly outline 
some common terminology, UA/SA methods, and relevant publications 
for further reference. These are provided here to contextualize the 
analysis and discussion later in this paper. The information provided in 
this section is not exhaustive. Interested readers are directed to Norton 
(2015) for a more thorough introduction to UA/SA, the descriptions of 
sensitivity analysis methods in Pianosi et al. (2016), the citations in 
Table 1, and the citations in (Bennett et al., 2013, p. 3). 

Pianosi et al. (2015) identify three stages in a sensitivity analysis: 
selecting a sample of input values from the variability space, running a 
model evaluation against these input values, and applying a sensitivity 
analysis method to the input/output samples to compute sensitivity 
indices, i.e. values which indicate each parameter’s sensitivity. For more 
information about the calculations for various sensitivity indices, see 
Norton (2015). Here, the variability space refers to all possible combi-
nations of values that can be assigned to a model’s input parameter set. 
By running the model with the values sampled from the variability space 
and taking note of the resultant outputs, analyses can be conducted to 
calculate the influence that a specific input, or set of inputs, may have, i. 
e. their sensitivities. The focus of this paper is on providing an overview 
of tools that aid in conducting these analyses. 

Methods to select the sample of input values are often characterized 
as being either ‘local’ or ‘global’. Global methods (GSA) consider all 
dimensions of a model “in one grand exercise” (Leamer, 1985), achieved 
by varying all parameter values at the same time. GSA methods are 
themselves commonly categorized as being statistical, derivative, or 
variance based. Statistical methods use statistical analysis of the 
parameter space as a measure of sensitivity (Pianosi et al., 2016). 
Derivative-based methods provide indices which characterize the 
distributional properties of partial derivatives (Razavi et al., 2019). 
Variance-based approaches determine how different factors contribute 
to model variance by analyzing and decomposing the variance in model 
outputs (Razavi et al., 2019). For brevity, a full exploration of these 
methods is not provided here, but a brief overview, with references to 
relevant papers, is given in Table 1. 

The strength of GSA methods is that they provide a more robust 
depiction of model uncertainty by comprehensively accounting for 
parameter interactions (Saltelli and Annoni, 2010). Such approaches 
assume a random distribution of output values in the parameter space 

and that such a distribution is plausible. GSA methods can also be 
computationally expensive to perform as the parameter space being 
explored can be very large. Sampling methods (‘schemes’) are used to 
aid in limiting the number of model runs involved whilst adequately 
representing the parameter space. The computational cost of applying 
GSA methods may explain, at least in part, why their use is relatively 
uncommon compared to their local counterparts. 

Local SA methods (LSA) are anchored around a particular point in 
the parameter space with analysis involving comparisons against a 
known ‘baseline’ output (Razavi and Gupta, 2015). The simplest, most 
naïve, and most common, method of SA is one-at-a-time (OAT). As the 
name suggests, this approach involves changing the value of a single 
parameter factor at a time (referred to as ‘perturbing’) whilst keeping all 
other parameters constant at their nominal values. This approach could 
be described as taking samples along a single dimension with the 
changes to the output then attributed to the factor that was modified. 
There are different approaches to how much the parameter value is 
perturbed but often a proportional increment is used – e.g. increase or 
decrease a parameter by 10% of the nominal value up to and including a 
given bound (Razavi and Gupta, 2015). 

Other LSA methods examine the partial derivatives of output with 
respect to each input parameter. These are computed at one point in the 
sample space to determine sensitivity indices. The simplicity of the 
procedure is advantageous, as well as being computationally inexpen-
sive for first order derivatives as they often do not require a formal 
sampling approach. Monte Carlo (MC) – a simple random sampling – is 
commonly used, although it offers a limited representation of the total 
parameter space (Gan et al., 2014). The downside is that LSA only 
provides a robust indication of sensitivity for linear or additive models 
(Saltelli and Annoni, 2010): they do not account for parameter in-
teractions and become computationally expensive when higher order 
and non-linear effects are considered. To resolve this issue several other 
sampling approaches have been developed and applied. Given each 
method and approach have their pros and cons, multiple methods could 
be applied to obtain complementary results �a la ensemble analysis (Sagi 
and Rokach, 2018) and should be considered where appropriate (Sun 
et al., 2012). Brief descriptions of commonly employed methods are 
given in Table 1. Methods are taken to be “common” where they are 
indicated to be so in recent review papers (specifically, Gan et al., 2014; 
Pianosi et al., 2016), the references found within these, and those found 
within the identified corpora (detailed in the next section). 

3. Method: The hybrid bibliometric approach 

To conduct this bibliometric review a collection of publications (the 
‘corpora’) was gathered from Clarivate Analytics’ Web of Science (WoS) 
database using the available web-based Application Programming 
Interface (API). Use of the API enabled programmatic access to the 
publication data and metadata including titles, abstract text, author- 
supplied keywords, and DOIs. Data was retrieved with the use of 
Wosis (Web of Science Analysis), a Python package developed to 
simplify the process of querying the WoS database and aid in data 
analysis and visualization (Iwanaga and Douglas-Smith, 2019). Publi-
cations in the resulting corpora were taken to represent the field of 
uncertainty and sensitivity analysis in the overarching field of envi-
ronmental modeling. 

To ensure as much transparency as possible, much of the data 
collection and subsequent analysis was conducted programmatically in 
the Python programming language. The complete dataset cannot be 
made available as it is subject to Clarivate Analytics’ license terms. 
Representative datasets are provided instead, along with the code 
developed for the analysis; these can be viewed as a collection of Jupyter 
Notebooks and associated files at https://github.com/frog7/uasa-trends 
(Douglas-Smith and Iwanaga, 2019). Names of specific notebooks will 
be referred to throughout this text where further detail can be found. 

The corpora was iteratively and incrementally refined through a 
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semi-autonomous process of topic identification, keyword search, and 
subsequent manual analysis of the publications with the aid of key 
phrase extraction. Topic modeling (briefly described in Section 3.2) was 
used to aid in identifying a collection of papers relevant to uncertainty 
and sensitivity analysis and their overarching focus, be it an application 
of or guiding frameworks for UA/SA. The publication and citation trends 
within these topic areas were then analyzed. Additional topic modeling, 
complemented by a keyword search process, was used to identify papers 
related to the use of UA/SA software. These were manually combed 
through with the aid of an automated key phrase identifier that helped 
to reduce the amount of text to be examined. A subset of these papers 
were investigated for mention of software tools and packages. The 
general search and analysis approach is depicted in Fig. 1, with further 
detail on topic modeling and key phrase identification provided within 
this section. 

3.1. Initial search 

The initial corpora for the analysis was identified by specifying the 
search phrase (with search fields bolded): TS¼("sensitivity analysis" OR 
"uncertainty analysis" OR "uncertainty quantification" OR "uncertainty 
propagation" OR "local sensitivity analysis" OR "LSA" OR "one-at-a-time" 
OR "exploratory modeling" OR "OAT" OR "global sensitivity analysis" OR 
"GSA" OR "all-at-a-time" OR "AAT") AND WC¼("ENVIRONMENTAL 
SCIENCES" OR "WATER RESOURCES" OR "ENGINEERING ENVIRON-
MENTAL" OR "INTERDISCIPLINARY APPLICATIONS"). This returns 
publications that use at least one of the specified terms (those listed for 
the “TS” field) within the title, abstract, or author supplied keywords for 
publications in the the WoS defined subject areas; specified for the “WC” 
field. The raw search string is supplied for transparency and can be used 
to obtain the corpora from WoS. 

Only English language publications between 2000 and 2017 were 
considered for this study, with the ending year selected as the data 
request occurred in December of 2018. The approach taken at the time 
was to include full year datasets only. The final search phrase applied 
with the specified time frame reduced the number of matches from over 
500 000 to 11 718 publications. The number of results obtained through 
the unrestricted search were far too many to comprehensively review, at 
least in a timely manner. The initial corpora for this study (of 11 718 
publications) were then further constrained through the process depic-
ted in Fig. 1 and is described in more detail below. 

3.2. Topic identification 

A key focus in this study is the software tools and packages available 
to support UA/SA processes, the methods they implement, and the 
trends of these. To this end, topic modeling was applied to constrain the 
corpora to relevant publications for further consideration. Topic models 
attempt to cluster texts into similar or related topics based on commonly 
occurring words and can aid in identifying new and emerging fields 
whilst also reducing the likelihood of bias and the required hours for a 
systematic review (Achakulvisut et al., 2016; Westgate et al., 2018). 
Topic modeling has been applied before to reduce the time and diffi-
culties encountered when conducting systematic reviews (Westgate and 
Lindenmayer, 2017), however their use is still relatively limited and 
perhaps underutilized. Although software is available to aid in these 
bibliometric approaches, currently no single software package provides 
all necessary functionality to conduct end-to-end systematic mapping – 
the classification of articles based on their contents – of research liter-
ature from data collection through to summarization and visualization. 
Arguably the conjunctive application of systematic mapping and bib-
liometric analysis is still in its infancy (as evidenced by Nakagawa et al., 
2018). 

Topics are identified by the common co-occurrence of semantics 
within a discipline. For example, “sensitivity” in the context of SA would 
conceptually be expected to appear in texts containing words such as 

“analysis”, “uncertainty”, and “modeling”. The term “sensitivity” may 
also appear in relation to physical/psychological response to stimuli, in 
which case the term will appear alongside terms associated with the 
medical and therapy fields. Topics can be identified and represented 
through their common semantics. The topic modeling approach pro-
vided within Wosis – Non-negative Matrix Factorization (NMF) – is 
implemented with the scikit-learn Python package (Pedregosa et al., 
2011). The approach allows publications to be assigned to one or more 
topics (Arora et al., 2012) and has been shown to be appropriate for 
collections of short texts (Chen et al., 2019). This process was com-
plemented with a traditional keyword search to help identify publica-
tions related to specific subjects. 

Tokens, meaning specific words or terms, for topic modeling con-
sisted of the text found in the document titles, abstracts, and keywords. 
The top 1000 tokens found within the corpora based on Term 
Frequency-Inverse Document Frequency (TF-IDF) rankings were 
selected for topic modeling. TF-IDF is a common ranking method used in 
text mining (Beel et al., 2016). A high TF-IDF score indicates that the 
word token has a high frequency within specific document(s), but a low 
number of occurrences within the entire corpora. Weighting the score in 
such a manner has the effect of filtering out commonly used tokens 
which may not have high semantic importance. 

3.3. Key phrase identification 

Once a topic area is identified, the resulting sub-corpora can be 
further constrained through automated key phrase identification. The 
approach summarizes text, aiding reviewers to identify irrelevant pub-
lications by reducing the amount of text for manual review. The 
implemented approach attempts to identify these phrases of interest by 
scoring sentences based on their similarity with other sentences 
throughout the abstract text. 

To elaborate, each sentence (si) is compared with other sentences in 
the abstract (sy), which are initially filtered based on the presence of a 
root token which is taken to be the token that appears in the middle of si. 
This root token selection approach is used in Rabby et al. (2018) for its 
simplicity and computational efficiency. The similarity between si and sy 

is then scored based on the ratio of the intersection of the two sentences. 
Sentences with three or less tokens (i.e. words, numbers, or other 
counted by splitting the text on individual spaces) are ignored. 

The approach assumes that important features of the publication, 
such as its key findings, will be repeated throughout the considered 
fields (title, abstract, and author-supplied keywords). These may, for 
example, be introduced or alluded to, framed and the implications dis-
cussed. The implemented approach is therefore dependent on the ab-
stract length, with longer texts preferred. Poor performance can be 
expected for very short abstracts (e.g. 3 sentences or less) and these were 
ignored for the purpose of this study. Comparisons with an established 
key phrase identification approach, RAKE: Rapid Automatic Keyword 
Extraction (Rose et al., 2010), implemented through the rake-nltk Py-
thon package – indicate that the above approach produces, subjectively, 
key phrases that were more useful for the purpose of this study 
(see Table 2). 

3.4. Citation and trend analysis 

Citation analysis indicates the papers being referred to by other pa-
pers within the corpora as well as the overall number of citations the 
given publication has received, the assumption here being that im-
pactful papers are more likely to be cited. The number of citations is then 
used to indicate papers that are of high importance to the subject at 
hand. Both the total number of citations and the average citations since 
publication were used in the analysis. Publication trends within topic 
areas aided in identifying the general focus and direction taken by the 
research community. Plotted publication trends were used for this 
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purpose. 

4. Results: UA/SA packages 

Of particular interest to this paper were the trends of software 
packages implementing UA/SA methods and these are discussed here. 
The final corpora was broadly categorized into two topics – “Applica-
tions” and “Frameworks” using the topic model described in the 
“Method” section. Publications focused on UA/SA frameworks and 
guidelines were placed into the “Frameworks” sub-corpora, while “Ap-
plications” included those taken to be focused on the application of UA/ 
SA methods. From each of these a keyword search was applied to 
identify publications related to model sensitivity, optimization, uncer-
tainty quantification, or toolboxes, in order to build a sub-corpora 
related to the software. 

Manually sorting the identified publications with the aid of the 
automated key phrase extraction tool reduced the corpora to 193 papers 
(referred to as the “Software corpora”, see Notebook 5c “Software 
packages analysis”). Papers were regarded as relevant if they: included 
direct reference to UA/SA or optimization software packages; were 

theory, review, or framework papers that recommended software 
implementation to a given field; or referred to other methods and 
packages of interest to expert opinion. Further detail and a general 
bibliometric overview are provided in a later subsection. 

There does not appear to be a strong correlation between the Ap-
plications and Software corpora (Fig. 2). The Software corpora has a 
stable publication trend relative to those focusing on applications over 
the surveyed timeframe. A spike in publications in 2007 proportional to 
the full final corpora can be seen (Fig. 3). While publications on the 
software for UA/SA have been increasing (see Fig. 4) the trend relative 
to the Applications corpora and the full corpora could be indicative of 1) 
a general ambivalence towards reporting use, or development of, gen-
eral UA/SA software, 2) a common set of UA/SA software, 3) a reliance 
on self-coded analysis software, or 4) increased tendency to release 
software in a directly citable manner, e.g. with an attached DOI which 
the WoS database does not include but this is considered unlikely 
however in the authors’ opinion. 

The slow uptake of software packages, relative to the Applications 
corpora, could also be due to 1) a lack of documentation for beginner 
users and 2) a lack of awareness of available software packages. In the 

Fig. 1. The hybrid bibliometric analysis process. Identification and subsequent analysis of the final corpora followed an iterative process through which publications 
were progressively filtered to arrive at a relevant subset. 
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first case, beginner users may not use software that requires significant 
learning time for effective use, especially when no clear user guide, 
examples to draw from, or community to engage with exists. In the latter 
case, modelers should be made aware of the available software that can 
reduce the time required to conduct UA/SA and promote better practices 
in UA/SA. 

The software evident in the literature range from those specific to a 
field, general-purpose packages, to custom-made code. Fields such as 
hydrology, climate, chemistry, and more general environmental 
modeling and engineering used field-specific packages. A complete list 
of reviewed software publications and their related software packages 
can be found in Notebook 5a “Finding software packages by keyphrase 
extraction”. The most common analysis method provided by UA/SA 
software was found to be Sobol’ with the R sensitivity package providing 
the widest mix of methods (see Table 3). Surveyed software tools typi-
cally did not provide OAT analysis, perhaps due to its simplicity or a sign 
of its decline. Publication of software related papers is relatively stable, 
with a proportional spike in 2007 (Fig. 3). 

Software for the development of emulators did not feature heavily 
within the Software corpora although they are present, the HDMR 
method being one example (described later on). Software to develop 
emulators include ChaosPy (Feinberg and Langtangen, 2015), the 
PRISM Uncertainty Quantification framework (Hunt et al., 2015), 
GTApprox (Belyaev et al., 2016) and UQ-PyL (Wang et al., 2016). A 
collection of functions presented as a Matlab toolbox is also introduced 
in Vu-Bac et al. (2016). All of these with the exception of Vu-Bac et al. 
(2016) were developed in the Python programming language. Applica-
tion of Artificial Neural Networks and similar approaches did appear in 
the corpora but is not a topic of focus here. 

As aforementioned, current trends have shown an increased interest 
in best practices. Three SA packages, released within the past five years, 
reflect these changing attitudes: PSUADE (Gan et al., 2014), SAFE 
(Pianosi et al., 2015), and VARS-TOOL (Razavi et al., 2019). PSUADE (a 
Problem Solving Environment for Uncertainty Analysis and Design 
Exploration) provides users with implementations of UQ methods, 
including sampling techniques and SA methods (both local and global). 
The package has had general application to various modeling scenarios. 
SAFE (Sensitivity Analysis For Everybody) provides users with imple-
mentations of global SA methods, with the ability to perform multiple 
SAs, robustness assessment, and convergence analysis without further 
model runs. As reflected in its name, this package was designed to allow 
global SA to be accessible to a more general audience. 

The most recently released package in the survey, VARS-TOOL, 
provides implementations of sampling techniques and global SA 
methods, including derivative-, variance-, and variogram-based, which 
can all be performed from a single sample. The variogram approach to 
SA reportedly links both local and global approaches. 

4.1. Survey of packages in common programming languages 

Brief descriptions of software found in the corpora are provided here, 
categorized by their implementation language. Some packages may be 
listed more than once as various implementations may exist, or inter-
operability between languages is supported. We decided to categorize 
the packages based on the implementation languages as most packages 
are not standalone tools with user interfaces ready to be used and are 
often provided as a library to be incorporated programmatically. Indi-
cating the implementation language also allows readers to identify 
packages in a familiar language for potential adoption. Very few pack-
ages were found to provide a Graphical User Interface (GUI) so some 
amount of programming ability and experience is the baseline expec-
tation. In the vast majority of cases, users are expected to have a passing 
familiarity with the UA/SA methods being applied as very little pro-
tection against improper use is provided (a further brief discussion is in 
the Recent developments section). Table 3 and 4 provide summary 
overviews of the software and packages. 

4.1.1. Fortran 
Fortran was one of the earliest programming languages available and 

arguably still dominates the scientific programming landscape. Fortran 
modules from the surveyed literature are JUPITER API and UCODE. 
There is also a Fortran repository of UA/SA functions supported by the 
Joint Research Centre (Pianosi et al., 2015). The JUPITER API (Joint 
Universal Parameter IdenTification and Evaluation of Reliability 
Application Programming Interface) attempts to provide a standard set 
of programmatic functions for developing UA/SA software and serves as 
the underlying “engine” for other UA/SA packages (UCODE 2005/2014 
were developed on top of this API). The provided modules are developed 
in Fortran-90 and support parallelization and local (derivative) sensi-
tivity analysis. JUPITER API was first released in 2006 and its latest 
release was 2013. Its affiliated webpage was last updated in 2016, 
suggesting an active community. It is provided freely and under an 
open-source license with a user manual and examples of applications. 

First released in 1998, UCODE (Universal inverse CODE) was 
developed in Fortran90, Fortran95, and Perl. It originally implemented 
inverse modeling methods, and by its first revision (2005) consisted of 
post-processing modules for (and not limited to) SA, calibration, and UA. 
The second revision (2014) included MCMC in the UA module and made 
the platform more compatible with models developed in Matlab or using 
a GUI. This can be viewed as a response to changing trends in model 
development, particularly the proliferation of Matlab-based models. 
User documentation is available for download. Although the software is 
still available for download, its development has ceased. 

Table 2 
Example of key phrases identified and extracted by Wosis compared with the RAKE method provided in the ’rake-nltk’ package. 
The original abstract was taken from Roos et al. (2015). Both RAKE and Wosis approaches were limited to a minimum of 3 words 
per phrase. Identified phrases are ordered by score and do not follow the original paragraph structure.  

Wosis RAKE 

We propose a novel formal approach to prior sensitivity analysis, 
which is fast and accurate. 
Other formal approaches to prior sensitivity analysis suffer from 
a lack of popularity in practice, mainly due to their high 
computational cost and absence of software implementation. 
Despite its importance, informal approaches to prior sensitivity 
analysis are currently used. 
This is especially true for Bayesian hierarchical models, where 
interpretability of the parameters within deeper layers in the 
hierarchy becomes challenging. 
They require repetitive re-fits of the model with ad-hoc modified 
base prior parameter values. 

hoc modified base prior parameter values 
parameters within deeper layers 
identifiability issues may imply 
prior sensitivity examination plays 
detect high prior sensitivities 
prior sensitivity analysis suffer 
parametrized Bayesian hierarchical models 
prior sensitivity analysis 
bayesian hierarchical models 
quantifies sensitivity without high computational cost 
applied bayesian analyses 
novel formal approach 
hierarchy becomes challenging  
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4.1.2. C/Cþþ
Surveyed software available in C/Cþþ include Dakota, PSUADE, 

PEST, and VARS-TOOL. 
The Dakota toolkit had its initial release in 1994 to provide optimi-

zation tools for engineers. With further development, it now includes 
sampling methods, global SA methods, parameter estimation, and UQ. 

The software can be tightly-, semi-, or loosely-coupled to the target 
model, requiring the user in the first two cases to modify their code or 
use a direct interface. The package is presented as being accessible to 
beginners and involves advanced features for more competent users. It 
operates on Linux, Windows, and Unix. Parallelization is possible and 
there is a GUI option. It is freely available for academic use and open 

Fig. 2. A comparison of the publication trend of Applications and Software. Both increase during the timeframe, although it is unclear whether the trends are related.  

Fig. 3. Relative trend of software publications. The trend is relatively flat but note the initial spike in publications in 2007.  

Fig. 4. Absolute publication trends for software packages implementing UA/UQ, and SA methods.  
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source. A user community exists, including mailing lists and interaction 
with developers. Documentation includes user manuals, examples, and 
release notes. Dakota is well maintained, its most recent release and 
webpage update being in 2018. It is an example of software that has kept 
up to date with the latest trends in UA/SA and software implementation. 

PSUADE (Problem Solving environment for Uncertainty Analysis and 
Design Exploration) can link to simulation code in any language. It 
provides users with 14 sampling methods and 12 SA methods, both local 
and global SA. It was developed for large complex systems models and 
has been applied to various fields. The software has a free public license 
and is open source. A collaborative user community exists. The software 
and documentation (a user manual) are available for web download. The 
package is well maintained, with its latest release and update in 2018. 

PEST (Parameter EStimation Toolkit) is designed primarily for model 
calibration. Originally released in 2003, and with its most recent release 
in 2019 it has remained up to date with the latest research in environ-
mental modeling. The current package provides parameter estimation 
and uncertainty analysis, including Monte Carlo analysis, and has par-
allelization capabilities. The software is designed for complex environ-
mental models, and other models. Models written in C, Cþþ, Fortran, 
and Python have interoperable interfaces available. It is free, although 
the license does not appear to be specified, and well-documented for 
ease of use. Developer-user interaction is encouraged, and training 
courses are offered. 

4.1.3. Matlab 
Identified packages of interest written in Matlab are Simlab, MCAT, 

GUI-HDMR, UQLab, SAFE, and VARS-TOOL. 
SimLab is a package for Monte Carlo-based SA, written in Matlab and 

supplied by the Joint Research Centre. Initially released in 1985, its 
latest release was 2008 and its associated webpage was last updated in 
2016. It provides Monte Carlo and other random sampling methods, test 

functions for educational purposes, and GSA (correlation-, regression-, 
and variance-based). The SA follows a loosely-coupled approach 
requiring only the model output to be fed in. It is freely available for 
academic use and open source. No user community appears to exist. The 
documentation consists of a reference manual and the software is 
available for web download. 

MCAT (Monte Carlo Analysis Toolbox) implements Monte Carlo SA. 
Its first release was 2001 and a companion paper, highlighting the 
importance of best practices in SA, was released in 2007. However, no 
further research appears to have been conducted since this time and 
links to software download provided in the companion paper have 
expired. This package is of interest as an example of software tooling 
designed to promote modeling SA best practices. The software provides 
implementations of UA/SA methods, including regional SA, Monte Carlo 
analysis, and GLUE. A GUI was developed for it in 2007. The package is 
free and open source, and documentation includes a manual and ex-
amples. No user community appears to exist, however, there is an un-
official GitHub page (see Table 4). 

GUI-HDMR (Graphical User Interface-High Dimensional Model 
Representation) provides HDMR, a variance-based SA method, which 
the developers advertise as an alternative to other contemporary SA 
methods. The user must supply an appropriate sample of the model 
output (there is a complementary package, RS-HDMR [Random 
Sampling-HDMR] for this purpose). Users have the choice of using a GUI 
or a script-based interface. The software is reportedly user-friendly and 
has been applied to various fields. It is freely available for academic use, 
but not open source. The software and user documentation are available 
for web download. Although the related publication is highly cited, this 
software appears to be abandoned, having its first and last release in 
2008. A lack of user community and implementation of a single SA 
method could be a cause for this. 

UQLab (Uncertainty Quantification Laboratory) provides, among 

Table 3 
Comparison table of available UA/SA methods in the surveyed packages.  

Namea (Language) MC LHC Morris DGSM Sobol’ FAST RSA Regression/ 
Correlation SA 

Other 

SimLab (Matlab)  ✔ ✔  ✔ ✔  ✔  

MCAT (Matlab)     ✔   ✔ GLUE and many others (UA, parameter 
estimation) 

GUI-HDMR (Matlab)     ✔   ✔ HDMR Emulation 

UQ Lab (Matlab with R plugin)   ✔  ✔   ✔ Bayesian Inversion, Kriging, Support Vector 
Machines, and more 

SAFE (Matlab/R)   ✔  ✔ ✔ ✔  Dynamic Identifiability Analysis, PAWN 

VARS-TOOL (Matlab, Cþþ, Python, 
and built into OSTRICH)  

✔ ✔  ✔  ✔  STAR-VARS, Generalized Global Sensitivity 
Matrix 

Dakota (C/Cþþ, 
Fortran77/Fortran90) 

✔ ✔ ✔  ✔    Supports emulation and many other UA/SA 
methods 

PSUADE (Cþþ) ✔ ✔ ✔   ✔   Fractional Factorial, Central Composite, 
Probabilistic methods, and others 

PEST/PESTþþ (C/Cþþ, Fortran) ✔  ✔  ✔     

R Sensitivity (R) ✔ ✔ ✔ ✔ ✔ ✔   DELSA, Kriging, many other variations available 

SALib (Python)  ✔ ✔ ✔ ✔ ✔   Delta Moment Independent Measure, Fractional 
Factorial, Finite Difference 

MADS (Julia, C/Cþþ) ✔ ✔   ✔ ✔   Kriging, Bayesian Information Gap Decision 
Theory, Support Vector Regression 

GANetXL (Excel)         Single- and multi-objective genetic algorithm 

UCODE (Fortran90/95, Perl)        ✔  

MOUSE (Java)   ✔   ✔ ✔  GLUE 

GLUE (R, Matlab)         GLUE 

OSTRICH (standalone)        ✔ GLUE, user defined evaluations also possible  

a As documentation can lag behind releases, software may include implementations of methods not listed in the table (at time of writing). 
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Table 4 
Summary details (specifications, usability) of some available software of interest. Dash (� ) indicates the information could not be found.  

Name and 
Language 

First and 
Last 
Release 
(latest 
updatea) 

License Community Docs Indicated 
required 
expertise 

Related 
publication 

Link to source/ 
software 

Comments 

SimLab 
(Matlab) 

1985, 
2008 
(2016) 

Freely available 
for academic use, 
End User free 
license. 

– Manual and 
examples 

Professional 
tool for model 
developers, 
scientists, and 
professionals 

JRC (2015) https://ec.eu 
ropa.eu/jrc 
/en/sa 
mo/simlab 

Development and 
simulation tool for UA/ 
SA 
No GUI. 

MCAT (Matlab) 2001 
(2007) 

Free and open 
source 

– Manual and 
examples  

Wagener and 
Kollat (2007) 

Unofficial 
GitHub page htt 
ps://github. 
com/ICH 
ydro/MCAT 

Monte Carlo Analysis 
Toolbox 
GUI is available 

GUI-HDMR 
(Matlab) 

2008 Freely available 
for academic use, 
but not open 
source. 

– Manual  Ziehn and Tomlin 
(2009) 

http://www. 
gui-hdmr.de/ 

Software does not 
appear to be actively 
developed but still 
available and in use 
GUI is available 

UQ Lab (Matlab 
with R 
plugin) 

2014, 
2018 
(2018) 

Free for academic 
use. Content 
management 
system is licensed, 
scientific modules 
are open source. 

User 
collaboration 
encouraged, users 
can contribute to 
code with 
revision by 
developers 

Manuals, 
examples, 
release 
notes. 

Beginner to 
advanced 
functionality 

Marelli and 
Sudret (2014) 

https://www. 
uqlab.com/dow 
nload 

Tagline states “make 
uncertainty 
quantification 
available for anybody, 
in the field of applied 
science and 
engineering” 
Plugin for R Sensitivity 
package available 
Supports parallelized 
analysis. 
Has a GUI 

SAFE (Matlab/ 
R) 

2015, 
2015 
(2018) 

Freely available 
for academic use, 
open source. 

No user 
community, 
easily adapted to 
personal use 

Pianosi 
et al., 
workflow 
scripts 

Beginner to 
advanced 
functionality 

Pianosi et al. 
(2015) 

https://www. 
safetoolbox. 
info/register-fo 
r-download/ 

Designed for users with 
limited global SA/ 
Matlab experience 
Has various GUIs 
available 

VARS-TOOL 
(Matlab, 
Cþþ, 
Python, and 
built into 
OSTRICH) 

2016, 
2018 
(2018) 

Free for non- 
commercial use. 

– Manual Beginner to 
advanced 
functionality 

Razavi et al. 
(2019) 

http://vars 
-tool.com 

Supports 
parallelization 

Dakota (C/ 
Cþþ, 
Fortran77/ 
Fortran90) 

1994, 
2018 
(2018) 

Freely available 
for academic use, 
open source with 
various levels of 
user interaction. 
GNU LGPL from 
version 5.0. 

User mailing list 
and user- 
developer 
interaction. 

Manual and 
examples 

For users 
experienced 
with UA/SA 

Adams et al. 
(2010) 

https://dakota. 
sandia.gov/co 
ntent/getting 
-dakota-source 
-code 

Toolkit for 
optimization, 
experimental design, 
and UA/SA 
Supports 
parallelization 
Has a GUI 
Linkages with Python, 
Matlab, and Scilab 
available 

PSUADE (Cþþ) 2013, 
2018 
(2018) 

Free public license, 
open source, LGPL. 

User community Manual Said to be 
beginner 
friendly 

Gan et al. (2014) https://github. 
com/LLNL 
/psuade 
https://comput 
ation.llnl.gov/p 
rojects/psuade 
/software 

Supports 
parallelization 

PEST (C/Cþþ, 
Fortran) 

2003, 
2019 
(2019) 

Free User-developer 
interaction, 
training courses 

Manual, 
tutorial  

Doherty (2018) http://www. 
pesthomepage. 
org/Down 
loads.php 

Supports 
parallelization 
Linkages with Python 
available 

R – Sensitivity 
package 

2006, 
2018 
(2018) 

Free public licence 
(GPL-2), open 
source. 

Developer 
community. 

Manual Assumes 
knowledge of R 

Iooss et al. (2018) https://CRAN. 
R-project.org/p 
ackage¼se 
nsitivity  

SALib (Python) User community Manual, 
examples, 

Herman and 
Usher (2017) 

(continued on next page) 
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other tools for UQ, tools for statistical analysis, such as sampling and 
global SA. Global SA methods are supplied through a linkage with the R 
Sensitivity Package. Parallelization is supported. The package is user 
friendly and adaptable to various levels of computational experience. 
Collaboration amongst users is encouraged and users can contribute to 
code, with revision by the major developers. It is portable between 
operating systems and freely available for academic use, however 
documentation is not freely available. The software is well-maintained, 
with its latest release and update in 2018. 

SAFE (Sensitivity Analysis For Everyone) is compatible with the GNU 
Octave environment and a version implemented in R exists, making it 
the most openly accessible of all the surveyed Matlab packages. It runs 
on any operating system. The toolbox was designed to make global SA 
accessible to users with limited knowledge of global SA or Matlab, whilst 
also allowing more advanced users to explore, research, and better 

understand SA. Users are provided with various sampling methods, local 
and global SA methods, and a GUI (see Table 3). Although there appears 
to be no collaborative user community, user-developer interaction is 
possible via email. The software is freely available for academic use and 
is open source. Documentation includes the companion paper (Pianosi 
et al., 2015) and additional information provided in workflow scripts. 
There have been no recent releases, however the website is maintained 
(last update 2018). 

VARS-TOOL is also available in Cþþ and OSTRICH (a user- 
independent interface). It features off-line and on-line mode options 
for running models in any language or operating system. Numerous 
sampling and SA methods are supplied, including VARS. It is said to be 
user-friendly and accessible to various levels. It appears to operate as a 
command-line interface, without a GUI. Although recently developed, 
there is no collaborative community. The software is freely available for 

Table 4 (continued ) 

Name and 
Language 

First and 
Last 
Release 
(latest 
updatea) 

License Community Docs Indicated 
required 
expertise 

Related 
publication 

Link to source/ 
software 

Comments 

2013, 
2018 
(2018) 

Free public licence 
(MIT), open 
source. 

release 
notes 

Assumed 
knowledge of 
Python 

https://github. 
com/SALib/SA 
Lib 

Has some visualization 
methods chiefly for the 
Morris method 

MADS (Julia, 
C/Cþþ) 

2016, 
2018 
(2018) 

Free public licence 
(GPL), open 
source. 

User community Manual and 
examples 

Beginner to 
advanced 
functionality 

Various 
publications 
listed under 
https://mads. 
lanl. 
gov/#research 

https://github. 
com/madsjuli 
a/Mads.jl 

Supports 
parallelization 

JUPITER API 
(Fortran90) 

2006, 
2013 
(2016) 

Free and open 
source 

User-developer 
interaction 

Manual, 
examples  

http://water. 
usgs.gov/softwar 
e/JupiterApi  

Application 
Programming Interface 
to improve model 
analysis software 
development 
Supports 
parallelization 
Used to develop other 
tools, including 
UCODE (below) 

UCODE 
(Fortran90/ 
95, Perl) 

1998, 
2015 
(2016) 

Free and open 
source 

– Manual  Poeter and Hill 
(1999) 

https://igwmc. 
mines. 
edu/ucode/ 

Software appears to be 
abandoned but 
download still 
available 

MOUSE (Java) 2014, 
2016 

Free and open 
source 

–   Ascough II et al. 
(2015)  

Affiliated webpage 
unavailable 
Software not under 
active development but 
is being maintained 
Reportedly has a GUI 

GLUE (R, 
Matlab) 

1992, 
2013 
(2016) 

Free for academic 
use, open source 

– Manual and 
examples  

Beven and Binley 
(1992) 

http://www. 
uncertain-futu 
re.org.uk/?page 
_id¼131 

Method implemented 
in software developed 
by creators (R) and 
users (Matlab) with 
implementations found 
in other packages 

SWAT (Fortran) 2000, 
2018 
(2019) 

Free public 
licence, open 
source 

User community, 
user-developer 
interaction, 
workshops/ 
conferences 

Manual May be difficult 
for beginners 

https://swat. 
tamu.edu/soft 
ware/ 

https://swat. 
tamu.edu/softw 
are/plus/ 

Externally developed 
tools/interfaces 
developed to 
implement e.g. SA, GUI 

OSTRICH 
(standalone) 

2017 Free and open 
source 

User community 
for hydrologists 

Manual, 
examples  

Matott (2017) http://www. 
eng.buffalo. 
edu/~lsma 
tott/Ostrich 
/OstrichMain. 
html 

Supports 
parallelization  

a Latest update refers to last identified date in which documentation or code was released. Documentation refers to user/technical manuals, publications specifically 
on the software or other. 
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non-commercial use and is open-source. There are capacities for paral-
lelization and reporting and visualization tools; its documentation 
consists of a manual. 

4.1.4. R statistical language 
The main SA package for the R language is the R ‘sensitivity’ pack-

age. Like Python, the R language is widely used in the sciences and so 
many of the tooling support interoperability with R (see the section on 
Python below, and Table 4). The R ‘sensitivity’ package supplies various 
SA and sampling methods. It offers loose coupling with models imple-
mented in other languages as well as in R. Test cases are supplied for 
research and comparison purposes. The package requires knowledge of 
R, which itself is portable between operating systems and freely avail-
able. A developer community exists and the available documentation 
consists of a reference manual. Since its initial release in 2006 more 
recently developed methods have been implemented and included in its 
latest release (in 2018). 

4.1.5. Python 
As with R, users of Python have a large assortment of options 

generally due to Python being a general-purpose language often used for 
interoperability across languages (see Table 4). The principal SA pack-
age developed in Python appears to be SALib (Sensitivity Analysis Li-
brary) which provides global sampling and analysis methods and is 
distributed under a free public license. Model runs can be invoked 
directly or separately ("offline"). SALib is most applicable to systems 
modeling and knowledge of Python is assumed. It is a freely available, 
open-source package, with a collaborative user community. SALib is 
well documented and well maintained: documentation includes an 
installation guide, basic usage guide, a complete module reference, and 
release notes; its latest release was 2018. SALib supports visualization of 
Morris results only, although this feature appears to be under- 
documented. A separate visualization tool is available for analysis of 
Sobol results called “savvy” (Hough et al., 2016), however this package 
was not examined in-depth. 

4.1.6. Java 
There appears to be limited SA packages implemented in Java, at 

least in the reviewed corpora. A response to this limitation is the MOUSE 
(Model Optimization, Uncertainty and SEnsitivity Analysis) package. 
This is an implementation of MCAT and OPTAS model calibration 
software for modelers using Java. It is indicative of the continued in-
fluence of the packages MCAT and OPTAS. Its first release was in 2014 
and was last updated in 2016. Although claiming to be free and open- 
source, we could not find relevant information to access the package. 

4.1.7. Julia 
MADS (Model Analysis & Decision Support) is an SA package 

available for the Julia programming language. The analyses it supports 
can be tightly- or loosely-coupled with an existing model. In the module 
documentation, extensive information is provided for all functions 
included in the main module ("Mads.jl"). The documentation details 
modules and examples and, although extensive, was found not to be 
user-friendly, with functions and methods often lacking meaningful 
descriptions. MADS is said to support use in High-Performance 
Computing (HPC) environments. It is a freely available open-source 
package with a collaborative user community. 

An inherent advantage of MADS is the relative youth of the Julia 
language, with v1.0 released in 2018. Due to its relative youth, it le-
verages lessons learnt in older programming languages and was devel-
oped with modern computational architecture in mind. This means that 
concurrent and parallel programs are relatively easy to develop in Julia 
(Bezanson et al., 2017) and it has had demonstrable success on HPC 
platforms (see for example Regier et al., 2019). The disadvantage of this 
youth, however, is that the user community – while growing quickly – is 
still relatively small compared to that of established languages. As such, 

the language ecosystem is undergoing continual development and may 
still be immature. 

4.2. Active use and development 

To gauge the level of support and active development occurring for 
each software tool, we attempted to identify websites, evidence of 
userbases, public code repositories, journal publications which specif-
ically mention the software tool, and other indications of activity. 
Through this process we found that many of the packages present in the 
literature are no longer under active development, although the code 
and software may still be available for use. 

A key issue in developing software for UA/SA is longevity. We find 
that those packages that are currently used and under active develop-
ment and maintenance have the advantages of being open source, well 
documented for transparency and ease of use, have an active user- 
community, and offer implementations of a range of UA/SA methods 
for general-purpose application as opposed to providing a specific 
method for a specific model. Packages that have fallen into disuse may 
still be useful with the caveat that there is no supportive community to 
rely on (for bug-fixes, troubleshooting, user-support, and so on). Table 3 
provides an overview of the available UA/SA methods in the surveyed 
packages, while details of the software can be found in Table 4. 

4.4. Bibliometric overview 

The initial corpora from WoS consisted of 11 718 publications from 
which journals deemed to be unrelated to the topic areas of interest (as 
specified by the search terms used), journals with less than three iden-
tified publications, and those without a valid DOI were removed. The 
final corpora consisted of 11 625 publications. Knowing that researchers 
build on prior work and given the exponential growth of published 
material (Bornmann and Mutz, 2015; Haddaway and Westgate, 2018), 
we assume in this analysis that the identified corpora is representative of 
the UA/SA field. Full details of this process can be found in Notebook 2 
“Create filtered corpora”. The number of publications in the environ-
mental UA/SA field have been increasing at an exponential rate 
(depicted in Fig. 5) with Journal of Hydrology having the most publi-
cations overall and experiencing the largest year-on-year gain within the 
analyzed time frame (Fig. 6). 

To facilitate analysis, the final corpora was broadly categorized into 
two topic sub-corpora – “Applications” and “Frameworks” – using the 
topic model. As a reminder, the final corpora represents a collection of 
UA/SA research. Publications focused on UA/SA frameworks and 
guidelines were placed into the “Frameworks” sub-corpora, while “Ap-
plications” included those taken to be focused on the application of UA/ 
SA methods. The topic model was iteratively applied and key phrases 
from top-cited papers were qualitatively examined to determine the 
focus of the publications. The specifics of the undertaken process can be 
seen in Notebook 4 "UASA topic modeling". 

A keyword search was applied within these topic corpora to sort 
publications further into those relevant to uncertainty quantification 
(UQ), UA, and SA. The resulting collections contained 1 940, 2 751, and 
1 360 publications, respectively. To distinguish between LSA and GSA 
methods, specific keywords were searched for in the combined corpora, 
including, for example, “local sensitivity”, “OAT”, “one-at-a-time” for 
local methods and “global sensitivity” and “GSA” to indicate global 
methods. In addition to these, newer SA methods identified through 
manual inspection of the corpora were also searched for, such as “active 
subspaces” and “variograms”. 

4.4.1. Trends and directions 
As suggested by the general publication trends (in Fig. 7), all topics 

(UA, SA, Frameworks, and Applications) saw large increases in the ab-
solute number of publications over the 2000–2017 timeframe. Within 
the same time period the proportional share of the filtered corpora has 
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declined for SA (by 4.5%), while UA has increased (by 5%), which may 
indicate a gradual shift towards being more inclusive of uncertainty 
related matters in analyses as well as a general need for uncertainty 
guidelines in environmental modeling (see Notebook 4 "UASA topic 
modelling"). 

The five most active journals in the Frameworks sub-corpora were 
Structural and Multidisciplinary Optimization, Journal of Computa-
tional Physics, Environmental Modeling & Software, and Journal of 
Hydrology (see Fig. 8). The 10 most cited papers from across these top 
five journals came from Environmental Modeling & Software (2), 
Structural and Multidisciplinary Optimization (3), Journal of Hydrology 
(2), Journal of Computational Physics (1), and Computer Methods in 
Applied Mechanics and Engineering (2), and are detailed in Table 5 
under Supplementary Material. 

The top-cited “framework” related papers from these journals 
(Table 7) showcase a range of issues but particularly address the lack of 
uniformity in the UA/SA approaches used in their respective fields. 
These fields include:  

� environmental modeling – evaluating performance (Bennett et al., 
2013), improving confidence in model outcomes, and handling un-
certainty (Bennett et al., 2013; Kuczera et al., 2006; Refsgaard et al., 
2007), UA for hydrological (SWAT) models (Yang et al., 2008),  
� optimization – topology optimization (Sigmund and Maute, 2013), 

Finite Element Methods (Blatman and Sudret, 2011; Moens and 
Vandepitte, 2005), level set methods for structural topology 

optimization (van Dijk et al., 2013), high-dimensional computa-
tionally expensive black-box problems (Shan and Wang, 2010), and  
� scientific computing - handling uncertainty (Roy and Oberkampf, 

2011). 

Outlines of procedures, guidelines, comparisons of methods, and 
suggestions for future research resolve the issues raised in these papers. 
These papers are highly-cited, indicating that they have had an impact 
on the research community, at least within their respective fields. It 
should be noted here that existence of highly cited papers itself does not 
indicate widespread application of suggested good or best practice and 
should not be taken as evidence. The review conducted by Saltelli et al. 
(2019) concludes that there is a “worrying lack of standards and good 
practices”, although it is acknowledged that the review focuses on older 
papers and may not capture recent trends. Certainly awareness appears 
to have increased, if not adoption of practices. 

Similarly, a keyword search for “best practices” identified 132 papers 
across the surveyed period. By “best practices” we refer to practices in 
modeling and uncertainty management that promote transparency and 
reliability of results. The high citation counts of papers relating to 
frameworks (Table 7) and the growth in best practices publications in 
absolute terms (Fig. 9) suggest increasing interest in uncertainty man-
agement, particularly improving the reliability and effectiveness of UA/ 
SA. Whether the modelers take up the suggestions in these papers is yet 
to be seen. Modelers can be encouraged to follow guidelines for reliable 
and effective treatment of UA/SA if the available software implementing 
UA/SA is designed in accordance with these guidelines (and if modelers 

Fig. 5. Publication trends over 2000 to 2017. Journal of Hydrology contributed the most publications in the time frame (474, see top panel). Publications within the 
field have been occurring at an exponential rate (bottom panel). 
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make use of such software). 

4.4.2. Recent developments 
Recent impactful publications in sensitivity analysis suggest a shift 

away from local sensitivity methods. Prior to 2010, ‘one-factor-at-a- 
time’ (OAT) local SA was the most prevalent practice in the literature 
(Saltelli and Annoni, 2010) with a later revisit indicating that while this 
was still the case for papers published in Science and Nature, GSA 
methods were gaining traction (Ferretti et al., 2016). A more recent 
bibliometric review conducted by Saltelli et al. (2019) comes to a similar 
conclusion across 19 subject areas in which modeling features heavily, 
although the growth of OAT-related publications is shown to signifi-
cantly out-pace GSA related publications. Within the presented corpora 
publications with OAT related keywords do decrease slightly over the 
past two decades (down roughly 1% compared to the entire corpora), 
with an uptick in the absolute number of publications post-2010 (see 

Fig. 10). 
Although OAT is said to be a common method (see for example Shin 

et al., 2013) it may not have featured heavily prior to 2010 due to 1) 
researchers not reporting OAT use, 2) modelers using custom imple-
mentations of OAT, and 3) the software surveyed in our analysis did not 
support OAT, which discourages modelers from using this method (i.e. 
they select from available methods). Analysis conducted here indicates 
an increase in reported GSA keywords post-2010 (Fig. 11) – after the 
publication of “How to avoid a perfunctory sensitivity analysis” (Saltelli 
and Annoni, 2010). This paper was identified as a highly cited publi-
cation in the initial corpora (Table 6 in the supplementary material), a 
key contribution being the demonstrated inefficacy of OAT analyses 
using a geometric proof. The uptick in publications with the OAT-related 
keywords appears to correlate with the number of papers citing the 
paper by Saltelli and Annoni (2010), shown in Fig. 12. This may 
contribute to the rise in publications with OAT related keywords in the 

Fig. 6. Publication trend by journal across the timeframe. All journals in the top 5 (by number of publications) saw an increase in publications related to the 
keywords used. 

Fig. 7. Publication trends of papers relating to application of UA/SA and frameworks (left) as well as those related to sensitivity analysis, and uncertainty analysis 
and quantification (right). While publications are increasing in absolute terms, relative to their respective corpora, works on uncertainty frameworks are increasing 
while SA related papers have decreased, indicating a shift in focus. 
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corpora and as identified by Saltelli et al. (2019). The detected increase 
in GSA papers may reflect the start of changing attitudes towards SA in 
recognition of the importance of global sensitivity analyses. Increased 
awareness in the past decade has led to the use and development of more 
efficient and comprehensive UA/SA techniques and approaches. 

Improved approaches put forth in the past decade attempt to 
enhance the computational efficiency of generating a global sensitivity 
measure (or range of measures as the case may be) from a single sample 
set, itself said to be more representative of the possible parameter space 
(e.g. Razavi et al., 2019). In particular there has been a renewed interest 
in GSA based on (statistical) design of experiment approaches, as these 
methods are capable of producing global sensitivity measures at an 

acceptable computational cost (Gan et al., 2014; Saltelli, 2017). Such 
approaches refer to methods that utilize a deterministic sample set, for 
example the aforementioned Sobol’, Latin Hypercube, and Morris 
methods (Saltelli, 2017). 

Despite the increased interest in GSA evidenced by the bibliometric 
analysis, local SA and OAT methods are still in widespread use, if any SA 
is conducted at all. Shin et al. (2013) for example, found that only 7% 
(11 of 164) of papers surveyed conducted any SA, of which five applied 
OAT. It is difficult to ascertain the full extent of OAT analysis through 
keyword analysis, as researchers applying this technique may not make 
explicit reference to this form of analysis. Possible reasons for the rela-
tively slow uptake of GSA methods are listed in Ferretti et al. (2016), 
including perceived complexity in the application of GSA. Modelers 
were characterized as being hesitant due to a lack of experience with 
GSA methods. We also find in the literature a prevalence of 
self-implemented UA/SA; that is, modelers using their own code in place 
of existing and often open-source software tools. Not using, or otherwise 
contributing to, readily available, widely used, and well-tested software 
represents a duplication of work. This can be somewhat alleviated by 
greater awareness of and access to the available software tools that 
simplify the application and use of such analyses. Those developing tools 
and methods, for their part, could strive to improve ease of use and 
lower the technical and conceptual barriers to uptake of their software. 

Pianosi et al. (2016) outline three principles of good practice for a 
sensitivity analysis package: 1) the ability to apply multiple sensitivity 
analyses to one sample, 2) provision of tools to assess and revise user 
choices, and 3) inclusion of visualization tools. Regarding point 1, early 
software releases tended to be platform, method, or model specific (see 
Table 4 for specific examples). In recent years the available software has 
been made for more general-purpose use, offering a more comprehen-
sive approach to UA/SA with multiple methods supported. The lack of 
collaborative development is also reportedly an issue, with researchers 
preferring to develop their own toolset and as a consequence siloing 
advances, at least in the short to medium term. Usability, especially for 

Fig. 8. The top five active journals publishing papers related to UA/SA frameworks. All journals have an increasing publication trend over the given timeframe.  

Fig. 9. Publication trend of papers with keywords relating to best practices. 
Notice the larger volume of publications in the years 2014–2017. 
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Fig. 10. Absolute and relative trends of publications with OAT keywords. Although publications increase in absolute terms, relative to the corpora yearly publi-
cations with OAT keywords decrease over the timeframe. 

Fig. 11. Absolute and relative trends of publications with GSA keywords. Publications with GSA keywords increase over the timeframe both in absolute and 
relative terms. 

Fig. 12. Papers citing Saltelli and Annoni (2010) appear to be driving the uptick in publications with OAT-related keywords post-2010, possibly as authors give their 
reason(s) for not relying on OAT. 
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novices, is an ongoing concern. While many sampling and analysis ap-
proaches are amenable to cross-use (e.g. a mix-and-match approach) 
there is often no limitation in the application of methods (within the 
packages) which safeguards a user against inappropriate and incom-
patible mixes, e.g. Sobol’ analysis on a Latin Hypercube sample. 

Efforts to address these issues and criticisms are evident in the 
various communities, however, with later packages often offering 
detailed documentation including usage examples and tutorials (see 
previous section). Well-known test functions, such as the Ishigami 
function (Ishigami and Homma, 1990), Sobol’ G-Function (Saltelli and 
Sobol, 1995), the example Lake Problem (Hadka et al., 2015) as well as 
case studies for research and educational purposes, are often included. 

PEST (Doherty, 2018), for example, provides a UA tutorial including 
two worked examples of hydrological models. Another example is SAFE 
(Pianosi et al., 2015), which, by providing commented code in workflow 
scripts, allows beginner users to implement UA/SA more easily and 
advanced users to improve their methodology. The packages in our 
survey did not appear to provide guidance through UA/SA theory 
outside of extensive reading lists, although it is acknowledged that this 
may be out of scope for those maintaining the tool. A lack of guidance as 
such may hinder uptake by practitioners of both the software and GSA in 
general. Generally, the available packages still operate on an under-
standing that users have appropriate background knowledge of or 
experience with UA/SA. Many of the packages identified in this review 
appear to have been abandoned: this perhaps indicates the importance 
of an active user community to share knowledge and update code. 

The corpora give evidence to newer methods that are in development 
and reflects a continued interest in improving UA/SA. Examples of more 
recently developed techniques are VARS and active subspaces (devel-
oped in 2016 and 2011 respectively). VARS (Variogram Analysis of 
Response Surfaces) uses variograms as a measure of sensitivity. A var-
iogram is a function describing the spatial dependence of, in the case of 
SA, the parameter space, that is, how much the variance in parameter 
values is dependent on the distance between parameters in parameter 
space. Variogram-related publications began in 2001,however, those 
specifically relating to the application of variograms to SA only appear 
from 2016. There are five publications relevant to variogram-based SA 
in the corpora, totaling 74 citations and the highest citation average is 
13 (Razavi and Gupta, 2016). 

The top-cited variogram paper (Razavi and Gupta, 2016) presents 
the method as a linkage between existing derivative- and variance-based 
GSA methods and demonstrates that the approach reduces computa-
tional cost. Over approximately 20 000 and 100 000 model runs, the 
VARS sensitivity estimates had less uncertainty than Sobol and Morris 
indices. These relatively new methods, though currently lacking cita-
tions, do appear to be methods with development potential due to, for 
example, current user interest and improvements to the efficiency and 
comprehensibility of UA/SA methods. 

Active subspaces is a dimension reduction technique that identifies 
directions in parameter space that have a greater influence on the model 
output. These directions are described as being "active" and their iden-
tification aids in reducing the dimensionality of a model by avoiding 
perturbations across inactive areas of parameter space, thereby reducing 
computational cost (Constantine et al., 2015). Through this method 
parameters of importance and their rankings can be obtained (Jefferson 
et al., 2015). Papers relating to active subspaces first appear in 2015, 
there are eight in total in the corpora. Citation analysis does not indicate 
particularly that this new method is being taken up quickly, total cita-
tions for all publications was 83, and the publication with the highest 
citation average had an average of 7.67 (Constantine et al., 2015). The 
top-cited active subspaces paper (Constantine et al., 2015) details an 
application of the method to numerical simulation, and an imple-
mentation may be found in the ‘Effective Quadratures’ package for Py-
thon (Seshadri and Parks, 2017) 

Another technique of interest is HDMR (High Dimensional Model 
Reduction): the companion paper (Ziehn and Tomlin, 2009) for the 

method and supporting software came through as a highly cited publi-
cation in this analysis (see Table 7). HDMR is an emulation method that 
improves variance-based SA methods, such as the Sobol’ method. Citing 
articles for Ziehn and Tomlin (2009) continue up to 2019 (identified 
through manual processes). In fact, 7 of the 32 returned publications in 
the corpora were published in 2017, indicating a continued interest in 
the method. In the corpora, the publication with the most citations has 
158 (Alış and Rabitz, 2001) and the highest citation average is 14 (Ziehn 
and Tomlin, 2009). 

Furthermore, alternative methods for handling uncertainty have 
been developed, especially to handle scenarios in which there is large 
uncertainty, but in which accurate predictions are necessary for future 
policy making. Software for these alternate methods is deemed out-of- 
scope for this study but for completeness sake, one such proposed 
approach is Exploratory Modeling and Analysis. Rather than simply 
minimizing uncertainty in an attempt to produce an accurate or precise 
prediction, uncertainty is treated as inevitable. Decision making pro-
cesses are guided through the exploration of possible outcomes gener-
ated through computational experiments and responses planned (Eker 
et al., 2018; Kwakkel and Pruyt, 2013). 

5. Limitations 

The bibliometric analysis presented here is limited by the scope of 
the WoS database, the specific search terms used, the initial time frame 
and the included fields of study (with the analysis focused on applica-
tions in environmental modeling). Search query results may also differ 
over time due to indexing artefacts with implications for the resulting 
trend and citation analysis. A bias towards open-source software liter-
ature may be perceived as these were the easiest to analyze. That said, it 
is not claimed that the analysis conducted herein uncovered all software 
packages currently in use or the full extent to which they are being used. 

A known issue is the lack of attributions, citations, and reporting of 
software used for research, making it difficult to find their mention, 
especially when the analysis relied on abstract text. Other software may 
not be referenced simply because their use is taken to be a fundamental 
part of the (programming) language ecosystem, for example, the R 
‘sensitivity’ package or ‘sci-kit learn’ (for Python). It was also difficult to 
search within the corpora for packages with names common to other 
applications (taking as a particularly difficult example, the R ‘sensitivity’ 
package). 

In our own process of sorting the generated database, decisions 
whilst manually sorting and choosing the software collection papers 
were subject to inherent bias – although this process was kept as 
transparent and objective as possible (see Notebook 5a “Finding soft-
ware packages by keyphrase extraction”). Another process which 
limited the generality of our findings was that of refining the search 
terms and results. Limiting the scope of the results was necessary to 
facilitate analysis of the most relevant publications. Iterative use of the 
topic model achieved this, however, it is entirely possible that relevant 

Fig. 13. Plot of the topic model filtering. Note the decrease in publications with 
each application, which aided in limiting the scope of results but also risked 
removing relevant publications. 
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publications will have been removed (Fig. 13). Of particular note is the 
possible under-representation of articles on emulators and surrogate 
modeling within the Software corpora. Omitted publications were 
assumed to be irrelevant or that relevant issues were captured by the 
papers that remained in the desired corpora. For more information, see 
Notebook 4 "UASA Topic modeling". 

6. Conclusion and future directions 

The analysis presented here indicates that UA considerations are 
increasingly included in the published literature with a slight decrease in 
the reported use of OAT methods. The identified literature reflects 
greater attention paid to guidelines for the use of UA/SA over the past 
decade, itself perhaps indicating advances in the application of UA/SA. 
Greater interest in the use of UA/SA for rigorous model testing is 
apparent, although whether modelers embrace and adopt the suggested 
guidelines towards the treatment, assessment and analysis of UA/SA (e. 
g. as discussed in Eker et al., 2018; Saltelli et al., 2019) remains to be 
seen. 

The literature also suggests that a wide variety of software has 
become available in the past two decades, aimed at both non- 
programmatic audiences and for specific programming languages. The 
majority of these identified software packages does not support local 
OAT analyses, which may indicate a general move away from depending 
on local SA. More recently developed software packages that implement 
multiple methods with open source code and documentation, with little 
restriction (in terms of software licencing) to the end-user, are becoming 
the prevalent distribution format. 

While there is a variety of software tools available, the trend of 
publications on UA/SA tooling has remained largely flat. This trend may 
be due to the relative infancy of the available tools, or a perceived 
complexity in their application. For one, while many of the surveyed 
software provide usage examples and documentation, their use typically 
assumes 1) experience with the underlying programming language, or 2) 
intimate familiarity with the methods provided, their pros and cons and 
contextual suitability. Little guidance is available, aside from extensive 
reading lists. 

The indicated lack of uptake in this analysis may also be because 
software-specific publications have been largely filtered out from the 
corpora. These relevant publications may be concentrated within con-
ference proceedings (which were removed from the corpora) or other 
topic areas not included in the initial publication search. Publications 
that are application/method focused may not explicitly mention the 
software used in the abstract. For these reasons it is difficult to 
concretely conclude whether those involved in environmental modeling 
are embracing the available UA/SA software tools or if custom “home- 
grown” solutions are preferred, itself indicating perhaps a lack of 
awareness of the available software packages. 

That said, usability and user-friendliness were found to be a general 
issue. Users are expected to be adept and experienced enough to produce 
and interpret results themselves. Even in cases where visualization 
processes are provided, users may require a different approach for their 
analyses. In the case of novices, interpreting provided analyses requires 
first understanding a body of work usually provided in the form of a 
(often large) reading list of relevant papers. This may explain, in part, a 
preference for custom “home-grown” solutions where the developers 
write tools specific to their needs to avoid “adoption cost”; time needed 
to learn how to use an existing tool effectively. The complexity of 
existing tools, real or perceived, may contribute to the issue of (lack of) 
uptake. In cases where the perceived cost of adoption is high, the pro-
spective user may find it easier to apply OAT or otherwise implement 
their own custom solution to perform common UA/SA methods, which 
amounts to duplication of effort across the scientific community. 

This then raises the question of what constitutes a ‘thorough’ UA/SA 
package. In this survey, the most comprehensive software (R sensitivity, 
Simlab, and SALib) provide users with the widest assortment of UA/SA 

methods with (limited) visualization capability and test functions. These 
target languages prevalent in the sciences (R, Matlab, and Python 
respectively) that are supported by an active community, which may 
explain their longevity and/or popularity. The prevalence of open- 
source, community-led efforts evident in more recent software tools 
suggests that an open development culture is a prerequisite to wide-
spread adoption – perhaps an unremarkable observation due to the 
scientific context and focus of UA/SA research. 

Developers and maintainers of UA/SA tools could support and 
encourage wider application of GSA processes by moving towards 1) an 
open development process, 2) placing further attention on expanding 
documentation, preferably in an easily digestible form, and 3) 
improving usage guidelines and promoting user-centric interfaces and 
workflows. 

Point 1 is to encourage the sharing of knowledge and experience 
across the disciplines that rely on modeling, to leverage expertise and 
experience globally rather than siloing advances. On point 2, UA/SA 
software developers could further leverage the open-collaboration 
model and (re-)use explanations and examples from one another. Ex-
amples of both simple and complex workflows could be given (e.g. in a 
“cookbook” or “recipe” documentation style). Point 3 should not be 
taken to mean that all packages should provide a GUI. Rather, general- 
purpose UA/SA tools should have processes in place to prevent or limit 
unintentional or ill-informed analyses from occurring. A particular pain 
point is the ability to mix-and-match sampling and analysis methods 
regardless of whether it makes sense to do so. 

While UA/SA tools have largely addressed the three steps defined by 
Pianosi et al. (2015) (sample parameter space, run model, analyze re-
sults), the workflow - that is implicit or explicit steps in the use and 
application of the software - could be improved so that modelers are able 
to move from each step without issue. Recently developed packages 
indicate that such improvements to the workflow are being made, with 
attention to usability, open-source code, and tools for analyzing results. 
Researchers and modelers, particularly those new to UA/SA, need 
software designed with usability in mind. It is expected that such soft-
ware will support UA/SA in more areas and encourage rigorous and 
reliable UA/SA, which will in turn allow for more informed 
decision-making. 

Software availability 

Code and representative data used for this analysis can be found at 
https://github.com/frog7/uasa-trends (10.5281/zenodo.3406946). 

Software used to support analysis can be found at https://github. 
com/ConnectedSystems/wosis (10.5281/zenodo.3406947). 

Declaration of competing interest 

The second author has contributed usability and performance im-
provements to the SALib Python library. All other authors declare no 
potential sources of conflict. 

Acknowledgements 

The corresponding author (second in the author list) is supported 
through an Australian Government Research Training Program (AGRTP) 
Scholarship, and a top-up scholarship from the Hilda-John Endowment 
Fund. 

The authors would like to thank and acknowledge Joseph Guillaume, 
Barbara Robson, and the anonymous reviewers for their highly valued 
comments and suggestions. The use of work by Titipat Achakulvisut 
(author of the ‘wos_parser’ Python package, https://github.com/ 
titipata/wos_parser) and Enrico Bacis (author of the ‘WoS Client’ 
package, https://github.com/enricobacis/wos) is acknowledged. We 
would also thank and acknowledge Clarivate Analytics for providing 
access and use of the Web of Science database, and to their staff for 

D. Douglas-Smith et al.                                                                                                                                                                                                                        

https://github.com/frog7/uasa-trends
https://github.com/ConnectedSystems/wosis
https://github.com/ConnectedSystems/wosis
https://github.com/titipata/wos_parser
https://github.com/titipata/wos_parser
https://github.com/enricobacis/wos


Environmental Modelling and Software 124 (2020) 104588

18

providing clarifications to technical details of the available API without 
which this work would not have been possible. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envsoft.2019.104588. 
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Chapter 3: Development of an integrated 
model for the Campaspe catchment 

In this chapter the approach undertaken to develop an integrated socio-environmental model 

and the surrounding context is outlined. The model described was applied to investigate 

management of water resources within the Lower Campaspe catchment, a predominantly 

agricultural area in North-Central Victoria, Australia. Climatic and policy factors are considered 

for their importance, along with other human drivers which also influence economic and 

ecological outcomes. Development of the model necessitated cooperation and collaboration with 

several disciplinary and subject matter experts spanning the natural and human systems. The 

model was thus developed as a component-based integrated model wherein each system 

represented as a component within the socio-environmental system-of-systems.  

This chapter provides much of the background and context for Chapter 4 and is published as 

a conference paper published after peer review by two anonymous reviewers in the Proceedings 

of the International Association of Hydrological Sciences (PIAHS), 8th International Water 

Resources Management Conference of ICWRS, Beijing, China. The publication is open access 

under Creative Commons licence CC-BY 4.0. 
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Abstract. Management of water resources requires understanding of the hydrology and hydrogeology, as well
as the policy and human drivers and their impacts. This understanding requires relevant inputs from a wide
range of disciplines, which will vary depending on the specific case study. One approach to gain understanding
of the impact of climate and society on water resources is through the use of an integrated modelling process
that engages stakeholders and experts in specifics of problem framing, co-design of the underpinning conceptual
model, and discussion of the ensuing results. In this study, we have developed such an integrated modelling
process for the Campaspe basin in northern Victoria, Australia. The numerical model built has a number of
components:

– Node/link based surface water hydrology module based on the IHACRES rainfall-streamflow model

– Distributed groundwater model for the lower catchment (MODFLOW)

– Farm decision optimisation module (to determine irrigation requirements)

– Policy module (setting conditions on availability of water based on existing rules)

– Ecology module (determining the impacts of available streamflow on platypus, fish and river red gum trees)

The integrated model is component based and has been developed in Python, with the MODFLOW and surface
water hydrology model run in external programs, controlled by the master program (in Python). The integrated
model has been calibrated using historical data, with the intention of exploring the impact of various scenarios
(future climate scenarios, different policy options, water management options) on the water resources. The sce-
narios were selected based on workshops with, and a social survey of, stakeholders in the basin regarding what
would be socially acceptable and physically plausible options for changes in management. An example of such
a change is the introduction of a managed aquifer recharge system to capture dam overflows, and store at least
a portion of this in the aquifer, thereby increasing the groundwater resource as well as reducing the impact of
existing pumping levels.

Published by Copernicus Publications on behalf of the International Association of Hydrological Sciences.
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1 Introduction

Effective, and holistic, water management is contingent on
understanding the stressors that affect water resources. Such
stressors may come from a variety of physical and social (an-
thropogenic) sources. In the field of water resource manage-
ment physical influences typically include the hydrology, ge-
ology, ecology/biology, and climatic processes. Social sys-
tems that influence and affect water management include
agricultural enterprises, water policies, and the social factors
that influence the acceptability of water use and management
practices. Due to the complexity and interconnected nature
of this system of systems, water resource managers and re-
searchers often turn to integrated models to assess potential
management actions within the specific context.

Managing such system of systems requires the consider-
ation of a wide range of factors across the interconnected
physical and social domains. Integrated Assessment (IA)
should not be conducted by individual disciplines in isola-
tion as the issues faced do not fall neatly into traditional aca-
demic disciplines. Each represented system may have differ-
ing problem frames which influence and affect each other
due to the interconnected nature of socio-enviro systems.
Therefore, the development of Integrated Assessment Mod-
els (IAM) should not be conducted by model developers
alone but in conjunction with experts and stakeholders so
that the specifics of the problem frame(s) are accounted for.
Collectively these problem frames make up a management
context, a term used here to refer to the physical properties,
the social elements and activities that have influence, and the
management scope and objectives of concern.

The lower Campaspe basin in the north-central region of
Victoria, Australia is an example of a highly interconnected
socio-enviro system. We describe herein an iterative inte-
grative process used to develop an Integrated Assessment
Model (IAM) suited for the specific management context.
Model development was continuously informed by stake-
holder and expert knowledge throughout the process from
initial conceptualization through to completion. As new in-
formation and knowledge became available and challenges
encountered, stakeholders and experts were re-engaged to
update the problem frames and model design; a beneficial
co-design process. Incorporation of feedback at each iterative
stage then helps to ensure that the model remains relevant for
its given purpose and to the stakeholders themselves.

The principal aim of the model is to inform stakeholders
of the impacts of a range of possible combinatory policy and
on-farm water management decisions under a variety of cli-
mate conditions. These collectively represent a set of pos-
sible “futures”. The model will be used in an exploratory
manner through which a multitude of such possible “futures”
are generated. The combination of factors that led to positive
(or at least effective compromises) and negative future condi-
tions can then be identified and communicated to stakehold-
ers through this exploratory process. Because the geophysi-

cal, geographical, and social elements are found in a range of
contexts, this iterative process is a generally applicable inte-
grative water management approach.

2 Management context

Defining the management context through systems analy-
sis with the aid of stakeholder knowledge is a crucial first
step in an integrated assessment process, and a key aspect
of Integrated Assessment Modelling (IAM, as in Jakeman
and Letcher, 2003). Kraft et al. (2010) argues the importance
of stakeholder involvement as incorporation of local domain
knowledge ensures that key features of the management con-
text are captured and subsequently represented in the model.
Stakeholders further represent an important source of local
knowledge which may in turn drive both information need
and data accessibility, as well as playing an important role in
validating model outputs (Krueger et al., 2012).

The involvement of stakeholders increases the trans-
parency of the development process as it is exposed for cri-
tique and review by stakeholders. Through this stakeholder
engagement process the scope and objectives of the model
can be iteratively developed and refined so that the final
model is suitable and relevant (and therefore useful) for the
end purpose and users (Jakeman and Letcher, 2003). The pro-
cess for gathering information and knowledge of the manage-
ment context and the subsequent influences and implications
on the model design and approach is described in later sec-
tions.

One motivation for this study was the adoption of the
Murray-Darling Basin Plan developed under the Australian
Government Water Act 2007. The Basin Plan defines envi-
ronmental objectives which includes increasing water avail-
ability for the environment. To this end the Basin Plan sets
Sustainable Diversion Limits, which will be applicable from
1 July 2019 for both ground and surface water (NCCMA,
2014a).

2.1 The Lower Campaspe

The Lower Campaspe catchment covers the northern por-
tion of the Campaspe catchment in North-Central Victoria,
an area that is approximately 150 km long and 25 km wide
(NCCMA, 2014b), and is itself a part of the Murray-Darling
Basin. The Campaspe River starts from the Great Divid-
ing Range in the south, flowing in a northerly direction into
Lake Eppalock from which the Lower Campaspe River be-
gins. The Lower Campaspe River then continues northwards
(downstream) into the Murray River which flows in a west-
erly direction. Population centres along the Lower Campaspe
River include (from south to north) Axedale, Barnadown, El-
more, Rochester, and Echuca. The Lower Campaspe River
itself is highly regulated by the operation of a dam at Lake
Eppalock, the Campaspe Weir and Siphon located north of
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Figure 1. Panel (a) depicts the Campaspe catchment in the Murray-Darling Basin (adapted from MDBA, 2017) while (b) shows the Cam-
paspe catchment proper with land use in the region.

Rochester (NCCMA, 2014b). A map indicating the catch-
ment location is shown in Fig. 1.

Climate

The lower Campaspe is reported to be a dry semi-arid area
which is evident in the historic rainfall records, with the me-
dian yearly rainfall being 434 mm (see Fig. 2). Two notable
dry periods are identifiable in the historic rainfall records for
the past 30 years which have influenced irrigators and wa-
ter management. The first is a severe drought that occurred
during 1982/1983 during which almost no rainfall occurred
during the growing season resulting in severe (wheat) crop
loss across eastern Australia (ABS, 1988; Arad and Evans,
1987; BoM, 2009). The second was the millennium drought,
described as the worst drought on record for southeast Aus-
tralia, defined as starting in 2001 with the drought eventually
broken in 2009 (Van Dijk et al., 2013).

Climate projections for Northern Victoria, of which the
Campaspe catchment is a part of, describe drier conditions
with rainfall expected to decrease compared to the historic
20-year average. Decreases in mean rainfall of 12–13 %
across south and east Australia compared to the 100-year av-
erage (1900–2000) have already been experienced within the
first decade of the new millennium (2001 to 2009, Van Dijk
et al., 2013).

Figure 2. Yearly rainfall in the Lower Campaspe study area. The
median amount was found to be 434 mm yr−1 (indicated by the
dashed black line).

2.2 Hydrology

The area of the Campaspe basin is 4179 km2, with a river
length of 220 km, and a mean annual streamflow volume of
352 GL. The elevation in the southern part of the basin is
around 600 m AHD (Australian Height Datum), with mean
annual rainfall up to 1000 mm, and estimated mean annual
pan evaporation of approximately 1300 mm. Near the catch-
ment outlet (elevation 98 m AHD), the mean annual rainfall
is approximately 430 mm, while the estimated mean annual
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pan evaporation is approximately 1700 mm. The main stor-
age in the basin is Lake Eppalock, which has a catchment
area of 2124 km2, a storage capacity of 304 GL, and is lo-
cated about 135 km from the catchment outlet at an elevation
of about 160 m AHD. A further 3 large storages are located
on the Coliban River (upstream of Lake Eppalock), with a to-
tal storage of 70 GL (BoM, 2017; GM-W, 2017a, b; MDBA,
2017).

2.3 Hydrogeology

The Campaspe region comprises the recent Coonambid-
gal Formation incised by the Campaspe River through the
Shepparton formation, Parilla/Loxton sands, Newer Volcanic
Basalts, with the primary productive aquifers of the re-
gion in the Calivil Formation and Renmark Group (collec-
tively known as the Deep Lead)which overlay the Palaeozoic
bedrock. The majority of the lower Campaspe consists of the
Shepparton formation and the Deep Lead. The Deep Lead
aquifers are the primary source of groundwater in the lower
Campaspe irrigation areas, in which the Shepparton Forma-
tion has low permeability and is not very transmissive. Fur-
ther details of the local hydrogeology may be found in Chiew
et al. (1995).

2.4 Stakeholders

The local water corporation, Goulburn-Murray Water (GM
Water), manages both surface and groundwater resources in
the Lower Campaspe. Management includes the operation
of the dam, water delivery infrastructure maintenance and
investment, and the water accounts and licences in the re-
gion. GM Water is additionally responsible for determining
the amount of water allocations – a percentage of water that
an irrigator is entitled to – during each irrigation season.

The Department of Economic Development, Jobs, Trans-
port and Resources (EcoDev) is a state level Government de-
partment that is interested in the water resource management
and policy aspects, as well as providing advice and assistance
to farmers regarding on-farm activities. The North Central
Catchment Authority (NCCMA) and an expert from the Aus-
tralian Platypus Conservancy were engaged for their input
and feedback on the ecological system. Farmers themselves
are an important stakeholder group to include as they will
be impacted by any policy and climatic changes as well as
being an important influencer of ecological and recreational
water availability. Recreational users of the reservoir at Lake
Eppalock were involved due to concerns that over-allocation
of water for agricultural purposes have, and will exacerbate,
negative impacts on recreational activities.

To gain further insights into the socio-agricultural system
Ticehurst and Curtis (2016, 2017) conducted a survey of irri-
gators during 2016. The survey gathered responses from 254
participants (of 754 surveys sent out) that were later deter-
mined to be representative of irrigators in the region. The

findings relevant to the model development process are re-
peated here, however readers are directed to Ticehurst and
Curtis (2016, 2017) for further detail on the survey process.

These stakeholder groups were all engaged with through a
series of workshops and discussions from late 2015 onwards.
The latest workshop was run in October 2017, and another
scheduled for March 2018. These stakeholder engagement
activities aided in the selection of scenarios which describe
plausible, and socially acceptable, options for changes in wa-
ter management. Examples of such scenarios include the in-
troduction of a managed aquifer recharge system to capture
dam overflows for storage in the aquifer for use in times of
water scarcity. Recharging the groundwater resource in this
manner increases the availability of groundwater as well as
reducing the impact of existing pumping levels.

3 Modelling process

The model development process followed a participatory
process in which multi-disciplinary practitioners engaged
with stakeholders. Through this process the model and its
purpose was collaboratively defined and developed. Stake-
holders play an additional important role in the develop-
ment of scenarios of interest and validating model scope and
behaviour (Krueger et al., 2012). Participatory engagement
elicited a key set of management objectives including holis-
tic management of water resources to improve crop yields,
reliability of water availability, and beneficial improvements
to environmental and socio-economic outcomes. Inclusion of
stakeholders in the design and development process addition-
ally fosters trust between stakeholders and modellers, and as
a consequence model results (Franzén et al., 2011).

Another perspective is that of a software developer, as
model implementations will largely be expressed in com-
puter code. It is perhaps of interest to note that both software
and model development best practices suggest an iterative
process and arrived at these processes seemingly indepen-
dently of each other. Sletholt et al. (2012) for example de-
tails and identifies software development practices that can
be found in the model development process that have direct
counterparts to software development practices.

A key point of interest is that iterative development is re-
garded as best practice in both model and software develop-
ment paradigms. From a model developers’ perspective con-
tinuous engagement with stakeholders has a hand in early
detection and correction of faulty assumptions (Jakeman et
al., 2006). Continuous exposure to the development process
and incorporating feedback can drive stakeholder acceptance
of the model by ensuring that the modelling process is trans-
parent and relevant (Chan et al., 2010; Voinov and Gaddis,
2008). Jakeman et al. (2006) suggest an iterative approach to
model development, where progress is reviewed at various
steps, and part of the process repeated if issues are found.
For software developers, iterative processes enable continu-
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Figure 3. The interactions between component models and key model outputs. The dashed box around surface and groundwater models was
inserted to simplify the model diagram and is not intended to indicate a separate coupled model.

ous validation of model implementation and the adjustments
necessary to incorporate stakeholder feedback (Sletholt et al.,
2012). To this end a component-based approach was applied
for the implementation of the model, and so the development
process could be described as applying a component-based
participatory approach.

Component-based approaches compose a collection of
compartmentalized models coupled loosely through a com-
mon framework. Loose coupling is achieved using specif-
ically defined interfaces which handle data exchange and
refers to the fact that the connections, and thus the feedbacks,
between models are no longer “hardwired” to specific mod-
els. Malard et al. (2017) refers to the use of interfaces as a
“wrapper approach” wherein the individual component mod-
els are “wrapped” and interactions channelled through the
interfaces. Benefits of such an approach include the ability to
reuse or “swap” a given component model for another (either
new or pre-existing) as the need arises (de Kok et al., 2015).
Changes within a model that do not affect the interface (i.e.
the inputs and outputs) are safely abstracted and as such do
not propagate and affect other component models. Incorpora-
tion of stakeholder feedback then becomes less problematic
due to this model compartmentalization allowing model de-
velopers to focus on the modelling process instead of issues
that may arise from direct coupling. Expected behaviour can
then be verified through testing and comparisons against pre-
vious model outputs. As a consequence modellers are then
able to progress through the iterative loops at a faster pace.

4 Model framing

To support these water reforms Federal and State Govern-
ments invested heavily in a modernization program in 2007

(State of Victoria, 2011), what is now known as the Connec-
tions Project and managed by GM Water. This infrastructure
investment was described as the largest investment in irriga-
tion infrastructure by the Australian Government (a total of
AUD 1.1 Billion as reported in Bowler, 2015). A primary aim
of the Connections Project was to improve the efficiency of
water delivery and on-farm water use to meet sustainable wa-
ter use goals as defined in the national Murray-Darling Basin
Plan introduced in 2012 (Bowler, 2015).

Conjunctive use of water resources were identified by
Ticehurst and Curtis (2017) as one method of improving wa-
ter availability in the catchment. Here conjunctive water use
was broadly defined as the multi-use of water sourced from
both surface and groundwater for agricultural, recreational,
and environmental purposes.

5 Model components

Each component represents a system of interest which col-
lectively describes a system of systems. The developed inte-
grated model represents a sociohydrological-environmental
system including a farm model, surface water representing
the lower Campaspe River and tributaries, groundwater hy-
drology, and a water management policy model. A climate
component is also included which serves to provide the nec-
essary rainfall and evapotranspiration data at the requisite
spatial and temporal scales. The component models are cou-
pled through a common framework developed in the Python
programming language. Component models are not required
to be developed in the same language as the framework as
Python has robust language interoperability capabilities. The
interactions between component models through their inter-
faces are depicted in Fig. 3.
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Figure 4. Growing season rainfall over the 1982–2015 growing
seasons. Median growing season (dashed black line) was found to
be 357.28 mm, below the usual growing season rainfall of 420 mm
(see Fig. 5 below).

In this section examples of the implications and influences
from stakeholder feedback on each of the component models
are given. The model continues to be developed in light of
findings described herein, and as such is not made publicly
available, although public release is intended. Additionally
the data comes from various sources and so possible issues
regarding intellectual property and data ownership will have
to be cleared before public availability is possible. Model de-
velopment utilizes version control which allows for the re-
lease of the model (in its current and future state) and requi-
site data at a later date.

5.1 Climate

Ticehurst and Curtis (2016) found that over 80 % of farm-
ers surveyed believed that the impact of drought and chang-
ing rainfall patterns were important or very important. This
finding in conjunction with the observed decrease in rainfall
(see Sect. 2.1.1) shows that it is necessary to consider the
impact of further climate variability. To this end (30 year)
historic and future climate data were sourced via Climate
Change in Australia (https://www.climatechangeinaustralia.
gov.au, CSIRO, 2017). These datasets are described as being
application ready. Long term (∼ 100 years) climate records
were developed through the use of interpolated historic rain-
fall and pan evapotranspiration data (see Vaze et al., 2011).
The recent decrease in rainfall is evident within a typical
growing season (defined as May to February). The median
in-season rainfall during 1982 to 2016 was found to be
357 mm (see Fig. 4), compared to the reported usual grow-
ing season rainfall of 400 to 500 mm (EcoDev, 2015) and as
indicated in the long term growing season rainfall records
(see Fig. 5).

Figure 5. Long term growing season rainfall. Median in-season
rainfall was found to be 420.45 mm (dashed black line).

5.2 Surface water

The surface water module estimates the flows and water lev-
els at selected nodes in the Campaspe Catchment. The nodes
have been selected based on the location of gauges with suit-
able data, taking into consideration the needs of the inte-
grated model (Fig. 6). As the focus of the integrated model
is the lower Campaspe Catchment (below Lake Eppalock),
the majority of the nodes are located in that region. To model
the surface water flows, this means having information on
releases and spills from Lake Eppalock, thereby requiring an
estimate of the inflows to the reservoir. The resulting nodes
are shown in Fig. 7. The surface water flows also depend on
interaction with the groundwater, requiring a comparison of
surface water levels with groundwater levels. This means that
the surface water module needs to estimate the surface wa-
ter levels at the nodes, and that this information is passed to
the groundwater model in order to estimate the infiltration
loss/baseflow contribution to surface water flow.

The surface water module has three components: a
rainfall-streamflow model, a routing module and a rating
curve module. Inputs required by the model are climate data
(rainfall and potential evaporation), as well as estimates of
the groundwater/surface water interactions (from the ground-
water module), releases from Lake Eppalock reservoir (from
the policy and the farm modules) and extractions from the
surface water flows (from the farm model).

The rainfall-streamflow model used here is a variant of
the IHACRES model, incorporating a non-linear loss mod-
ule which converts rainfall into effective rainfall (rainfall that
contributes to streamflow), and a unit hydrograph module
that represents the dynamics of the water moving through the
catchment (river network and landscape). The non-linear loss
module used is based on the CMD version of the non-linear
module (Croke and Jakeman, 2004), modified to produce two
inputs to the unit hydrograph module (Croke et al., 2015): a
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Figure 6. Flow gauges in the lower Campaspe.

contribution to the quick flow component (uk) and a con-
tribution to the slow flow component (rk). This permits the
model to partition effective rainfall between the two compo-
nents based on the modelled catchment moisture status. The
unit hydrograph module comprises two exponentially decay-
ing stores arranged in parallel (a quick and a slow flow com-
ponent), modified from the original to take the inputs to each
store directly from the CMD module outputs.

An exponentially decaying store is also used to route the
flows between nodes (a lag-route approach, Croke et al.,
2006). In both the routing and the rainfall-streamflow mod-
els, the impact of losses from the river network are taken into
consideration using the approach of Ivkovic et al. (2014). The
rating module makes use of the rating curve data available at
most gauge sites (the exception is gauge 406218, where only
water level data is available).

5.3 Groundwater

The groundwater flow module is used to estimate the surface
water-groundwater exchanges along the Campaspe River
between flow gauges, and to provide information on the
groundwater levels at specific locations as well as groundwa-
ter levels averaged over larger areas. The groundwater flow

module interacts with the hydrology, farm, ecology and pol-
icy modules as detailed in Fig. 7.

The first stakeholder engagement workshop and subse-
quent communication with stakeholders (in particular, a lo-
cal hydrogeologist) led to the definition of the groundwater
model boundary, delineation of the hydrogeological units and
provision of input data for groundwater pumping as well as
observational head and chemistry data. Defining the model
boundaries through this engagement ensured that the area
covered as well as representation of hydrogeological units
was consistent with their interpretation of the system and
met the requirements for areas of interest. Furthermore the
boundary conditions used came out of this initial consulta-
tion, in particular the consideration of the Campaspe River
and smaller inflowing tributaries, the latter of which are not
represented in the groundwater model due to their ephemeral
nature and low flows.

The groundwater flow model of the Lower Campaspe Val-
ley region is a finite difference representation. The model was
constructed with Python scripts utilising Flopy (Bakker et
al., 2016), and uses MODFLOW NWT (Niswonger et al.,
2011). Representation of the hydrogeologic units (HGUs)
is based on rasters (100 m resolution) from the Victorian
Aquifer Framework (DSE, 2012). The model is made up of
7 layers, with a horizontal resolution of 1 km, and vertical
spacing of the model grid informed by the HGU rasters. The
5 km resolution was chosen for computational speed to avoid
the groundwater model becoming a computational bottleneck
for the integrated model. Some HGUs span multiple layers
where they are not overlain by other HGUs. There are 41 209
active cells within the model.

The groundwater model is driven by rainfall, river stage,
groundwater extraction via pumping wells and groundwater
head data via a series of boundary conditions shown in Fig. 7.
Recharge in the model is implemented in the top layer of
the model with the RCH package, and is calculated as a re-
duction of rainfall using a rainfall reduction parameter, and
as such evapotranspiration is not directly modelled. River
boundary conditions are implemented using the RIV pack-
age for the Campaspe River and Murray River. To allow out-
flow below the Murray River, through the subsurface in the
north of the catchment, a general head boundary condition is
implemented with the GHB package.

The model was calibrated using PEST (Doherty, 2016) to
groundwater head data by modifying the HGU properties
(i.e. hydraulic conductivity, specific yield and specific stor-
age) and also a rainfall reduction parameter, applied statically
from the period 1966–2015 and based on monthly stress pe-
riods. Initial conditions for the model were established by
running the model in steady-state using long-term average
rainfall and river stages.

As depicted in Fig. 7, the groundwater model is forced by:
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Figure 7. Groundwater model components and model area as well as points and interactions with other component models from the per-
spective of the groundwater model.

– Distributed rainfall (to be reduced through the rainfall
reduction parameter) and irrigation water from the Farm
model;

– Pumping volume from the Farm model (uniformly ap-
plied across pumps in the area);

– River stages from the Hydrology model

– After running each daily time-step, the model returns
the:

– Surface water-groundwater exchange along reaches of
the river consistent with the Hydrology model

– the average depth to groundwater for the Farm model

– depth to groundwater at key sites dictated by the Ecol-
ogy model

– groundwater head at trigger level bores as dictated by
the Policy model

Increases and decreases to pumping driven by the Farm
model were applied to relevant wells within each farm zone.
Surface water-groundwater responses lag behind the surface
water forcing from the Hydrology model due to the use of
a sequential coupling; it was assumed that a daily lag would
not create significant differences in model behaviour. Out-
puts from the groundwater model, while not precise at the
scale of local wells due to model resolution, were fit for pur-
pose for indicative average groundwater levels at points of
interest. In the case of the Ecology model, this is subject to
the most variability as the levels are near-stream where the
depth to groundwater table can change rapidly as it converges
to the river. For the Policy model the trigger bores are chosen

to be indicative of larger scale behaviour and hence the use
of the average head in cells that correspond with the trigger
bores is deemed adequate.

5.4 Policy

The current policy setting in the Campaspe is quite sophis-
ticated reflecting extensive water reforms which introduced
water trading, carryover, and environmental water provisions
(Alston and Whittenbury, 2011; McKay, 2005; Wheeler and
Cheeseman, 2013). The policy component of the integrated
model provides a representation of policies determining the
water allocation and carryover for entitlement holders (farm
and environment). Use of these policies as a scenario sup-
ports further investigation of the implications and viability,
as well as the opportunities, of the given policy condition(s)
in the context of climate variability. The design of the pol-
icy component was such that it would allow scenarios that
fit with current policies (e.g. increased groundwater use) but
also the capability to explore alternate policy futures (e.g.
conjunctive management of surface and groundwater, Man-
aged Aquifer Recharge, and inter-catchment transfers). The
latter include some of the conjunctive use opportunities ex-
plicitly identified with Campaspe stakeholders. For example,
groundwater and surface water are managed separately in the
current policy space. One option identified with Campaspe
stakeholders was the temporary relaxation of groundwater
restriction trigger levels during dry times when surface wa-
ter allocations are low, with compensatory actions to increase
recharge when climate conditions improve.

Within the current policy setting, groundwater use can
be increased as most irrigators surveyed in the region are
primarily reliant on surface water resources. Reported fig-
ures include 91 % of irrigators holding surface water licences
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compared to 22 % that additionally hold groundwater li-
cences. Groundwater use historically reach a maximum of
60 % of allocated volumes, although this has increased to
80 % in recent times (2016 water usage, reported in Ticehurst
and Curtis, 2017).

5.5 Farming

The farm component was developed with the aim of enabling
investigation into the effect of water policy and water avail-
ability on farm financial performance under variable climate
scenarios. Key attributes that are represented include the crop
– currently one of wheat, barley or canola and tomato – irri-
gation system, pumping systems and soil types. The farming
system is represented in a lumped manner with the study area
divided into 12 zones configured to represent a mix of appli-
cable surface and groundwater policy, water entitlements and
usual cropping practices.

The principal agricultural enterprise in the Lower Cam-
paspe is dairy farming with 55 % of land use devoted to
annual and perennial pastures, 70 % (i.e. 38.5 % of re-
ported farming area) of which is irrigated. Cereal cropping
amounted to 35.8 % of land use, although the majority of this
(68 %, i.e. ∼ 24 % of reported farming area) is dryland. Dairy
farming is to be represented in the model through the use of
an indicator crop to represent annual and perennial pasture
crops and discussions with local experts are ongoing to de-
termine how best to implement this.

Historically, the Campaspe region was an irrigation inten-
sive area however most irrigators (90 %, concentrated in the
middle of the study area) stopped irrigation practices in 2010
(NVIRP, 2010). This exit occurred during the millennium
drought period (2001–2009) during which irrigators’ water
allocations were significantly reduced (NCCMA, 2014a). Ir-
rigation is currently concentrated in the lower portion of the
catchment the northern area surrounding Echuca, with dry-
land cropping in the mid and upper areas. A return to ir-
rigation practices in the future remains a possibility due to
the network of accessible irrigation infrastructure modern-
ized under the Connections Project.

In the North Central region flood irrigation is the most
common irrigation system in use accounting for 99 % of irri-
gated area (Ash, 2006). Flood irrigation is said to be 50–80 %
water use efficient, meaning that 50–20 % of water applied to
the field is lost (Clemmens, 2000; Finger and Morris, 2005;
Tennakoon et al., 2013). Of those surveyed 77 % of respon-
dents reported having undertaken additional improvements
to flood irrigation such as laser grading and tail-water reuse,
increasing the water use efficiency. Flood irrigation was then
modelled as being 70 % water use efficiency based on this
information. Other improvements can be achieved through
the adoption of a piped system or investing in spray irriga-
tion which is said to be 80 % water use efficient (Clemmens,
2000; Finger and Morris, 2005).

Outside of the survey, further information was gained
through stakeholder engagement. It was highlighted, for ex-
ample, that the choice to invest in a more water efficient irri-
gation system depends on the soil type. As such, generating
a suitable representation of the soil textures in the modelled
farming zones becomes a necessity and acts as a constraint
to the choice of irrigation system adopted at each zone. It
was also initially assumed that the vast majority of pump-
ing systems in the area were diesel based rather than electric
due to the substantial capital costs involved in developing
the necessary infrastructure to operate electric pumps. This
assumption was also corrected with local knowledge – elec-
tric pumping is in reality quite common and is used over the
weekends due to off-peak electricity prices. The model will
be modified to incorporate this elicited information.

5.6 Ecology

Management decisions that affect the lower Campaspe
ecosystems flow on to the Murray River as the Campaspe
flows into the Murray. The local ecology has historically
been neglected due to over allocation of water resources for
agricultural purposes. Decline in riverine health have been
reported over the years including substantial decreases in
biodiversity (MDBA, 2012; NCCMA, 2014b). The Murray-
Darling Basin Plan includes provisions for increased envi-
ronmental flows to support ecosystem maintenance and re-
covery (Bowler, 2015; GM-W, 2013; Hughes et al., 2015),
and to meet these obligations up to 75 GL of water savings
through infrastructure improvements through the GM Water
Connections Project (formerly NVIRP) were intended for en-
vironmental purposes (NVIRP, 2011).

The local ecology along the Lower Campaspe River in-
clude communities of River Red Gum, a eucalyptus tree that
is considered iconic (NCCMA, 2014b), platypus colonies,
and two native fish populations: the Murray Cod and Golden
Perch. Conceptualization and design of the model incorpo-
rated feedback from ecology experts from the NCCMA and
the Australian Platypus Conservancy. Stakeholder feedback
in combination with prior ecological studies and data avail-
ability resulted in the development of methods to generate in-
dices that indicate the suitability of water flow for these flora
and fauna. These consist of three indices for the River Red
Gum which represent the suitability of groundwater avail-
ability and surface water flows for the maintenance and re-
generation of the iconic tree. The fish indices capture key
flow requirements as recommended in the Campaspe River
Environmental Water Management Plan (NCCMA, 2014a).
Indices developed for platypi indicate flow conditions that
sustain food supply and movement, breeding cycles, and the
avoidance of burrow flooding during the mating season.
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6 Conclusion

Both model and software development best practices rec-
ommend working within an iterative cycle that moves the
project towards a continually (re)defined goal, informed by
stakeholders. Including stakeholders in the iterative develop-
ment of integrated models was found to be useful in ensur-
ing model validity, relevance, transparency and acceptabil-
ity. Participatory engagement acts as a peer review process
within each iteration of the model development cycle whilst
also fostering trust between all participants, modellers and
stakeholders alike.

Component-based development processes were found to
be complementary to the participatory modelling approach.
Throughout each iteration the implementation of the de-
scribed component models were influenced by stakeholder
knowledge and information. The compartmentalization of
models that collectively represent a system of systems disen-
tangles their implementation allowing specific and targeted
modifications based on stakeholder feedback. Such changes
then do not propagate throughout the model as a whole, al-
lowing modellers to progress through each iteration quicker
whilst simultaneously ensuring that the model development
process is transparent.

Data availability. Climate time series data presented here is avail-
able from the Australian Bureau of Meteorology http://www.bom.
gov.au/.
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Chapter 4: A socio-environmental model to 
explore sustainable water management 

futures 

In this chapter the application of a component-based integrated environmental model for the 

purpose of exploring possible water management futures is presented. The integrated model is 

applied to identify potential pathways to improved farm profitability, recreational, groundwater 

and ecological outcomes relative to modelled baselines. In particular, the influence of conjunctive 

use and management of water resources is investigated. Results indicate that improved farm level 

knowledge and management regarding crop water requirements, soil water capacity, and 

irrigation are the most significant factors towards achieving outcomes that are robust to a range 

of future conditions. Conjunctive use is shown to further improve the likelihood of achieving 

robust outcomes. 

Exploratory scenario modelling (ESM) was leveraged for the model purpose, results from 

which additionally serve to communicate the level of uncertainty. The model can be considered 

a system-of-systems model as it is made up of multiple independent and interacting constituent 

models to form a unique whole with its own (emergent) behaviour. The model and the results are 

intended to raise awareness and facilitate discussion with and amongst stakeholders. 

This chapter was published in the Journal of Hydrology: Regional Studies after reviews 

conducted by two anonymous reviewers. The publication is open-access under the Creative 

Commons CC-BY-4.0 licence. The authors acknowledge the use of funding from the Fenner 

School Publication Fund to make this possible. 
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A R T I C L E I N F O

Keywords:
Integrated modelling
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Exploratory modelling
Scenario discovery
Conjunctive water use

A B S T R A C T

Study region: Lower Campaspe, North Central Victoria, Australia
Study focus: This paper presents a component-based integrated environmental model developed
through participatory processes to explore sustainable water management options. Possible fu-
tures with improved farm profitability and ecological outcomes relative to modelled baselines
were identified through exploratory modelling. The integrated model and the results produced
are intended to raise awareness and facilitate discussion with and amongst stakeholders.
New hydrological insights: The modelling illustrates that improved farm level knowledge and
management with regard to crop water requirements, soil water capacity, and irrigations are the
most significant factors towards achieving outcomes that are robust to a range of climate and
water policy futures. Assuming farmer management with regard to these factors are at their most
optimal, increasing irrigation efficiency alone did not lead to improved farm profitability and
ecological outcomes under drier climate conditions. Likelihood of achieving robust outcomes
were further improved through the conjunctive use of surface and groundwater, with increased
consideration of groundwater use a key factor. Further discussion on the viability and impact of
increased groundwater use and conjunctive use policies should be further considered.

1. Introduction: Sustainable water management and aims of the integrated modelling

Management of water resources takes place within the context of a complex socio-environmental system. Sustainable manage-
ment of water resources requires the needs of several agricultural, environmental, and social domains to be balanced with explicit
consideration of a multitude of interacting factors. Here, “sustainable” refers to water usage that is both beneficial and robust -
featuring improved farm profitability and environmental outcomes and maintaining these under changing, possibly adverse, climatic
conditions within hypothetical policy contexts (revisited in Section 4).

Holistic modelling of this socio-environmental system then requires an integrated approach due to the number of system domains
under consideration, the level of interactions that can occur at different (spatial and temporal) scales, and the uncertainty that comes
with it (Letcher et al., 2007; Schlüter et al., 2019). A well-considered integrated approach can reduce the risk of unintentionally
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disregarding crucial aspects of the management context and the flow-on effects without which the conclusions reached may be
compromised (Kelly et al., 2013). To this end Integrated Environmental Models (IEMs) are often constructed to aid in informing
management and policy decisions (Elsawah et al., 2020a; Janssen et al., 2010; Voinov and Shugart, 2013).

Stakeholder engagement is an important step in integrated modelling, particularly in developing socio-economic scenarios that
are acceptable and relevant to stakeholders. Such participatory approaches within water resource modelling processes are now
considered best practice in facilitating stakeholder buy-in, credibility of the modelling and integration of local knowledge and
information into the model (Kelly et al., 2013; Megdal et al., 2017; Refsgaard et al., 2007). To holistically develop the model, an
approach such as the one described in Badham et al. (2019) can be used to elicit stakeholder knowledge to aid in defining the
problem frame and key issues.

The Murray-Darling Basin Plan (introduced in 2012) increases the amount of water allocated for environmental purposes by
decreasing the volume for consumptive use (Bowler, 2015; North Central CMA, 2014). The intention of the Plan is to rectify the
observed long-term degradation of environmental health of river systems within the Murray-Darling Basin generally. To this end,
beneficial future scenarios would improve, or at least maintain, current levels of water availability for agricultural, environmental,
and recreational purposes in the face of uncertain future climate conditions.

The primary aims of the study presented within this paper were to identify these future pathways (“scenarios”) to improved
environmental and socio-economic outcomes under a variety of climate conditions for the Lower Campaspe catchment in North
Central Victoria (Australia). On-farm practices and water allocation policies were modelled and an exploratory modelling approach
(Haasnoot et al., 2013) adopted to identify these possible robust outcomes. Such scenario discovery approaches have been utilised
previously to identify viable adaptation strategies with indication of trade-offs between scenarios (Kwakkel et al., 2016).

The variety of data and knowledge sources, number of systems involved and the interactions and feedbacks between them
required to represent such a system made the use of an integrated model a natural fit. An IEM was developed for the study, which we
refer to as the CIM (Campaspe Integrated Model). The CIM includes representations of relevant systems across the socio-environ-
mental spectrum and their interactions. These include policy, farm, surface and groundwater hydrology, ecology, and recreational
values. Climate factors are represented by rainfall and evapotranspiration data, which drive the modelled system. The CIM is used to
explore the mix of considered farm and policy level options that are robust in the long-term, in terms of successfully achieving
desirable improvements from a baseline across climate scenarios. In this paper we detail the model components developed, discuss
the integration process, and finally present the model results and their implications. The specifics of the management context and
modelling process are reported in Iwanaga et al. (2018), however relevant elements will be repeated herein for context.

2. Lower Campaspe study area

The Lower Campaspe study area is a semi-arid region situated in the North-Central region of Victoria, Australia and is named for
its primary river (the Campaspe), which flows northwards, joining the Murray River. The primary water source for the Lower
Campaspe is the dam at Lake Eppalock, which divides the Campaspe into its Lower and Upper sub-catchments. The dam is operated
by Goulburn-Murray Water (GM Water) subject to local and federally mandated policies such as the aforementioned Murray-Darling
Basin Plan. Under current policies the environment is regarded as a water user with its own water entitlements (North Central CMA,
2014). Aside from managing dam operations and other responsibilities GM Water is the local irrigation authority, determining water
allocations (for both agricultural and environmental users) and managing licencing for water use and access.

The Campaspe catchment is a mixed-farming area with a focus on dairy farming, with 55 % of its land use devoted to annual and
perennial pastures. Cereal cropping amounts to 36 % of reported agricultural land area. Fig. 1 displays a map of the Lower Campaspe
in context of the North Central region and the Murray-Darling Basin. Historically the Campaspe region was an irrigation intensive
area, but a decade-long drought – the Millennium Drought – reduced water availability such that 90 % of irrigators elected to cease
irrigation practices in 2010 (North Central CMA, 2014; NVIRP, 2010). Approximately 38 % of the Lower Campaspe is under dryland
farming (Ticehurst and Curtis, 2016) with the north of the catchment focused on cropping activities (depicted in Fig. 1).

Water resources have been described as historically over-allocated for agricultural purposes, and the possibility of a drier climate
in the future (van Dijk et al., 2013v) implies balancing available water resources between competing needs and interests is expected
to become increasingly difficult. Ecological health of the Campaspe river system has been in decline over the past decades as water
was historically prioritised for agricultural purposes. This has had the effect of substantially decreasing local biodiversity (MDBA,
2012; North Central CMA, 2014). Communities of the iconic River Red Gum eucalypts, platypus colonies, and populations of native
fish (such as the Murray Cod and Golden Perch) exist along the Lower Campaspe system.

Recent water reforms have included provisions for increased environmental flows to support recovery and maintenance of
ecosystem health (GHD, 2015; GM-W, 2013; Hughes et al., 2015). Water to support environmental flows include 75 G L reallocated
from agriculture as well as estimated water savings due to infrastructure improvements conducted through the Goulburn Murray
Connections project (NVIRP, 2011). Recreational use of the dam is an additional area of concern, with viability of recreational
activities (e.g. boating and yachting) suffering as the water levels at Lake Eppalock fall. There has been public outcry in this regard, as
evidenced by local media reports (ABC News, 2015; Wines, 2015).

Decisions made in managing the lower Campaspe River affect river systems downstream, the Campaspe being a tributary of the
Murray. Therefore, beneficial ecological outcomes within the Campaspe are likely to support ecological recovery elsewhere down-
stream. The CIM was designed and developed to inform management and decision-making processes within this context through an
exploratory process.
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3. Integrated model development

To explore possible futures in the Campaspe, changes to on-farm practices and water allocation policies were modelled and the
subsequent effects on farmer income, streamflow conditions for platypus colonies, native fish and river red gums (trees), and re-
creational use of the dam were analysed. Specifically, these scenarios represent the conjunctive management of both surface and
groundwater (Pulido-Velazquez et al., 2011), encouragement of further use of groundwater resources in general, and further im-
provements to irrigation (water application) efficiency (Ticehurst and Curtis, 2017, 2016). The CIM comprises models to represent
climate sequences, policy rules, agricultural activities, surface and groundwater hydrology, and indicators of ecological and re-
creational suitability. Individual model domains deal with their own unique issues and conceptualise the system, and their inter-
actions with other models, in separate ways. This is most obvious in the represented spatial and temporal scales. In building the CIM,
compromises were necessary in order to suit the purpose of the modelling and in the face of inter-linked requirements and available
resources. For this reason, further detailed framing of each model domain and, where relevant, model inputs and indicators of interest
are described in the sub-sections below.

3.1. Stakeholders and engagement process

As noted in the introduction, engagement with local stakeholders was particularly important to both the development and va-
lidation of the CIM. Relevant stakeholders were identified through sectoral interests and relevance (e.g. farmers will be interested in
policies that affect farming), as well as a snowball sampling approach where known experts where recruited to suggest other experts
of interest relevant to the study. Stakeholders involved both prior to and during the modelling process included local farmers, GM
Water, and representatives from government departments and non-profit organisations. These represent actors within the system that

Fig. 1. Map of the Lower Campaspe catchment (left panel) in relation to the Murray-Darling Basin (top right) and the North Central Region of
Victoria (bottom right). The Lower Campaspe constitutes the area north of Lake Eppalock, which is the primary reservoir for the study area. The
Campaspe River flows south to north, into the Murray River.
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use the water, managers of the water, and those with specialised knowledge of the system, including farm management and irrigation
specialists, ecologists, geo-hydrologists and catchment managers to name a few.

A stakeholder group of representatives from GM Water, the local Catchment Management Authority (North Central CMA) and a
relevant state government department (at the time, the Department of Economic Development, Jobs, Transport and Resources)
attended workshops to identify potential opportunities for conjunctive use in the region. Farmers were engaged through interviews
and surveys prior to model development, details of which can be found in Ticehurst and Curtis (2017, 2016). This engagement
identified the current and future intention to adopt various management options including the use of groundwater, various irrigation
practices, and the technical feasibility and social acceptability of the range of conjunctive use opportunities identified in previous
workshops. GM Water also provided irrigator data and aided in defining the spatial scope and boundaries of the study with respect to
the represented groundwater catchment and management zones. The stakeholder group also took part in later workshops and served
to provide information and knowledge which corrected earlier assumptions and provided further feasibility assessment of on-farm
scenarios. Issues and concerns surrounding ecological aspects were elicited through engagement with ecologists from the Australian
Platypus Conservancy and the North Central CMA. Further details may be found in Iwanaga et al. (2018).

3.2. Technical implementation

A requirement of the integrated model development was to be flexible in the face of changing and evolving understanding of the
system due to the amount and spread of knowledge being engaged with through the participatory engagement process that was
described in the previous section. To facilitate this an iterative component-based approach was adopted in the development of the
CIM. Construction of the CIM involved the use of a mix of programming languages including Fortran and Python (and its compiled
cousin Cython), incorporation of pre-existing models, and the development of a purpose-built (software) framework through which
each component model was coupled.

Interfaces (commonly referred to as wrappers) were developed for the purpose of invoking component model runs and thus
provide the necessary linkage between the framework and the component models. Fig. 2 depicts the inter-relationship between the
component models. Inter-model communication (i.e. data exchange) occurs with the framework acting as an intermediary. Con-
version of data, such as between types or units of measurement, occurs where necessary and is specifically coded. While not adhering
to all aspects, the structure of the interfaces is similar to those specified by the Basic Modeling Interface (Peckham et al., 2013) in that
each interface provides a method to invoke a run of the component model for a given time step. This design pattern was selected for
its flexibility, simplicity and ease of implementation. Component models are run as a serial process with one model run after the
other, with feedback occurring across (daily) time steps. Further details on the choice of modelled spatial and temporal scale is given
in later sub-sections for each system component.

Fig. 2. Component diagram indicating the interactions between model components in the Campaspe Integrated Model (CIM) and the key outputs
relevant to the modelled Lower Campaspe system.
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Currently, the model takes approximately 30 min. to run for a single scenario on a desktop computer with a Core i5-7500 CPU.
The groundwater model based on MODFLOW-NWT is run as an external program and is currently the primary bottleneck limiting
further increases to runtime efficiency. Although MODFLOW itself is written in Fortran – considered to be a “fast” language –
numerical solution of groundwater models is time consuming and the MODFLOW software itself uses several input files which must
be written out for each time step and the results read back in. Overheads due to the constant file operations takes a large proportion of
the runtime. As much as 43 % of the CIM runtime can be attributed to the groundwater model. MODFLOW’s position as an industry
standard was the primary reason for its use.

The exploratory approach conducted for the study involved many runs and so the CIM was designed to run multiple scenarios in
parallel in order to overcome computational runtime issues. Model runs are invoked via the command-line and is compatible with
both Linux and Windows systems. No graphical user interface was developed for the study as use by non-technical “end-users” was
not planned and is not expected.

3.3. Climate and scenarios

Changes in rainfall and temperature influence water availability and their trends can impact the volume of irrigation water
necessary to achieve optimum crop growth and yield throughout a growing season. The importance of considering climatic influences
in managing farm processes is reflected in the survey conducted by Ticehurst and Curtis (2016). Over 80 % of respondents ranked
change in rainfall patterns and the impact of drought as “important” or “very important”.

Comparing long term (100 year) average growing season rainfall against more recent trends highlights the impact of the
Millennium Drought (1996–2010). A growing season refers to the time span in which crops are usually sown and harvested, defined
here as May to February. Average long-term growing season rainfall between 1892–2013 amounted to ∼420 mm in line with the
reported usual growing season rainfall of 400–500 mm (EcoDev, 2015). Growing season rainfall from 1982 to 2016 however shows a
decrease of 67 mm to ∼353 mm (see Fig. 3). The trend of decreased rainfall during crop growth may continue with agricultural water
management becoming increasingly challenging.

To investigate the impacts of a changing climate, historic and future climate data were sourced from the Climate Change in
Australia data service (https://www.climatechangeinaustralia.gov.au; CSIRO, 2017). The provided datasets consist of daily rainfall
and evapotranspiration in 5 km grid format for a 30-year period. The future climate data provided were developed through a process
of scaling historic observations (described in Mitchell, 2003) and thus exhibit similar rainfall trends to historic observations. Pearson
correlations between climate scenarios are depicted in Fig. 4 with a minimum correlation value of 0.88 and 0.99 for rainfall and
evaporation data respectively. Future climate datasets are based on the historic timeframe from 1981 to 2011, and thus cover the
Millennium Drought period. Therefore, each climate scenario includes a representation of a multi-year drought at differing levels of
severity. For the purpose of calibration and analysis, the historic climate dataset was extended to 2016 in order to capture the post-
drought recovery. The set of climate scenarios covers RCP4.5 and 8.5 for 2016–2045, 2036–2065 obtained from multiple climate
models, “best case”, “worst case” are wettest and driest across models, whilst “maximum consensus” represents conditions somewhat
comparable to historic experience.

To determine the range of conditions that the climate sequences represent, the aridity index (AI ) developed by the UN

Fig. 3. Comparisons of growing season rainfall over the long-term (100+ years, left panel) and a shorter (30+ year) period (right panel). Dashed
black line indicates median values which were found to be 420 mm over the long term which reduced to 353 mm in the recent past (1982–2015
growing seasons) indicating the effect of the Millennium Drought. Long term data were developed through interpolated historic rainfall data (see
Vaze et al., 2011).
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Environment Programme (UNEP) was used to compare the climate scenarios. The index is calculated as P PET/ , where P is the annual
average rainfall and PET is the annual average potential evapotranspiration (Gamo et al., 2013). An AI value of 0.2 to 0.5 indicates a
semi-arid climate condition (Sahin, 2012), and the AI value for the historic climate dataset falls within these bounds with a value of
0.34, as is expected for this semi-arid location.

Of the procured climate datasets, the driest conditions are represented by the notation “worst_case_rcp45_2016-2045″ ( =AI 0.26).
The “best_case_rcp45_2016-2045″ scenario was most comparable to historic aridity ( =AI 0.34), while “best_case_rcp45_2036–2065”
was the least arid ( =AI 0.35). The indicated climate scenarios are taken to represent the extremes of future climate variability (i.e.
the most and least arid conditions) and one that is most similar to historically observed conditions. For this reason, modelling with
the other climate scenarios were not conducted in-depth. Interpolation between the extremes would likely provide indicative in-
termediary results. These climate scenarios are referred to as “wet”, “usual”, and “dry” for brevity from here on and were used to
drive the CIM in order to investigate the impact of such changing climate conditions.

3.4. Policy model

Significant reforms to the water policy in the Campaspe introduced water trading, user carryover (specified below), and en-
vironmental water provisions (Alston and Whittenbury, 2011; McKay, 2005; Wheeler and Cheeseman, 2013). As part of these reforms
the environment is regarded as a water user with water entitlements and yearly water allocations similar to any other entity with a
water licence. The policy model provides representations of policies that determine water allocation and carryover.

Access and use of water resources are governed by a licencing system in which a licence held by a water user specifies a given
volume of water called an entitlement. Separate licences are issued for surface and groundwater. Access to the full entitlement is not
guaranteed and is subject to water availability. An allocation is announced by GM Water each irrigation season indicating the
percentage of the entitlement an irrigator can use – i.e. 100 % allocation is equal to the full entitlement volume. Carryover here refers
to the amount of unused water allocation which licence holders (irrigators and the environment) are able to add to the following
year’s allocation.

Current carryover rules indicate that irrigators are able to carry over 95 % of unused surface water, with 5 % deducted to account
for evaporation loss (DSE, 2012a, 2012b), and 25 % of unused groundwater (Goulburn-Murray Water, 2015). While irrigators can
decide not to carryover (DSE, 2012b), it is assumed in the model that carryover always occurs. As indicated in Fig. 2, the policy model
dictates availability of water for agricultural and environmental purposes and is itself influenced by climate conditions, dam and
groundwater levels.

3.4.1. Surface water policy
Surface water allocations in the Lower Campaspe are calculated based on the available volume of water in the dam as well as

projected inflows. GM Water holds rights to 82 % of the dam volume as well as 82 % of projected inflows and the sum of these is used

Fig. 4. Pearson correlation matrix between future climate scenarios and historic observations.
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to calculate the total allocation for the Lower Campaspe catchment. The allocation is announced on 1 July and is re-calculated
throughout the irrigation season. As such, a water user’s allocation may increase over the course of the growing season if larger-than-
expected rainfall and inflows occur, and so the volume of allocations will not decrease retrospectively. Dam operation requirements
as dictated by local policy and legislative rules, including environmental watering and minimum flow rules, are also factored into the
allocation calculations. The model represents this process on a two-week basis (rather than 6-weekly as happens in reality) to allow
for better interoperation with the farm model.

A complication in the surface water policy model is the fact that irrigators in the Lower Campaspe hold additional licences for
water from the neighbouring Goulburn catchment (east of the Campaspe). Rather than model another catchment in its entirety, linear
relationships at three different levels were developed between the Campaspe and Goulburn allocations. Details on this relationship
may be found in Appendix C. These are referred to as “high”, “median” or “low” and represent the level of allocation volume
available from the Goulburn catchment for a modelled future scenario. The separate allocation scenarios allow the model to account
for conditions which influence availability of water from the Goulburn including variability between the two catchments. These
different conditions may be due to climate variability, water demand, and policies that affect Goulburn allocations which in turn may
affect the indicators of interest for the Lower Campaspe. Associated costs were assumed to be identical to that of GM Water. Water
entitlements for individual farm zones (detailed in Section 3.5 below) are shown in Table 1 and were calculated by proportionally
distributing the entitlement based on the Water System area under which the given zone falls under.

3.4.2. Groundwater policy
Groundwater allocations are restricted by policy rules surrounding what are referred to as “trigger levels”. These indicate the

groundwater level at which allocations are reduced to a specified percentage or, at its lowest level, no allocation at all. Groundwater
use is progressively restricted in this manner as the water table decreases in order to prevent salinity intrusion. Allocations are
determined based on the recorded groundwater level at two reference bores with the IDs 62589 in the south and 79324 in the north
Goulburn-Murray Water, 2015) and are detailed in Table 2 (under “Current Modelled Allocation”).

Table 1
Campaspe entitlements in ML for each farm zone used in the modelling (see Fig. 6). Entitlements for a given water system were proportionally
distributed based on zonal area.

Zone ID High Reliability Entitlement
(ML)

Low Reliability Entitlement
(ML)

Goulburn High Reliability Entitlement
(ML)

Water System Name

1 0 0 0 –
2 12050.87 4008.06 0 Campaspe River (Eppalock to

Weir)
3 0 0 0 –
4 5703.12 1896.83 0 Campaspe River (Eppalock to

Weir)
5 0 0 0 –
6 1086.30 353.10 0 Campaspe River (Weir to WWC)
7 674.90 383.80 215.10 Campaspe Irrigation Area
8 46.71 7.68 39249.62 Rochester Irrigation Area
9 707.05 0 0 Campaspe River (WWC to Murray)
10 96.68 15.91 81223.37 Rochester Irrigation Area
11 224.44 0 0 Campaspe River (WWC to Murray)
12 0 0 0 –

Table 2
Groundwater allocation rule sets (current and hypothetical). Reduced allowable allocations under surface water allocations> 60 % or 80 % de-
pending on scenario then saves water for use in dry (drought) periods. Groundwater head at reference bores influence allocations for separate Zones.

Proposed Trigger Rules

Farm Zone(s) Reference bore Depth from natural
surface (m)

Water level
(mAHD)

Current Modelled
Allocation

Non-drought
Allocation*

Drought Allocation

3 – 12 79324 0 – 16 82.1 – 97.1 100 % 80 % or 100 % 100 %
16 – 19 79.1 – 82.1 75 % 65 % 100 %
19 – 22 76.1 – 79.1 50 % 35 % 100 %
22 – 25 73.1 – 76.1 40 % 25 % 40 %
< 22 < 73.1 0 % 0 % 0 %

1 and 2 62589 0 – 16 115.8 – 131.8 100 % 80 % or 100 % 100 %
16 – 18 113.8 – 115.8 75 % 65 % 100 %
18 – 20 111.8 – 113.8 50 % 35 % 100 %
< 18 < 111.8 0 % 0 % 0 %

* non-drought is defined as>60 % or> 80 % surface water allocation as a scenario option.
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In the current policy context surface and groundwater are managed separately, however stakeholders have explicitly suggested a
move towards a conjunctive management approach. A possible change in the policy space includes the relaxation of trigger levels
during dry periods (thereby enabling irrigators to use more groundwater) followed by compensatory actions to increase recharge
during wet periods. Hypothetical trigger rules for conjunctive use were developed for the model. These rules define two sets of trigger
levels (referred to as the “drought” and “non-drought” rulesets) and management is switched between these depending on the surface
water allocation. “Drought” trigger rules come into effect after consecutive years of surface water allocations below 60 % or 80 %.
Depending on scenario, this may be after 1 or 3 years after which irrigators are able to use their full groundwater entitlement for all
but the lowest trigger level. These are detailed in Table 2 and referred to collectively as the “proposed trigger rules”.

Farmers surveyed in the area have indicated that such increased use of groundwater is technically feasible. Most irrigators are
reliant on surface water resources, with 91 % of those surveyed holding surface water licences compared to 22 % who additionally
hold groundwater licences (Ticehurst and Curtis, 2017). Groundwater use historically has reached a maximum of 60 % of allocated
volumes, although this has increased to 80 % in recent times (2016 water usage as reported in Ticehurst and Curtis, 2017). Recalling
that 25 % of unused water can be carried over, the current view is that irrigators are reserving water for drier times accepting a trade-
off between enhanced yields in wet years in return for water security in dry conditions. Hence the farming community could be
described as managing water resources in a conjunctive manner, albeit informally.

The CIM includes a scaling factor (60–100%) to adjust the amount of allocated groundwater considered for use by the farm model
to reflect this informal management approach. Note that setting the scaling factor to 100 % only makes all groundwater available, it
does not enforce its use. Limiting allocation to 60 % then reflects a return to historic behaviour in which farmers intentionally reserve
water to enhance future water security.

Water usage and its impact is indicated with percentage increase or decrease in water use (both ground and surface water)
compared to the baseline scenario, and the long-term decline (or improvement as the case may be) in terms of depth to groundwater
across the farm zones. In addition, two quantities of interest relate to groundwater: average groundwater allocation (“GW Allocation
Index”) and the relative depth to groundwater (head), normalised by the lowest trigger level at each reference bore and averaged over
the time series (“GW Level Change”). Average allocations indicate reductions in access to groundwater, whereas the change in
relative depth provides an indication of how sustainable groundwater use is under the given condition. Negative changes to the GW
Level Change imply increased reliance on groundwater and/or reduced groundwater recharge. Notable model inputs are given in
Table 3.

3.5. Farm model

The farm model represents the agricultural system by dividing the catchment into 12 Zones based on their water entitlements,
policy rules governing water allocations, and land use (depicted in Fig. 6), corresponding to the Management Zones in use by GM
Water (see Goulburn-Murray Water, 2015). Key attributes of a modelled farm include the costs and capital returns of crop sown,
nature and cost of irrigation and pumping systems, and the soil water holding properties of the soils found within the Zone. The
model focusses on cropping enterprises; water use for dairying is not considered here. Cropping is modelled as a three year rotation of
wheat, barley and canola. Further details on the model formulation are provided in Appendix B.

Irrigation systems considered in the model include gravity, pipe and riser, and spray. These represent the cheapest and least water
efficient to the most expensive and efficient option available to farmers. Gravity is regarded as the dominant form of irrigation in the
Lower Campaspe, although it is known through stakeholder feedback that there is increasing adoption of spray irrigation in the area.
Parameters representing soil water capacity were raised by stakeholders as particularly important as they determine what irrigation
system is suitable and influence frequency of irrigation events. Farms with sandier soils see a greater benefit from a switch to more
efficient irrigation systems as such soils have a lower water retention capacity. While farmers cannot change the soil type, it is
possible to improve soil health such that water retention is enhanced through best management practices (Bruyn, 2019). Table 4 lists
the considered irrigation options for each farm zone based on the weighted zonal average soil water capacity. For the presented
study, only Zones 4 and 9 were modelled as being suitable for spray irrigation.

Farmer decisions are modelled through linear programming at the start of and during a growing season. The available area is
allocated to dryland cropping and irrigation with surface and groundwater by optimising profit calculated with assumed per hectare
revenues and costs, constrained by water availability. The model then optimises for profitable water usage for each subsequent (two-

Table 3
Policy model inputs of interest and their description.

Factor Name Description

restriction Groundwater allocation ruleset (“current” or “proposed”) used for the scenario run.
drought_trigger Surface water allocation threshold for switching to the proposed allocation ruleset under conjunctive use scenarios (see

restriction factor above), defined as a percentage of entitlements. Either 60% or 80%.
max_drought_years The number of years surface water allocations must be below drought_trigger before switching allocation ruleset. Either 1 or 3.
goulburn_allocation_scenario Assumed allocation relationship between Campaspe and Goulburn (“high”, “median”, or “low”). Informs allocation volume

from the Goulburn catchment.
gw_cap Scaling factor limiting the volume of groundwater allocation the farm model considers. Set to 100 %, but can vary between

60–100%.
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week) time step for each farm zone until the pre-determined harvest date. Again, further details of the model formulation are given in
Appendix B.

The assumption of this approach is that a series of short-term decisions that are financially sound will result in a profitable
outcome. The two-week time step was also necessary to facilitate representation of cross-domain interactions as agricultural irri-
gation/pumping activities influence stream and groundwater systems. All events (irrigation, planting/sowing, harvest) are assumed
to take place within two week periods.

In terms of interactions with other component models, the farm model is influenced by the water allocation determined by the
policy model, and subsequently influences the surface and groundwater models through irrigation water extraction (pumping and
irrigation activities). Further interaction with the policy model is included due to local policies allowing carryover in which a portion
of unused water is made available to irrigators in the following year.

From the perspective of the farm model, three categories of factors can be identified: uncontrollable, limited control, and direct
control. Uncontrollable factors are those that cannot be influenced in any direct manner such as climate condition, water allocations,
or crop water requirements. Limited control factors are those which a farmer may influence to some degree, such as how much water
a soil type can hold, by applying soil management practices. Direct control factors are those that a farmer can influence directly, such
as the irrigation system in use, their efficiencies (through irrigation design and monitoring), and so on.

Groundwater cap (`gw_cap`) is a model input of note, and acts to force the model to limit available water for consideration by the
farm model. As noted above in the groundwater policy section (Section 3.4.2), only 60 % of allocated groundwater has been used by
irrigators in the past. The considered parameter range was 60–100%, where 60 % represents past behaviour and 100 % reflects
consideration of all available groundwater for use without regard to future water security. The cap can be applied in combination
with the conjunctive management scenario detailed in Section 3.4 above.

Three key indicators were used to represent farm performance: 1) the average seasonal farm profit for the scenario, 2) the average
seasonal water use in ML, and 3) the coefficient of variation ( µ/ ) for farm income taken as a measure of fluctuations in yearly income
(i.e. a volatility index). Larger values for the volatility index indicate scenarios in which farm income undergoes large variations from
year to year. Irrigation area (relative to catchment area) and water use are also included.

3.6. Surface water model

The surface water system is represented by a purpose-built variant of the IHACRES rainfall-runoff model (Croke and Jakeman,
2004) written in Fortran and interfaced with a Python wrapper. The component model comprises a rainfall-streamflow model, a
routing module and a rating curve module. The component is driven by rainfall and potential evapotranspiration (climate data),
estimated groundwater and surface water interactions (from the groundwater component), dam releases (as given by the policy and
farm components) and water extractions from the stream (farm component). As water orders are lumped due to the farm model
operating on a two-week time step, the volume extracted is disaggregated uniformly across the 14 days as a daily average.

Effective rainfall i.e. rainfall that contributes to streamflow is calculated from rainfall via a non-linear loss module from Croke and
Jakeman (2004), modified to partition effective rainfall between quick and slow flows based on modelled catchment moisture status
(Croke et al., 2015). Movement of water through the river network is represented by two parallel exponentially decaying stores
representing quick and slow flow contributions. A further exponentially decaying store is used to route the flows between nodes
(Croke et al. 2006). Modelled flows are converted to stage heights by the rating curve module using data available at most gauge sites.
The single exception is gauge 406218 where available data were limited to water level. Losses from the river network to groundwater
are considered via interactions with the groundwater component, similar to the approach in Ivkovic et al. (2014).

Dam level, streamflow and level were important quantities to represent as these influence water allocations, ecological health,

Table 4
Irrigation options considered for each farm zone. All zones can also consider switching to dryland farming. Zones 1, 3, 5 and 12 are modelled
with no water entitlements and are assumed to be dryland only. Assumed efficiency ratings for each are given in brackets (see details in
Appendix B). See Zone definitions in Fig. 6.

Irrigation Option

Zone Gravity (50–90 %) Pipe and Riser (70–90 %) Spray (80–90 %)

1 –
2 ✓ ✓
3 –
4 ✓ ✓ ✓
5 –
6 ✓ ✓
7 ✓ ✓
8 ✓ ✓
9 ✓ ✓ ✓
10 ✓ ✓
11 ✓ ✓
12 –
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and recreational use of the dam (described in later sections). Stream flow and level are estimated at specific nodes (show in Fig. 7)
which were selected based on the location of gauges with suitable data, taking into consideration the needs of the integrated model
(see Fig. 2). These values are passed to the groundwater model in order to estimate infiltration loss and baseflow contribution to
surface flow.

Calibrating the model against historic observations proved difficult due to variation of parameter values estimated depending on
climate sequence, and so a decision was made to divide the climate sequence into six time periods and calibrate parameter values for
each separately using the Differential Evolution algorithm (Storn and Price, 1997). A good fit with historic dam levels was achieved
with this approach (with a NSE value of 0.96, depicted in Fig. 8). Calibrated values were then used for the corresponding time periods
for all climate scenarios. Each set of parameters have a limited scope of applicability, but their use for the segmented time periods is
arguably justified for the modelling purpose as similar patterns can be associated with the provided climate scenarios (as previously
described in Section 3.3). Time periods defined for calibration purposes are detailed in Appendix D.

3.7. Groundwater model

The groundwater component serves two roles in the CIM. The first is to provide estimations of the exchanges between surface
water and groundwater along the Lower Campaspe River at specific gauge locations. The second is to provide estimations of the
groundwater levels for each farm zone and at specific bore locations, which influence allocations of groundwater and pumping costs
and is a factor in the ecological indicator metric (see Section 3.8). Interactions at a daily time step with the surface water, farm,
ecology, and policy components are included in this manner, and are forced by rainfall, irrigation, pumping, and river stages (de-
picted in Fig. 9).

Stakeholders provided knowledge and data with respect to pumping, observational groundwater head, and chemistry, which
informed the groundwater model boundaries ensuring that the necessary spatial area is captured in the model. The groundwater
model represents the Lower Campaspe at a 5 km grid resolution with 7 layers comprising 1386 active cells, spacing of which was
informed by hydrogeologic unit rasters from the Victorian Aquifer Framework DSE, 2012c). The relatively large grid resolution was
selected as 1) it aligns with the provided climate data, and 2) for computational reasons, as higher resolutions required prohibitively
longer run times.

MODFLOW-NWT (Niswonger et al., 2011) was used to construct the groundwater component and is interfaced with via the Flopy
package (Bakker et al., 2016). MODFLOW was selected due to its open-source and well-documented nature, which complements our
iterative development, and because the modelling platform is regarded as an industry standard. Modelled groundwater extraction is
distributed across known wells within each farm zone. Response to input from the streamflow lags the surface water model as
component models are run sequentially. It is assumed that the daily lag will not have a significant impact on model behaviour.
Recharge is derived by multiplying the sum of rainfall and irrigation by a rainfall reduction parameter between 0 (no recharge) and 1
(no diversion) with values being in the range of 0.001 – 0.43. These rainfall reduction values were derived from a map of recharge
ranges for recharge zones defined by rainfall, land use and soil type (detailed in Xie et al., 2019).

Outputs from the groundwater model, while not precise at the scale of local wells due to model resolution, were fit for purpose for
indicative average groundwater levels in areas of interest. In the case of the ecology model, the requisite groundwater heads obtained
from the groundwater model would be subject to the largest variance due to the proximity to the Campaspe River and variability of
heads within a groundwater model cell. For the policy model the trigger bores are chosen to be indicative of larger scale behaviour,
and hence the use of the average head in cells that correspond with the trigger bores is deemed appropriate.

Effectiveness of policies in maintaining groundwater levels above the lowest trigger level is indicated by two metrics. The first
indicator is a weighted score based on the percent irrigation season allocation across the scenario period (GW Allocation Index)
where a score of 1.0 indicates that water users were given 100 % of their entitlements every year, and values close to zero indicate
consistently low water table such that pumping is disallowed. The second indicator (GW Level Change) is the averaged normalised
change in groundwater level between the start and the end of the model period relative to the lowest trigger level. Negative values
then indicate that the lowest trigger level was breached. These two indicators are referred to in the results as the “GW Allocation
Index” and “GW Level Change” (see Section 4 for further detail).

Poor performance of the groundwater model in the integrated context compared to historic observations can be expected due to
the integrated model structure and design. For one, both the policy and farm models were developed to represent a more recent socio-
hydrological context (i.e. post 2010) as required by the purpose of the modelling. This temporal mismatch has the effect of reducing
the overall volume of groundwater extraction and recharge compared to historic occurrences. As noted in Section 2, 90 % of the
irrigators had stopped irrigation practices leading to the closure of the Campaspe Irrigation District and so the farm model represents
this current level of irrigation activity. The policy model includes reforms introduced to allow carryover of unused water to the next
irrigation season as well as environmental water provisions which has an influence on the level of groundwater extractions. Con-
temporary accounts estimate 35,000 ML of water was used for irrigation within the Campaspe Irrigation District, including ap-
proximately 3000 ML extracted from the aquifers (Chiew et al., 1992).

We also note reported difficulties in representing the groundwater system of the Campaspe region in earlier studies. It has been
previously noted that the Campaspe region is a difficult region to model (Beverly and Hocking, 2014; Goode and Barnett, 2008). One
confounding factor is the long history of system regulation and incomplete data with respect to groundwater extraction and usage at a
fine(r) scale. Another reason is the local topography and landscape. Towards the south, large elevation changes can be seen which are
not captured by the 5 km grid resolution. Due to the coarse resolution in use for the purpose of the model, there are significant
differences in elevation between model cells (> 20 m). These model conditions preclude the use of the groundwater model for
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accurate forecasting. The purpose here, however, is in representing futures (expanded on further in Section 4). Thus, the focus in
model development was on representing hypothetical groundwater level response to farmer behaviour and the water policies in
place. These are discussed in Sections 4 and 5.

3.8. Ecology and recreation indicator models

The models developed to represent ecological and recreational aspects of the Lower Campaspe system produce indicator values
reflecting the suitability of stream and groundwater flow for key ecological purposes and dam water levels for recreational purposes.
Ecological indicators represent the suitability of flow conditions for breeding, feeding, nesting, and dispersal of platypus (4 indices)
and native fish (2 indices), as well as maintenance and regeneration of the iconic River Red Gum trees (2 indices). Suitability
thresholds were based on the North Central CMA Environmental Water Management Plan (North Central CMA, 2014) in conjunction
with feedback from ecologists from the Australian Platypus Conservancy and the North Central CMA (as detailed in Iwanaga et al.,
2018). It was suggested by stakeholders (local representatives from the government department, EcoDev) to lump ecological in-
dicators into a single metric to ease interpretability of results.

The recreation indicator is based on a linear relationship between dam water level and perceived recreational suitability elicited
through interviews with stakeholders from GM Water, caravan park managers and other recreational users. All indicator models
produce index values which range between 0 (being unsuitable) and 1 (most preferable). Although ecology and recreation are
separate and distinct systems they are lumped together here as the recreation index model constitutes a small aspect of the modelling
presented here. Details specific to each ecological and recreational component are provided in Appendix E, with further detail
available in Fu (2017).

3.9. Conceptual integrated testing

An issue in the development of CIM was the lack of data to validate coupled model behaviour – known as integration testing in
software engineering parlance. One example is the lack of farm-level crop yield data (partly due to privacy concerns). Data that were
available describe average yield from both irrigated and dryland cropping on a “per farm average” basis for the entire North-Central
region of the state of Victoria, an area of approximately 47,000 km2 compared to 2600 km2 for the Lower Campaspe. Additionally,
the temporal scale of available data is relatively short, with records starting from 1990 to the early 2000s.

Under such circumstances model testing and validation chiefly involved high-level conceptual checks selected to indicate un-
acceptable model behaviour. Data to develop a strict quantitative metric was not generally available across the range of component
model contexts, and so the adopted approach was to contextualise performance against relevant criteria to provide an indication of
model acceptability.

For example, while financial data at the individual farm level were not available, regional economic production data are available
for the Campaspe (via Australian Department of Agriculture, 2019). Performance of the farm modelling was considered unacceptable
if calculated crop profits exceed or comprised an unjustifiably high proportion of the agricultural output of the Campaspe catchment.
Modelled crop profits under historic climate conditions amounted to 20.54 % of the Campaspe agricultural activity ($13.81 M of
$67.26 M), which stands to reason given that the Campaspe region is principally a dairy farming community. Long-term average
values were also used as a qualitative measure of acceptability, wherein long-term behaviour of the model was in line with historic
observations (example given in Fig. 10).

It must be noted here that such an approach is subject to available expert knowledge. Tests at this conceptual level may be the
only kind of integration tests applicable given the available resources, data and domain knowledge, and the purpose of the model. For
this reason, the scope of testing must be carefully targeted and in line with available resources.

4. Methods for the scenario modelling

Exploratory scenario modelling was used to identify conditions which led to beneficial outcomes. The term “scenario” here refers
to the specific set of model inputs used for a model run, which in turn leads to a specific spatial and temporal evolution of system
variables and final outcomes. From the perspective of farmers and policy managers, these scenarios represent a possible farm and
policy context. The scenarios are run through the model and those with beneficial outcomes are subsequently identified. Thus, the
model is used in an exploratory manner rather than to obtain precise prediction of events.

Only factors pertaining to the farm and policy models are considered in the scenario modelling. Calibration was not conducted for
the integrated model in its entirety. Instead component models were calibrated individually against relevant historic observations of
crop yields, dam level, and observed groundwater head and feedback obtained from stakeholders in cases where quantitative data
were not available (e.g. for the recreational indicator). The approach is justified as the data used for calibration encompass a wide
range of conditions and the trends (rather than absolute values) of the climate scenarios are similar to observed historical data, as
explained earlier in Section 3.3. The ecology model takes no inputs other than the modelled streamflow and groundwater level. The
total number of model inputs that are directly considered in the CIM comes to 266 of which 212 factors are regarded as constants.
This still leaves 54 parameters that can vary between scenarios and are largely inputs for the farm models for the different zones.

Covariance analysis was carried out to determine the number of scenarios to run. It is desirable for the input values not to be
correlated across the sampled scenarios as this could induce artificial correlation within the results for those scenarios, i.e. the
covariance value should be as close to zero as possible. A threshold of 0.02 for off-diagonal values was selected as a compromise
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between parameter independence and model evaluation time (see Appendix F). Latin hypercube sampling – a stratified Monte Carlo
sampling approach – was used to generate each scenario. In total, 5625 model evaluations were performed, consisting of 1875
scenario samples for each selected climate scenario.

Apart from the 5625 scenarios above, the model was initially run using “best guess” (default) values for each model parameter for
all climate scenarios. These are referred to as the “baseline” results. Indicator scores from these then establish a baseline against
which further comparisons can be made and represent the “business as usual” case in which the status quo is maintained in terms of
farm management and policy under changing climate conditions. Further scenarios are then run allowing parameter values to vary to
explore the possible outcomes under a range of conditions. Baseline results are compared against modelled historic outcomes while
results from exploratory modelling are presented as comparisons to their respective baseline scenario.

Comparing results to a baseline allows like-for-like comparisons. It is assumed that change in a beneficial direction (see Table 6) is
always desired and a scenario which exhibits improvements to system state relative to the baseline scenario is considered a desirable
outcome. For the purpose of this analysis, a desirable outcome is one in which all indicators perform comparatively better when
compared against their respective baselines. To be explicit, Avg. Annual Profit, Ecology Index, and Recreation Index were all required
to have scores above 1, whilst Income Volatility should be below 1.

Choice of farm and policy inputs that lead to these desirable outcomes of improved farm, water, and environmental conditions
across the possible climate futures and policy conditions are then regarded as robust; a system state in which desirable outcomes are
achieved under a range of plausible conditions (McPhail et al., 2018). The indicators of interest are described under relevant sub-
sections in Section 3 above, and are summarised in Table 6 with their “beneficial” direction indicated. Once desirable scenarios are
identified, the contributing model inputs were ranked using a random forest feature scoring approach. Feature scoring identifies
factors of relative import towards a given result. Dimensional stacking (Suzuki et al., 2015) is then used to identify the inputs that led
to the outcome of interest. Appendix A gives a description of terms used in referring to outcomes.

The above approach allows communication of the model inputs that lead to the outcomes under different scenario conditions. The
range of results then represent the uncertainty in achieving desirable outcomes and increases confidence that a given condition leads
to a desirable change, at least under the model assumptions (Reichert and Borsuk, 2005). The adopted method also avoids prescribing
specific conditions to be undertaken, and instead considers a range of alternate decisions that fulfil stakeholder requirements
(Herman et al., 2015).

5. Results and discussion

Overall, the results indicate that further pressures will be placed on farmers and the environment without changes to adapt to
uncertain climate conditions, as have previous studies and reports in the Murray-Darling Basin (Austin et al., 2018; MDBA, 2019;
Steffen et al., 2018). Comparisons of results against the modelled historic climate scenario are depicted in Fig. 11. Surface water
allocations are lower in the majority of scenarios, which is expected here as they are typically more arid compared to the historic
condition (as shown in Fig. 5). In order to cope with this situation the area under irrigation is reduced so as to maintain the necessary
ML/ha volume to attain crop growth and maximum yields. Doing so however comes with a commensurate reduction to (average

Fig. 5. Future climate scenarios sorted by calculated aridity index value in descending order. The dashed line indicates historic aridity for com-
parison. The semi-transparent magenta bar (top) represents the historic aridity index for the Lower Campaspe catchment (0.335). Coloured bars
indicate the wettest (green), comparable to historic conditions (opaque magenta), and driest conditions (orange). Climate scenario data that were
not used extensively in the modelling are coloured grey (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).
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Fig. 6. Lower Campaspe study area divided into farm zones for the farm model.
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annual) income along with larger fluctuations from year to year (depicted by the Income Volatility indicator in Fig. 11).
A reduction in groundwater use can also be seen (compared to the modelled historic scenario), attributable to the reduction in

irrigated area. Groundwater use under drier conditions is higher than their wetter counterparts but does not offset the lack of
available surface water. As would be expected, ecological and recreational indicators diverge from the historic baseline results based
on the climatic condition. It should be noted that any decrease to the ecological indicator is undesirable given that riverine health is
already considered to be highly stressed.

Comparisons of the 5625 scenario results against the historic baseline revealed 796 with desirable outcomes, however none of
these were robust, i.e. beneficial under all climate conditions, with no desirable outcomes identified under dry climate conditions.

Fig. 7. The six stream gauge locations used to indicate streamflow and level for the Lower Campaspe model. Figure from Iwanaga et al. (2018).
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The lack of desirable outcomes for the dry climate scenario suggests that improved outcomes compared to historic conditions become
increasingly improbable as the climate becomes drier, regardless of what changes are made (Fig. 12). One suggested scenario was the
adoption of irrigation systems with higher water application efficiencies to increase water savings across the catchment. Although soil
factors may make such a scenario unlikely (see Section 3.5), no beneficial outcomes were identified in such cases even in the case
where all non-dryland zones (i.e. all zones except for 1, 3, 5, and 12) adopted improved irrigations.

Given no robust scenarios were identified against historic results, we then conduct comparisons against baseline results for
specific climate conditions. In other words, scenarios under “dry” climate conditions were compared against the “dry” climate
baseline in order to identify conditions that led to relative improvements. A small number of scenarios were identified as being robust
under all climate conditions (93 scenarios). Input parameters of most import leading to these are related to crop, field, and irrigation
factors, followed by policy factors and the maximum amount of groundwater considered. These farm level factors are listed in Table 5
(under Section 3.5). The high feature score attributed to crop, field, and irrigation factors is perhaps unsurprising, but it does
highlight the importance of a well-informed farming community. Over-estimating crop water requirements and costs reduces the
irrigation area considered, and poorly set up or poorly maintained irrigation infrastructure (including pumps) and soil health

Fig. 8. Calibrated model compared to observed historic dam level (in mAHD) with an NSE of 0.967. Model parameters were estimated separately for
each of the six segmented time periods indicated with the background colours in the left-hand plot.

Fig. 9. Groundwater model components and model area as well as points and interactions with other component models from the perspective of the
groundwater model. Figure adapted from Iwanaga et al. (2018).
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increases costs and water usage thereby impacting farm profitability (Fig. 13).
At the field level, improving the availability of accurate information on soil water holding capacity has the greatest contribution

to farm profitability. Specifically, soil water retention within Zones 5, 10, and 9 are indicated to influence outcomes more than at
other locations in the Lower Campaspe (Fig. 14). At the same time, targeted adoption of spray irrigation within Zones 4 and 9 (the
zones indicated to be most amenable to spray irrigation systems in our analysis) did not necessarily lead to robust outcomes, further
highlighting the point that simply improving irrigation systems across the catchment is not a viable adaptation strategy. Possible
reasons for this include operational costs incurred with spray irrigation and the lower water efficiency of pipe and riser systems
contributing to increased recharge or streamflow under certain conditions, having the effect of improving ecological outcomes (i.e.
due to higher return flows).

One particular aspect of interest was the percentage of groundwater allocation which irrigators consider for use (`gw_cap`,
previously explained in Section 3.4.2). While irrigators have historically used 60 % of groundwater allocations in a bid to enhance
future water security, increased consideration of groundwater use improves the likelihood of desirable outcomes to be experienced
under all climate conditions (Fig. 15).

Increasing the volume of groundwater to be considered for use compensates for the decreased surface water availability under
more arid conditions. Consideration of all available groundwater resources (100 %) may be necessary under proposed conjunctive
use rulesets, likely due to the reduction in accessible groundwater in wet periods enforced by the proposed rules. This suggests that

Fig. 10. Modelled catchment average yields produced by CIM under historic climate conditions against available historic data (per farm average for
the North Central region) for the crops considered. The Campaspe region reportedly produces higher yields compared to the North Central average.

T. Iwanaga, et al. Journal of Hydrology: Regional Studies 28 (2020) 100669

16



while the informal and disparate approach to conjunctive use may be adequate, farmers who are overly cautious and restrict
groundwater use may not experience the maximum possible yields and capital returns in the long term.

The results shown in Fig. 13 emphasize the importance of farm level factors towards achieving robust outcomes. Stakeholders
have specified various programmes designed to engage with and promote farm management best practices (e.g. DEDJTR, 2015a;
Department of Economic Development, 2017). Assuming then that farms have little room for further improvement in terms of soil
water holding capacity, knowledge and consideration of crop properties, and on-farm infrastructure such as irrigation and pumping
systems, we can then identify which factors contribute towards robust outcomes. Focusing the analysis on factors external to the
farming system itself, the amount of allocations from the Goulburn system is identified as playing a large role, perhaps unsurprising
given the volume of entitlements which Campaspe irrigators rely on, particularly in zones 8 and 10 (see Table 1). Aside from the
Goulburn catchment allocations, the conjunctive use policy rules in place for a given scenario (`gw_restriction`) have a notable effect
(Fig. 16).

In scenarios where Goulburn allocations have lowered we see a concentration of robust scenarios wherein conjunctive use of

Fig. 11. Baseline future scenario results compared against modelled historic outcomes (relative values) with beneficial directions indicated as
directional arrows. Farm profitability is reduced in all but the least arid scenario, while volatility of income generally increases. Ecological indicators
generally only improve under “wet” conditions.

Fig. 12. Desirable scenarios identified when compared to historic baseline (796 of 5625). No desirable results were identified for the dry climate
scenario.
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water is allowed. Under median allocation situations, conjunctive use allows robust outcomes to be achieved while maintaining
groundwater use in line with historic behaviour. Without conjunctive use enabled however, considered use of groundwater has to
increase to 90–100% in order for the changes to be robust (Fig. 17). As Goulburn water availability further decreases, groundwater
use becomes especially important towards achieving robust outcomes. Robust outcomes are more likely if conjunctive use is enabled
along with high levels of groundwater use (Fig. 18). The modelling suggests that groundwater levels can be maintained above the
lowest trigger level, however careful consideration is required especially with regard to the effect on salinity and water quality issues

Table 5
Description of notable farm model inputs.

Factor Name Category Description

gw_cap Direct Control Groundwater cap – described in the policy section above. Reflects maximum volume of groundwater allocation
considered by a farmer. The farmer may choose to favour future water security under dry conditions by carrying over
(25 % of) unused water potentially sacrificing the ability to achieve maximum crop yields in the current season.

irrigation_efficiency Direct Control Irrigation efficiency rating of a given irrigation system. More efficient irrigation systems require less water to irrigate
the same area, but cost more to operate. Efficiency can also be improved by adopting best management practices,
which irrigators have been doing.

pumping_costs Direct Control Perceived cost of pumping on a $/kilowatt basis. Farmers can adopt more efficient pumps, irrigation designs, or other
practices which reduce this cost.

Irrigation Direct Control Indicates adopted irrigation system for a Zone
crop_water_use Limited Control Perceived crop water requirements. Under-estimating crop water requirements leads to too large an irrigated area

relative to available water. Farmers can become better informed of crop attributes but cannot directly control these.
crop_root_depth Limited Control Perceived average crop root depth of a crop at each growth stage. Affects irrigation scheduling, as crops with deeper

roots typically require less irrigation events.
TAW_mm Limited Control Total Available Water – represents the soil water holding properties of a given soil type. Farmers may improve soils

through best management practices or invest in monitoring but cannot change the soil type at the landscape/field
level.

Table 6
Summary of indicator metrics and their beneficial directions. All values should be taken as relative to a baseline, either modelled historic outcomes
or a relevant scenario baseline. Indicators provided without a beneficial direction are included to contextualise outcomes, with respect to area
irrigated and water used.

Indicator “Beneficial” direction Purpose/Description

Avg. Annual Profit Up General farm profitability
Income Volatility Down Severity of fluctuation in profit from year to year
Avg. Irrigated Area – Average total irrigated area over time
Total SW Used – Comparative surface water use
Total GW Used – Comparative groundwater use
SW Allocation Index – Surface water allocations throughout scenario period.
GW Allocation Index – Groundwater allocations throughout scenario period.
GW Level Change – Averaged normalised change in groundwater level between the start and end of a scenario period.
Ecology Index Up Assessment of ecological outcomes of streamflow
Recreation Index Up Assessment of impacts of dam levels on recreation

Fig. 13. Robust scenario results (93 of 5625) under all climate conditions. Salient factors leading to robust outcomes include crop, field, and
irrigation factors followed by policy factors and the amount of groundwater considered for use.

T. Iwanaga, et al. Journal of Hydrology: Regional Studies 28 (2020) 100669

18



– aspects which the modelling presented here did not cover.
The results suggest that improvements to farm soils and infrastructure will be beneficial within the Campaspe, and additional

communication, training, and (financial) incentive programmes beyond what has already been occurring may increase benefits. Any
such programme should consider possible issues surrounding social acceptability and be cognisant of issues with previous approaches
to appraising the cost-benefits (Grafton and Wheeler, 2018). While increasing groundwater use is generally beneficial, possible issues
surrounding social acceptability of increased use and water quality, particularly salinity, should be fully considered. The results raise
the possibility of increasing groundwater allocations in the Lower Campaspe, especially if Managed Aquifer Recharge is adopted in
the region (Chiew et al., 1995; Ticehurst and Curtis, 2017).

5.1. Model and scenario uncertainty

Integrated models are constructed through the interfacing of models that collectively cross disciplinary lines and their respective
system boundaries. Intuitively, uncertainty will not decrease if more models are added, simply due to compound uncertainty. This is
the uncertainty that arises as outputs from one model are used as inputs to another, with each interaction propagating some amount
of error (Dunford et al., 2015; Refsgaard et al., 2007).

In the context of the CIM the sources of uncertainty and their contributions to total model uncertainty are too great to list out
individually within the confines of this paper. Formal analyses of individual model components and total model uncertainty including
structural uncertainty with regards to model selection, is the subject of another paper. Qualitatively, however, the farm model
represents the largest source of (compound) uncertainty as all components, except for climate, are influenced by mechanisms internal
to the farm model. In other words, the farm model behaves as a nexus point between models and thus the errors in the interoperated
data may be cancelled out or compounded and subsequently propagated through. An over estimation of streamflow may be “cor-
rected” in a sense by over estimation of required crop water and under estimation of irrigation efficiency. Similarly, the opposite may
also be true. Such influence may occur directly (e.g. streamflow reduced due to farm water extraction) or indirectly (e.g. ecological
suitability influenced by streamflow). The reader is once again referred to Fig. 2 which indicates the component interactions.

Uncertainty within the models was addressed through participatory engagement processes (Section 3.1) and the conceptual
testing process (Section 3.9), both of which ensured model behaviour is qualitatively plausible (as judged by stakeholders), and which
involved changes in response to their feedback. On top of this, exploratory modelling was applied to hypothetical policy contexts
identified by stakeholders and the range of on-farm activities considered, using results from the farmer survey (Ticehurst and Curtis,
2017, 2016).

Fig. 14. Influence of soil total available water (TAW) towards achieving robust outcomes (shown in log scale).
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Fig. 15. Number of desirable outcomes experienced under each modelled climate condition. The number of scenarios leading to desirable outcomes
increase as the amount of groundwater considered increases (compared to the historic 60 %).

Fig. 16. Features scores when considering policy factors alone.
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Each scenario explored was tied to three specific climate datasets which represent hypothetical shifts in aridity (i.e. “dry”, “usual”,
and “wet” conditions). Limiting the climate scenarios to these three was done to keep the total number of possible scenario com-
binations to a manageable level as model runtime was a concern. An alternate approach is the use of multiple projections for each
aridity scenario. This would more comprehensively address scenario uncertainty with respect to climate inputs as it would allow the
influence of differing degrees of “dryness” to “wetness” to be explored.

Another source of uncertainty, rarely discussed, is computational infrastructure uncertainty. Here, we define computational infra-
structure uncertainty as the uncertainty that arises in model interoperation and integration and application across various compu-
tational contexts. Model technical uncertainty (as defined in Refsgaard et al., 2007) is a related issue which we regard as being specific
to the uncertainties that may arise from a model’s implementation. Computational infrastructure uncertainty is distinguishable from
model technical uncertainty in that models that have identical implementations may yet exhibit different behaviour when applied on
different infrastructure, such as operating systems (see for example, Bhandari Neupane et al., 2019), platforms (e.g. desktop vs
supercomputer), interoperation of data via various means (e.g. local storages vs over a network) and formats and different

Fig. 17. Dimensional stack of current and conjunctive use policies under median Goulburn allocations with respect to considered farm groundwater
use. A concentration of robust outcomes is found in scenarios wherein conjunctive use is allowed with groundwater use levels in line with what has
been occurring historically. Without conjunctive use increased groundwater use (to 90–100 %) is necessary to achieve robust outcomes.
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(programming) languages, or due to the use of different compilers (or different versions of the same compiler).
Computational infrastructure uncertainty was addressed by applying the model across various computational infrastructure in-

cluding, but not limited to, both Windows and Linux operating systems, different (Fortran and C) compilers, and ensuring identical
baseline results. A major error was discovered through this process due to the declaration of an uninitialized variable in the Fortran
code, which was subsequently used in a later calculation. Depending on the compiler, the ‘default’ behaviour may be to initialize the
undefined variable to 0.0 (and thereby will have no effect on the result) or may hold ‘junk’ values from its location in memory space,
which subsequently propagate throughout the integrated model.

6. Limitations and future work

A difficult aspect to manage in the study was the determination of model scope. The collaborative modelling undertaken en-
compasses several disciplinary domains from economics and finance, bio-physical and social aspects and computational considera-
tions. Limiting the scope to a manageable size often boiled down to making pragmatic compromises. Here we detail some known

Fig. 18. Dimensional stack of current and conjunctive use policies under low Goulburn allocations. An increase to 90–100 % of groundwater use is
necessary to increase the likelihood of having robust outcomes.
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limitations and avenues for future work.
Climate data used in the modelling display little changes in evapotranspiration from scenario to scenario. Evapotranspiration is

used as a reference value that informs crop water use in the model, and ultimately the frequency of irrigation throughout the growing
season. Crop loss, due to extreme heat, pests, or other influences, are also not considered. Changing weather events due to a changing
climate will also require the growing season to be shifted earlier or later (Prokopy et al., 2015; Wang et al., 2019), or timed to take
advantage of forecasted rainfall, however these planting/harvest dates were constants in the modelling.

An avenue for further enhancement can be expanding the agricultural activities represented in the model. Dairying is a primary
industry in the study area but is not explicitly represented in the model. Cropping was determined to be the common agricultural
activity regardless of farm enterprise and so the decision was made to focus efforts towards representing farm behaviour in that
context. While irrigation with groundwater was found to be an important aspect towards yielding robust outcomes, the model did not
incorporate water quality aspects and so further in-depth investigation, particularly on salinity issues, are required.

Cropping enterprise profitability may reflect dairying (financial) performance and so beneficial model outcomes are used in the
study to indicate beneficial outcomes for the catchment generally. As noted by stakeholders, the relationship between the enterprises
is expected to be particularly poor in dry conditions as dairy farmers have the option of acquiring feedstock externally. Irrigators may
also trade water (an activity not represented in the model) to cover shortfalls in water availability.

Averaging farm water orders across a 14-day time step means that the CIM does not represent high volume water orders that are
released within a shorter time span. Consequently, the implications of high-volume water orders on ecological flow suitability
indicator may not be adequately captured. On this note, the policy model currently includes environmental considerations based on
legislated flow requirements but is not reactive to modelled streamflow/level or groundwater head, and effects on ecological in-
dicators. Future work could then consider possible adaptive management processes in which water allocations and/or their releases
are adjusted to meet environmental considerations.

Whilst uncertainty in the modelling is taken into account largely through the use of climate scenarios and sampling of parameter
space, future work is envisaged to identify the most important sources of uncertainty in the modelling. In this endeavour, one way
forward is to use a comprehensive qualitative and quantitative approach (e.g. Refsgaard et al., 2007), especially involving stake-
holders and experts in helping to rank the criticality of the different sources as to their influence on model outcomes before em-
barking on a quantitative set of exercises. Nevertheless, we believe the work to this point is a valuable starting point for raising
awareness and discussion amongst stakeholders as to opportunities for managing water more beneficially in the catchment.

One important social aspect not represented in the presented study is the cultural importance of the local flora and fauna and
issues of cultural flows – the release of water to fulfil activities or conditions of cultural and social importance (Moggridge et al.,
2019). Indeed, it has been increasingly acknowledged that water entitlements for cultural flows are not yet made a consistent part of
Australian water management legislation, policies or guidelines despite being identified as a national priority area (Jackson et al.,
2012; Williams et al., 2019). This limitation will be addressed in planned future work currently under discussion.

7. Conclusions on sustainable water management opportunities

This paper presents a component-based integrated environmental model developed to explore sustainable water management
options within the Lower Campaspe sub-catchment of the Murray-Darling Basin. Stakeholder participation was critical to the model
capabilities, as local stakeholders provided knowledge, feedback and data to assist in conceptualising the system. The participatory
and model-based collaborative approach yields results that reveal opportunities to consider for achieving improved socio-environ-
mental outcomes and water security, relative to the modelled historic baseline. Improvements at the farm level were found to be a
prospective contribution towards this goal, as were farm (water) management and changes to governing policy rules. Specifically,
conjunctive use of surface and groundwater resources and increased use of the latter was found to improve outcomes. Adoption of the
most efficient irrigation systems considered (spray and pipe and riser) did not necessarily lead to desirable outcomes across all
climate conditions. It then follows that simply improving irrigation water efficiency is not a sufficient course of action.
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Appendix A. – Key Terms

Term Description

Beneficial change/out-
come

Positive change in the indicators Avg. Annual Profit, Ecology Index, GW Level Change, and Recreation Index compared to baseline (i.e.
> 1.0). Negative changes to total surface and groundwater volume used (< = 1.0) and to Income Volatility (< 1.0) is preferred.

Desirable outcome Scenarios which exhibit a beneficial change in system state across all indicators
Robust outcome Scenarios which exhibit desirable outcomes across all climate conditions

Appendix B. – Farm Model Details

The farm model optimised irrigated area and source of water through linear programming, conducted with the OptLang python
package (Jensen et al., 2017) in the form of:

=
= …

A R Cmaximize , ( )
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i i i
1 3

s.t.

=
=

+

A L L A
A A
A A A

Rule1.0 if field is dryland only
Rule 2.
Rule 3.0

i i i T

T

sw gw f

,

(1)

where A indicates the area to be serviced by each water source, and where i {1,2, 3} represents the water source to be used: sw
(surface water), gw (groundwater), or only rainfall (dryland, nw). R is the gross revenue per hectare that can be expected with the
crop (sown for the season), irrigation system, and water source(s),C represents the costs incurred for the same. A is limited (Li) by the
available water resources and expected crop water demands. In the case of dryland, the total field area can be used (AT). The values
for L are calculated asV W/i c ha, as in the volume of available water from a particular water source (Vi) divided by the expected seasonal
(per hectare) crop water requirements (Wc ha, ). In future modelling, irrigation areas could be informed based on recent Landsat
imagery.

At the start of the season, only Rules 1 and 2 are used to determine the irrigated area for the growing season. The initially
optimised area (Af ) is then locked for the rest of the growing season and is used to determine the proportional amount of water to be
applied with surface and groundwater, such that in subsequent time steps Rule 3 is included in the formulation.

Dryland cropping is assumed to occur on non-irrigated areas, the area for which is calculated as = +A A A A( )nw T gw sw . Costs
included in the calculation include the variable costs for the crop sown, maintenance of irrigation and pumping systems (if ap-
plicable), costs associated with licensing, water ordering, and pumping costs. The sum of these gives the dollar profit/income ( ) for
the farm/zone. In this manner the farm costs, expected yields and profit, and estimated crop water requirements play a role in
scheduling irrigation events. The estimated total profit is necessarily an approximation. Profit after harvest is calculated directly from
crop yield, as detailed below.

Irrigation Scheduling

Farmers will irrigate, ideally, when crops require additional water. Determining when these irrigations occur is referred to as
irrigation scheduling. In this model it is assumed that farmers are monitoring soil moisture levels and have access to weather data,
specifically pan evapotranspiration (ET0). Soil water deficit (SWD) is a cumulative indicator of how dry soils can become before
additional water is required to be applied to avoid crop losses. Soil water deficit worsens by subtracting crop evapotranspiration (ETc)
which is calculated by applying a scaling crop coefficient Kc (i.e. =ET ET Kc c0 ), with each crop type having a corresponding Kc value.
Once SWD reaches a refill point – commonly referred to as the Net Irrigation Depth (NID) – an irrigation event is scheduled and SWD
reduced by the effective water applied. This approach is commonly applied on-farm and examples can be found in publications from
State governments (see for example, Hughes, 1999; Qassim and Ashcroft, 2002).

The NID value itself is calculated by multiplying the effective root zone at a point in time (Drz t, ) with the possible Readily
Available Water (RAW ) for the given soil type. The effective root zone is the depth at which the crop gets much of its water via its
roots and is dependent on soil type and crop properties (Baker and Ahern, 1989). Here, Drz is assumed to be 55 % of root depth for the
given crop type (as in Qassim and Ashcroft, 2002) where relevant information regarding root depths throughout the season and crop
growth stages could not be obtained, and as such acts as a constant. If sufficient data were available, the alternative approach would
be to calculate it as:

=D RD ERDrz t t t, (2)

where RDt is the root depth for the stage of growth at time t , and ERDt the effective root depth coefficient for the crop type
(Maihol et al. in Itier et al., 1996). Nominal values for these parameters were obtained from FAO guidelines (Allen et al., 1998).

The Net Irrigation Depth can then be calculated as
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= =NID D RAW RAW TAW p,t rz t, (3)

Here,TAW corresponds to the Total Amount of Water a soil can hold, and p represents the crop soil water depletion fraction (as in
Qassim and Ashcroft, 2002). The values used forTAW is discussed in the next section on soils. The soil water deficit at a point in time
can be calculated as:

= +SWD SWD ET E IWmin{ ( ), 0}t t c t t t1 , (4)

where

= =
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1
and represents the total effective rainfall that occurred within the (two week) time step

(i.e. all winter rainfall is assumed to be effective rainfall)
IWt denotes the irrigation water applied at the time step. No water may be applied in the time step in which case this coefficient

will be 0.
ETc t, is the sum of crop evapotranspiration (ETc) that occurred within the time step.
It should be noted here that the intention of this particular model is not to have an accurate representation of effective rainfall or

water recharge/drainage processes. The model is, as mentioned above, based on the published advice for irrigators in Victoria and so
represents the assumed behaviour of the irrigation process. Irrigation occurs to refill SWD once it reaches (or goes beyond) NID, and
these are both represented as negative values (or else 0). The base volume of irrigation water (IWb) to be applied is taken to be equal
to SWDt when it reaches this refill point. This volume is then adjusted to reflect the efficiency of the implemented irrigation system
(IE) to arrive at the amount of irrigation water to be applied (IWt).

= =IW
IW

IE
IW SWD SWD NID, max{abs( ), 0}t

b t
b t t t t

,
, (5)

Irrigation efficiency refers to the percentage of water that reaches the crop root zone, allowing the crop ease of access to water.
Water applied with less efficient irrigation systems are said to be “lost” for the purpose of contributing to crop growth. Therefore,
more water is required if applied with irrigation systems of lesser efficiency for an equivalent effect on SWD. Irrigation systems
considered in this study include gravity, pipe and riser, and spray with IE ratings of 0.5, 0.7 and 0.8 respectively. Returning, finally,
to the proportional use of irrigation water, Agw sw, (the areas watered by ground and surface water respectively) are each then divided
by Af (total irrigated area) and constrained by the volume of water available. The optimal mix of water sources to use is then
indicated by:

IW A
A

V IW
A

min , /
t

ws

f

t

f (6)

whereV is the volume of available water (in ML), and Aws is the fixed area irrigated by the given water source (e.g. Asw or Agw). This
process (depicted in Fig. 19) is repeated until the crop is harvested at the end of the growing season.

Estimated costs for each irrigation system were corroborated by a senior irrigation specialist with EcoDev (Maskey, 2016). The
simplest irrigation system is “gravity” which relies on, as the name suggests, gravity to flood an area with water. Pipe and riser
systems are similar in that it also ‘floods’ a field but instead uses a pressurized pipe system to transport water, increasing costs. Spray

Fig. 19. Example depiction of irrigation scheduling.
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is the most efficient but is also the most expensive to install and operate due to the fuel costs necessary to generate the pressure
needed to move and apply water.

The upper limit for all irrigation systems was set to 90 % - which is possible for all systems depending on soil type, system set up
and configuration, and additional work conducted to make the field more amenable for the chosen irrigation type (Finger and Morris,
2005). For example, the field could be laser graded to ensure a more consistent application of gravity fed irrigation water. Indeed, 77
% of those survey respondents reported having undertaken additional improvements to gravity irrigation such as laser grading and
tail-water reuse (from excess water reaching the bottom of the field). Gravity irrigation was then modelled as being 50 % and 90 %
efficient based on this information with the base efficiency set at 50 % representing the “usual” case (Table 7).

Soils

An early iteration of the model used the dominant soil type found in the Lower Campaspe area (sandy loam, see Fig. 21) as a
representative surrogate. Stakeholders indicated that this approach may not adequately represent the importance of soil type and
health in agricultural enterprises due to the diversity found at the smaller (zonal) scales. Stakeholders further indicated that farmers
with lighter soils on their lands may find spray irrigation more attractive as light soils are not capable of holding as much water as
heavy soils – the TAW value is comparatively less, influencing irrigation scheduling. Equally true is that farmers with heavier soils
may not see a benefit from a move to spray. To reflect this, only farm zones that were identified as having light soils were modelled to
have the option of changing irrigation systems to spray irrigation.

To better represent the conditions which impact irrigation scheduling and choice of irrigation system it is then necessary to
represent the range of soil textures within the model farm zones. To achieve this, published TAW value ranges for various soil types
(Allen et al., 1998; Qassim and Ashcroft, 2002) were used in conjunction with a soil map of the Campaspe catchment to create
weighted zonal values (see Fig. 20). These values were based on the proportional area of soil types found within a zone. A weighted
average median value was used as the nominal “best guess” value, with the weighted minimum and maximum values indicating the
possible value bounds. The soil map was kindly provided by EcoDev, a Victorian State Government department.

Pumping

Pumping water for irrigation typically represents the largest operational costs for a farm (DEPI 2014a). Seasonal pumping costs
were considered as this may vary depending on climate conditions and allocated water availability. This cost can itself vary de-
pending on the type of pump and its configuration. Extracting groundwater decreases the groundwater level, thereby increasing
pumping costs due to the greater distance and pressure required.

Pumping systems were simplified into two categories, indicating whether they are for shallow or deep bore pumping. The former
represents pumping from an irrigation channel or shallow aquifer, with the latter used to represent groundwater pumping at a depth
of 20 m or more. Stakeholders indicated that a mix of diesel and electric pumps are used in the study area (60 % and 40 %
respectively). Electric pumping costs can range from 16.5c to 32.8c per kilowatt (kW), while electricity plans with a flat rate of 27c/
kW can also be arranged (Bob Knowles, 8 Jan 2018, pers. comm). Diesel fuel was assumed to have a cost of $1.20 per litre, with a fuel
volume per kW of 0.25 (Robinson, 2002), resolving to 30c/kW. A weighted average of these values was used to represent the mixed
(60 %/40 %) use of both diesel and electric pumps (28.5c/kW). The kW cost of pumping is likely to change over time but was
modelled as a constant under the assumption that the cost of upgrading infrastructure is cost prohibitive within the modelled time
frame.

Installation of bores to access groundwater incur significant capital costs, ranging from $18,000 to $70,000 for a shallow bore and
$90,000 to $320,000 for deep bores (Robinson, 2002). It is assumed here that such infrastructure is already in place and so no initial
capital costs are considered. The average annual maintenance costs are included in the modelling, however, and are taken to be 5 %
of capital costs every 5 years and 20 % every 15 years (minor and major maintenance respectively). Nominal values for these (shallow
and deep bore) capital costs were $18,000 and $235,000 (taken from Robinson, 2002). The number and location of groundwater
bores for each farm zone are indicated in Fig. 22.

Table 7
Implementation costs for each irrigation system considered and their efficiencies.

Variable Irrigation Nominal value (and range) Description Reference(s)

Cost ($/Ha) Dryland $0 (relies on rainfall) Cost of implementation (or replacement) per
hectare of irrigated area in AUD ($/Ha)

(Laffan and Smith, 2015)
Gravity $2000 ($2000 - $2500)
Pipe and Riser $2500 ($2000 - $3000)
Spray $2500 ($2500 - $3500)

Irrigation Efficiency (%) Gravity 50 % (50 %–90 %) Expected efficiency for each irrigation system Finger and Morris (2005)
Tennakoon et al. (2013)Pipe and Riser 70 % (60 %–90 %)

Spray 80 % (70 %–90 %)
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Pumping costs throughout the irrigation season is then calculated as

=C C C h( )PML fuel kW ML (7)

Read as the cost per pumped ML being equal to the cost of fuel (per litre) by the cost per kilowatt (kW) hour, multiplied by the
hours necessary to pump a megaliter of water. The total pumping cost can then be determined simply as

=C IW Cpump PML (8)

In the presented modelling CkW is calculated in advance (28.5c/kW, as detailed earlier), however it can be calculated directly if
needed and the necessary information on the pumping system is available. The calculation takes the form of:

Fig. 20. Soil texture map for the Lower Campaspe farm zones with a zoomed close-up of Zone 7 showing the heterogeneity of surface soils. Soil map
was obtained via EcoDev.

Fig. 21. Area for each soil type for the Lower Campaspe as a whole, and an example Zone (Zone 7 in the above). Sandy loam (soil code “SL”)
dominates the catchment area, but variations can be seen within specific Zones, precluding the use of a single representative soil type. A weighted
TAW value based on the proportional area for each soil type found in the Zone was used instead.
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=PUMP P kW F( )fuel (9)

where

=F 0.25

=P kW
H f

E D
( )

( )
(102 )*

c

p

The volume of diesel fuel (PUMPfuel) is based on the required energy (P kW( )) and number of litres required to produce 1 kW
( =F 0.25, as given in Robinson, 2002). The amount of kilowatt energy required is dependent on the total head pressure (in metres,
H), the flow capacity of the irrigation system in use ( fc), pump efficiency (Ep) and derating factor (D).

Head pressure (H) is defined as the sum of 1) the discharge pressure head, 2) the friction head of water flow (i.e. friction loss) and
3) the height between the source of water and the discharge level (Robinson, 2002). The typical total pumping head for a given
irrigation system supplied with surface water is taken from Smith (2015). These values range from 10 m head pressure for gravity to
60 m for spray irrigation. Although the values in Smith (2015) are intended for irrigators in New South Wales, the indicated pumping
costs were within the value range suggested by a local irrigation specialist (Maskey, 2016) for a type of flood irrigation (pipe and
riser, $8-15), and spray irrigation system (centre pivot, $30-50). Typical head and cost ranges are shown in Table 8. Head pressure is
multiplied by the flow capacity of the irrigation system ( fc) the value of which is taken from literature regarding a farm in the study
area, given as 138.88 litres/second, or 12 ML/Day (DEDJTR, 2015). The literature-derived values assume that the pumping system
can operate at the desired head pressure and flow rate and that the pump itself is in good condition.

Pump efficiency (Ep) is the percent energy efficiency of the pump, representing the amount of energy imparted on the water. This

Fig. 22. Number of bores within each farm zone.

T. Iwanaga, et al. Journal of Hydrology: Regional Studies 28 (2020) 100669

28



value is multiplied by a constant of 102 to convert unit of pressure (kPa) into metres (given in Faour 2001 in Robinson, 2002). The
derating factor (D) accounts for efficiency losses between the total amount of energy required and the energy required at the pump
shaft. The derating factor is said to be 0.75 for diesel pumps (Faour 2001 in Robinson, 2002). As pumping efficiencies may vary model
evaluation was conducted with Ep set to a conservative value of 0.7, the suggested value to use when the pump configuration and
efficiency are unknown (Vellotti and Kalogerinis, 2013). Other efficiency losses which influence total pumping head are not explicitly
considered but are accounted for through the use of this conservative pump efficiency value (as in Vellotti and Kalogerinis, 2013).

Groundwater pumping costs may fluctuate due to the changes in height distance between water source and discharge point
resulting in an increase in total pumping head. Such a decrease in water levels necessitates increased amounts of energy (and thus
fuel) to pump water from the increased distance. To account for decreasing water levels the depth of groundwater is added to the
head values given by Smith (2015) to allow consideration of the effect of fluctuating groundwater levels.

The time taken to pump a single ML of water (hML) is then determined by dividing the number of litres in a ML by the flow rate (Q,
in litres per second). This resolves to the number of seconds required to pump 1 ML. Dividing this by the number of seconds in an
hour (3600 or 602) results in the hour(s) required to pump 1 ML.

= =h
Q

10 /60 , 10 1MLML
6

2 6
(10)

Crops

The crops represented include three cereal crops of wheat, barley and canola. These are applied as a three-year rotation; i.e.
cultivating wheat one year, barley the next, and finally canola after which the rotation is repeated. An earlier version included tomato
however this crop was removed as its widespread cultivation was described as unrealistic and highly improbable by stakeholders, as
were horticultural crops in general.

Determining Seasonal Profit

Values for the expected revenue (R) and associated production costs (C) for each crop and irrigation type used in Eq. (1) are taken
from various grey literature sources to determine the optimal irrigation volume throughout the growing season (or the irrigated area
in the case of the first time step). Once the growing season has ended, however, a modified French-Schultz equation (Oliver et al.,
2009; Whitbread and Hancock, 2008) is used to obtain the final crop yield (Table 9).

= + +Y SSM GSR IW V CWUE(( ) )
1000 (11)

The modified French-Schultz equation above takes into account the stored soil water at the start of season (SSM), the effective
rainfall that occurred during the growing season (GSR, which is the sum of Et from Eq. (4)), the sum of any irrigation water applied
(IW , which will be 0 for dryland crops), and the crop evaporation coefficient (V ) which represents the required rainfall before a crop
will yield. These are then adjusted by a Crop Water Use Efficiency Index (CWUE) to arrive at the per hectare crop yield (Y ). The
resulting value is then converted to tonnes per hectare by dividing by 1000.

Values for the French-Schultz equation were initially taken from published FAO guidelines (Allen et al., 1998), with SSM assumed
to be 30 % of rainfall that occurred over February to April. These were subsequently calibrated against historic (per farm average)
crop yield data for the North Central region obtained from the Australian Bureau of Agricultural and Resource Economics (ABARES).

Table 8
Typical total head for each irrigation system, adapted from Smith (2015) and adjusted with input from Maskey (2016). The
typical pumping costs indicated on the right-hand column were used to evaluate the pumping cost model.

Irrigation System Total Head (m) Pumping Cost ($/ML) @ $1.20/L diesel fuel

Gravity 10 - 15 8 - 15
Pipe and Riser 10 - 15 8 - 15
Spray 25 - 35 30 - 60

Table 9
Growth stages for Winter Wheat, the length in days for each stage, and assumed planting date in month and day for each season.

Growth Stage Duration (in days) Crop Coefficient Depletion Fraction Source

Initial 30 0.4 0.6 Allen et al. (1998)
Development 140 0.4 0.6
Mid-season 40 0.9 0.6
Late 30 0.25 0.9
Season Length 240 Days
Assumed Plant Date 05-25 (MM-DD) DEDJTR (2015b)
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The North Central region represents an area significantly larger than the Lower Campaspe sub-catchment, however it is the most
(spatially) relevant dataset available.

Calibration used the L-BFGS-B function minimization routine – implemented in the `scipy` Python package (Jones et al., 2001) – to
reduce Root Square Mean Error (RMSE). This process achieved results with an overall RMSE of 0.68 and a long-term average yield
comparable to what has occurred historically; 2.37 t/ha compared to the historic seasonal average of 2.27 t/ha for dryland wheat.
The parameters for irrigated crops were adjusted to return higher yields (as is usual for crops under irrigation). The modelled results
with calibrated values for both dryland and irrigation yields were deemed to be acceptable and reasonable by stakeholders. Further
example calibration results are shown in Fig. 23.

The seasonal profit is calculated in the same manner as used to optimize water usage (see Eq. (1)), albeit with yield values (Y )
replaced with those calculated by the French-Schultz equation, and the costs now representing the variable and fixed costs associated
with the cropping enterprise, but also the costs accrued throughout the growing season, such as cost of pumping and water access
fees. From here, the per hectare profit for a growing season ( ha) and profit per ML of water used ( W ) can be determined as:

=
Aha

T

T (12)

=
Ww

T

T (13)

where WT is the total water volume applied for the season and AT is the earlier defined total field area. Rather than model a global
crop market, it is assumed here that the harvest for each year is sold.

Appendix C. Representing Goulburn Allocations

See Table 10 Fig. 24.

Fig. 23. Calibrated crop model results for (left to right) dryland and irrigated wheat. Long-term modelled yield was 2.37 t/ha compared to the
historic average of 2.27 t/ha for dryland. The irrigated crop yields were adjusted to return higher yields compared to dryland production as the
historic observations are farm averages. The Campaspe catchment is said to produce higher yields than regional averages. Results were deemed
acceptable by stakeholders.

Table 10
Goulburn allocation scenarios and relationship with Campaspe
surface water allocations.

Scenario Equation

High 1.2525x + 48.541
Median 1.4005x + 5.3381
Low max(0, (1.0116x – 3.2019))
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Appendix D. Calibration periods for IHACRES rainfall-runoff model

See Table 11.

Appendix E. Ecology and recreation index model detail

Platypus Index

Indicators developed for platypus are based on recommendations outlined in the Environmental Water Management Plan set out
by the North Central Catchment Management Authority (North Central CMA, 2014). Following these recommendations streamflow is
to be maintained to at least 10 ML/day in the summer, and 50 ML/day in winter to allow for movement and food supply (macro-
invertebrate productivity and dispersal). Water releases in the summer and autumn (“freshes”) are necessary to maintain food supply
and, in the autumn, aid in the movement of platypus young. An additional “burrow flooding” index is used to represent prolonged
high flow events during the nursing season which may flood platypus burrows and drown the young.

Fish Index

Fish represented in the ecology model are categorised by their lifespans (long and short-lived fish). Examples of long-lived fish
include the Murray Cod and the Golden Perch, with their oldest recorded estimated ages being 48 years (Anderson et al., 1992) and
26 years (Mallen‐Cooper and Stuart, 2003) respectively. Short-lived fish include the rainbowfish and carp gudgeons which have
typical lifespans of 2–3 years. Species of long-lived fish have individual spawning preferences, e.g. Murray Cod is considered to spawn
in low-flow conditions whereas Golden Perch prefer high-flow flood conditions. In contrast, short-lived fish generally prefer low-flow
conditions (Ralph et al., 2010). Fish indicators represent suitable conditions during breeding and nesting seasons (low flow in
summer and winter, e.g. 500–1000 ML/day), spring freshes to trigger spawning events for long-lived fish (at least 500 ML/day for
two days), and summer and autumn freshes for dispersal for long-lived fish (e.g. 50 ML/day for at least two days).

Fig. 24. Linear relationships between Campaspe allocations and allocations in the Goulburn catchment.

Table 11
Time span of each period used to calibrate the IHACRES model.

Label Historic Time Span Daily Time Step Index

Pre-drought 1981-01-01 to 1995-03-13 1 – 5185
Start-drought 1995-03-14 to 2000-06-13 5186 – 7104
Early-drought 2000-06-14 to 2003-04-20 7105 – 8145
Mid-drought 2003-04-21 to 2005-11-21 8146 – 9091
Late-drought 2005-11-22 to 2010-06-20 9092 – 10763
Post-drought 2010-06-21 to 2016-12–31 10764 - End
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River Red Gum (tree) Index

River red gums play vital roles in the maintenance of the aquatic and riparian ecosystem in the Campaspe River. The model
provides indications of suitability for maintenance and regeneration (e.g. promotion of new growth) of River Red Gums which
incorporates both groundwater and surface water flow regimes. Suitable groundwater conditions were taken from Roberts and
Marston (2011) with established trees preferring the groundwater table to sit between 2 and 6 m below the ground. A linear reduction
from 6 m to 12 m (where 12 m or more will produce a zero indicator value) is used in the model. Younger trees are modelled to prefer
groundwater depths between 0.5 and 1 m, after which the index linearly deteriorates towards 2 m at which point the indicator gives a
score of 0.

Recreation Index

Lake Eppalock is a popular destination for water-related recreational activities including boating, water skiing, and wind surfing,
with associated economic benefits (City of Greater Bendigo, 2009). Falling water levels during the millennium drought and in recent
years have led to increased concern for the continued viability of the dam for recreational purposes (ABC News, 2015; City of Greater
Bendigo, 2009).

The volume of water in the dam is used to indicate the perceived suitability of the dam for recreational purposes where suffi-
ciently high dam levels (> 65 % dam capacity) allows full enjoyment of recreational activities, whereas lower dam levels impede
them. Collision with debris and fallen trees is a risk when the dam falls to 30 % capacity. Issues of crowding can occur at lower
volumes as it equates to lower surface area for recreational use.

Appendix F. – Parameter Covariance Analysis

Fig. 25.
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Chapter 4b: Supplement to Chapter 4 

 

This supplement has been added to address concerns raised by a thesis Examiner on the 

calibration approach applied in Chapter 4. Specifically, the difficulty of calibrating for the entire 

time series of data may indicate an issue with model structure. The decision to break up the climate 

sequence into six periods and calibrating these (resulting in six different parameter sets) may 

produce misleading calibration results. The concern raised by the Examiner comes from a valid 

perspective – that poor model performance on non-stationary data can indicate that the model 

does not represent some feature of the system sufficiently well. Nevertheless, we believe that the 

approach applied in the paper is still justifiable despite limitations. 

As a reminder of the context, the purpose of the surface water model was to provide 

indications of dam levels for the purpose of exploratory modelling. The crucial interaction to 

represent was the triggering of (hypothetical) water policy rulesets which become “active” when 

dam levels drop to/below a certain level. The focus then was on representing fluctuating dam 

level reductions sufficiently to trigger these policy changes. Climate conditions govern dam 

levels, as might be expected by the Examiner. 

In Fowler et al., (2020), it is suggested that many rainfall-runoff models lack sufficient 

consideration of the long-term dynamics which affects their ability to represent streamflow across 

long time scales. Fowler et al. suggest that this may be at least in part because basins can switch 

between multiple semi-permanent states (due to climatic or other influences). These semi-

permanent states represent different boundary conditions, and models calibrated for a given 

boundary condition may not be well suited to others (as discussed in Merz et al., 2011). In other 

words, the model structure issue raised by the Examiner is a recognized limitation across a wide 

range of conceptual rainfall-runoff models, including the IHACRES model adopted for use in the 

presented case study. 

One approach to counteract this issue is to apply a multi-model ensemble, with many 

approaches to their development. The approach applied in the study was to develop a set of models 

that are individually concerned with a specific period. This approach is similar, but not identical, 

to that of Zhang et al., (2011) wherein multiple models are developed for identified hydroclimatic 

conditions across time (i.e., separate models for different stable states). 

In the presented study, climate projection data applied for the paper were scaled historic data 

and so follow similar trends and conditions. Thus, the model as applied in the study is adequate 

for the purpose of providing indications of dam state, albeit only within the indicated simulation 

periods. We regard this as an acceptable limitation given the scope of the study. 

A further step, not conducted here but a possibility, is to perform cross-validation of models 

to each period, which would indicate the extent to which each model is suited for the conditions 
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represented by a temporal period. A single parameter set that is optimal for all periods could then 

be selected for use (as suggested in Gharari et al., 2013). It is noted here that further investigation 

and exploration of hydrological ensemble model development approaches to address known 

limitations is well outside the scope of the chapter and is likely a series of papers in and of itself. 

Multi-model ensemble approaches are not, at time of writing, widely used and remain an area ripe 

for further research (Sharma et al., 2019). 
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Chapter 5: Property-based sensitivity 
analysis for timely model diagnostics 

Development of IEMs is often made difficult due to the concurrent development of its 

constituent models. Each model may rapidly evolve throughout the modelling cycle. Errors, in 

terms of poor model implementation, performance or conceptual mismatch, and the subsequent 

correction of these, may necessitate changes in other constituent models. The cost of correcting 

errors may increase substantially as time goes by. Consequently, it is then desirable to identify 

issues of model behaviour in the integrated context as early in the modelling cycle as possible.  

Analysis of model parameter sensitivities through global sensitivity analyses is commonly 

put forth as an approach to gauge “correctness” of model behaviour. As indicated in previous 

chapters, IEMs often exhibit long runtimes due to their complexity (in terms of implementation 

and dimensionality) such that the computational expense precludes a rigorous diagnostic 

sensitivity analysis. 

In this chapter a practical approach to identifying problematic model behaviour through 

property-based sensitivity analysis is introduced and demonstrated. The approach can aid in the 

quick identification of issues for further investigation and complement subsequent global 

sensitivity analyses. This chapter was submitted to Environmental Modelling and Software and 

is currently under review. 
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A B S T R A C T   

Diagnostic testing is an oft-recommended use of sensitivity analysis to assess correctness or plausibility of model 
behavior. In this paper we demonstrate the use of sensitivity analysis as a complementary first-pass software test 
for the validation of model behavior. Typical testing processes rely on comparing model outputs to results known 
to be correct. Such approaches are limited to specific model configurations and require that correct results be 
known in advance. Property-based Sensitivity Analysis (PbSA) examines model properties in terms of the 
behavior of parameter sensitivities to provide a line of evidence that the expected conceptual relationships be-
tween model factors and their effects are present. Unanticipated results can indicate issues to be corrected. The 
PbSA approach is also scalable as it can complement existing testing practices and be applied in conjunction with 
global sensitivity methods that can reuse existing model evaluations or are otherwise independent of the sam-
pling scheme.   

1. Introduction 

Integrated Environmental Models (IEMs) are often developed to 
inform policy and management processes. In the problem realm of socio- 
environmental systems (SES), such integrated models account for mul-
tiple sectoral influences and their interactions, including the biophysical 
(e.g., hydrological, climate, ecological and agriculture) and socio- 
economic processes (e.g., human drivers, economy/market, policy and 
legislative interactions). Multiple models, both purpose-built and pre- 
existing (i.e., legacy models; Kelly (Letcher) et al., 2013), are often 
coupled to represent this system-of-systems. 

Typical IEM development conceptualizes an iterative ‘cyclic’ process 
in which an interdisciplinary team (of teams) collaborates to appropri-
ately represent the interactions across the SES being modeled (Hamilton 
et al., 2015; Little et al., 2019). The development process is such that the 
suite of models that constitute an IEM, and their coupling, are in a state 
of flux with each undergoing a separate iterative development cycle. 
Changes to one model component may necessitate changes in another, 
and there will be emergent behaviors that arise only when models are 

integrated. The modeler(s) responsible for integrating the disparate 
models involved is the foundation for ensuring that the constituent 
models and the resulting IEM are both technically and conceptually 
sound, lest usability of the IEM and confidence in the results be 
compromised (Voinov and Shugart, 2013). 

Compounding matters is the fact that IEMs are increasingly being 
operated at grander ‘scales’, in terms of the number of systems repre-
sented, the breadth of researchers and interest groups involved, and 
consequently the required computational infrastructure, budget and 
time available (Elsawah et al., 2020; Little et al., 2019). The resulting 
IEM may have hundreds, possibly even thousands, of parameters. 
Models external to each discipline or sectoral component are often 
treated as black (or at best, gray) boxes given the spread of 
domain-specific knowledge required to understand, in full technical 
detail, the models representing the system-of-systems. Consequently, no 
single person is likely to have a full and complete understanding of the 
models involved. 

Given the complex and complicated context of SES modeling and the 
pace at which IEM development occurs, the cost of correcting errors that 
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may inadvertently creep in may increase as time progresses (Boehm, 
1986). The associated opportunity cost may be substantial and so it is 
desirable for any issue to be identified and corrected as early in the 
development cycle as possible. Continuous and repeated testing of the 
models and their integration, therefore, plays an important part in the 
model development cycle. 

In the development of software, “testing” is leveraged to gain con-
fidence that the underlying code is working as intended and continues to 
do so throughout the rapid pace of iterative development (Danglot et al., 
2020). A failing test then falsifies the assumption that the software is 
working correctly. Researchers in the field of Sensitivity Analysis (SA) 
have independently arrived at the idea of “diagnostic evaluation”. 
Estimated sensitivities of parameters are used to provide some valida-
tion that the model behavior is in line with expectations (Campolongo 
et al., 2011; Gupta et al., 2008; Pianosi et al., 2016). Such diagnostic 
approaches have been recognized as vital for maximizing the capabil-
ities of mathematical models (Rabitz, 1989). Due to the computational 
demands of IEMs, results from diagnostic SA may be effective as once-off 
analyses yet take an excessive amount of time relative to the computa-
tional time and budget available for continuous testing purposes. 

Given the context of rapid iteration and high complexity of IEM 
development, there is a need for a diagnostic process that aids in the 
quick and early identification of issues throughout the integrated 
modeling process. In this paper, we showcase how a simple and 
computationally inexpensive SA, based on One-At-a-Time (OAT) sensi-
tivity analyses, applied in the frame of software testing can be a com-
plementary strategy in identifying model implementation and 
integration issues early in the modeling cycle. The approach, which we 
refer to as Property-based Sensitivity Analysis (PbSA), can help expose 
issues in the course of building or integrating models by exploiting ex-
pected and unexpected sensitivity of parameters. These are used as in-
dicators to confirm the expected model behavior in areas of parameter 
space with known model behaviors. 

In the following sections, we briefly introduce software testing 
practices contextualized by the integrated model development context 
(Section 2) and explore its conceptual linkages with diagnostic sensi-
tivity analysis (Section 3 and 4). We then provide an illustrative example 
(in Section 5) using the Campaspe Integrated Model (CIM), an integrated 
model developed to explore sustainable water management futures 
within an agricultural setting in the Lower Campaspe catchment of 
Victoria, Australia (Iwanaga et al., 2020a). We then conclude in Section 
6 with a discussion on directions for future research. 

2. Software testing in integrated model development 

Computational models are software in that they are implemented as 
code and are run on computers. Although there are clear similarities 
(perhaps even identicalities) between software and model development, 
model testing and development practices that are common in software 
production may not be readily adopted (Crouch et al., 2013; Hutton 
et al., 2016; Sletholt et al., 2012). In fact, publications have been 
retracted in the past for errors that software testing practices would have 
assisted in identifying (Ahalt et al., 2014; Bhandari Neupane et al., 2019; 
Kanewala and Bieman, 2014). In this section, we briefly introduce the 
concept of “unit testing” and the practice of “property-based” testing. 

It has long been recognized that issues are easier and cheaper to 
address if they are identified earlier in the development process (Levin 
et al., 2019; Mossalam, 2018). A core aim of software testing is to reduce 
the time taken to reach a “stable” working piece of software (in this case, 
a model) by aiding in the identification of issues as early as possible in 
the development workflow (see Fig. 1). Developers write code to ensure 
the correct functionality of other code to accomplish this aim. Such code 
are referred to collectively as “tests”. A common type of software test is 
referred to as a “unit test”, as it tests an arbitrary but preferably small 
‘unit’ of code against a specific known result (Sarma et al., 2016). 

Unit tests support the development process by providing indications 

that the model is working in line with expectations. Frequent re-running 
of these tests (e.g., after every change) shorten the time between changes 
to the code and identification of issues, thereby smoothing the model 
development cycle. One issue is that identifying the “correct” behavior 
to test may be challenging in cases where the effects of model in-
teractions may not be fully understood, as in the IEM context. 

Running of tests can be automated (Verweij et al., 2010) such that a 
collection of unit (and property-based) tests could then form a regression 
and/or integration test suite. Regression tests help alert developers to 
the unintentional (re)introduction of issues that may have been previ-
ously addressed during model development (Huizinga and Kolawa, 
2007; Yoo and Harman, 2012). Integration tests are those intended to 
ensure that the combined operation of multiple functions (e.g. model 
coupling) is both technically and conceptually sound and may also be 
continuously applied throughout the modeling process (Danglot et al., 
2020; Laukkanen et al., 2017). Testing can uncover bugs or other issues 
that are “show stopping”: high-priority issues that render further work 
inadvisable without them being addressed. From a Bayesian perspective, 
the more tests that are available (covering more of the codebase and the 
conditions of their use), the more confident modelers can be in the 
correct functionality of the model (Davidson-Pilon, 2016). 

Although there is some evidence that software testing practices are 
being adopted within the computational sciences (Hannay et al., 2009; 
Sarma et al., 2016; Sletholt et al., 2012), to what extent is difficult to 
ascertain given the weak, albeit strengthening, norms requiring the 

Fig. 1. Conceptual overview of the model testing workflow within the devel-
opment process. 
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provision of model code (Hutton et al., 2016). Adoption of software 
development practices such as testing is likely to be low given recent 
literature that encourage their adoption. Software development prac-
tices, in general, are also acknowledged to play a part in resolving issues 
with replicability and reproducibility of studies in environmental sci-
ence and the computational sciences (Ahalt et al., 2014; Easterbrook, 
2014; Gray and Marwick, 2019; Hut et al., 2017). 

One possible reason for the sparsity of (reported) software testing is 
the lack of formal software development training for researchers (Han-
nay et al., 2009) and the reliance on mathematical or statistical rigor in 
model implementation. There is also an element of trust involved due to 
the variety of disciplines found within IEM development: as constituent 
models and their components are taken to function correctly in the un-
integrated context, they are assumed to be correct in the integrated 
context. Regardless of the reasons, the consistent application of tests for 
environmental model quality assurance appears to still be in its infancy. 
The subsequent possibility of technical complications influencing model 
results (referred to as technical uncertainty; Walker et al., 2003) or as a 
consequence of conceptual mismatches across disciplinary specialists 
appears to be largely ignored. 

2.1. Practical considerations of computational budget 

It is important to recognize and consider the computational costs 
involved in the diagnostic context as every computational work is sub-
ject to a budget arising from the intertwined concerns of available time, 
computational power and monetary cost. These concerns are collec-
tively referred to here as the computational budget. A hypothetical 
context, wherein a model integrator performs tests on a typical desktop 
computer, is described here to service the argument. Although dedicated 
infrastructure may be available (e.g., distributed or cloud-based plat-
forms), they too would be constrained by the same or at least similar 
considerations regarding their computational budget. 

As IEMs are often time-consuming to evaluate, model diagnostics 
may be scheduled to run overnight on a desktop computer (e.g., 5 p.m. 
to 9 a.m., or 16 h). Current typical development machines have 4 cores. 
If the model is estimated to take, on average, an hour to run, then 64 
model evaluations may be conducted in the available time. In practice, 
model runtimes should be expected to be variable, and computational 
performance is unlikely to scale linearly with the number of cores due to 
the computational overheads involved. A rule of thumb to arrive at an 
estimate of runtime is given by: 

c ⋅ t⋅(1 / r) (1)  

where c is the number of cores available, t is the time available in hours, 
and r is the estimated model run time in hours (assumed here to be ≤ t). 
It is common practice to inflate the runtime estimate (r) by some degree 
(e.g., by 10%) based on prior empirical knowledge of the model’s 
computational performance and requirements. Overestimating the 
runtime ensures that model evaluations complete within the defined 
available time given the variability of model runtime and computational 
overhead. Such considerations are also important in cases where cloud- 
based infrastructure is adopted as such services may charge by a unit of 
time (e.g., per minute). Description of the terms used throughout the 
paper are provided in Table 1 for ease of reference. 

Running of tests can be structured such that they are run from the 
simplest (and least time-consuming) to the most complicated (and 
computationally intensive). Failure of a simple test may then negate the 
need to run a more computationally intensive test. In some cases, failure 
of any single test may preclude the necessity of running any other tests, 
as the model has been shown to have issues, or at least allow for a more 
targeted diagnostic to occur. Structuring tests in this manner aids in 
conserving available computational budget. 

2.2. Example unit and property-based testing 

Box 1 shows an example unit test implemented in the Python pro-
gramming language (with the ‘pytest’ framework; Krekel et al., 2004) 
for an example linear function (Case 1 in Li et al., 2010): 

y= x1 + x2 + x3 + x4 + x5 (2) 

This simple example illustrates unit tests that protect modelers from 
changes (inadvertent or otherwise) that may introduce errors that would 
otherwise go unnoticed, but only for a specific known result. One 
disadvantage of unit testing is the need for such specificities to be 
known, and for tests to be written for each. While requirements may be 
known in advance, particularly in “business-oriented” software devel-
opment, it is less likely in research modeling contexts, and even less 
likely where the complex interactions between models are involved, as 
in IEMs. While it is possible to test that a known correct model output 
has not changed, such a test does not apply to new model configurations, 
as is common when integrating existing models. 

To counter this limitation, modelers may adopt a property-based 
testing approach (Fink and Bishop, 1997), wherein the expected 
behavioral aspect of the software/model is tested, rather than a specific 
known output as with the regular unit testing approach. Sets of inputs to 
feed into the model would be automatically generated in a 
property-based testing approach. Property-based testing was perhaps 
popularized by the QuickCheck tool for the Haskell programming lan-
guage (Claessen and Hughes, 2000), which sparked the development of 
similar tooling for other programming languages. Such testing frame-
works can assist in determining the properties of failing tests themselves, 
helping to identify specific cases in which the model does not behave as 
expected (Löscher and Sagonas, 2017). 

To give a specific example, one such test could serve to ensure a zero 
or positive valued output is obtained (i.e., ≥ 0) in cases where the sum of 
positive inputs is greater than the absolute sum of negative inputs, as 
this is an expected property of the model. Box 2 depicts an imple-
mentation of such a property-based test, along with its output indicating 
that the test failed as the model does not produce the expected behavior. 
Code for these examples are provided in Iwanaga (2020). On examina-
tion, we see that the model was incorrectly implemented (see Box 3) but, 
crucially, in a way the previous unit test shown in Box 1 would still pass. 
The results illustrated here should not be taken to mean that 
property-based testing supersedes unit testing as both are useful and can 
be leveraged in tandem to inform the level of confidence in the model 
implementation. 

Modelers may find that property-based testing is somewhat analo-
gous to pattern-oriented modeling (Grimm, 2005; Grimm and Railsback, 
2012), although the focus of the latter is on model construction and 
calibration. There is a conceptual similarity in that both 
pattern-oriented and property-based approaches evaluate model “ac-
curacy” against known (or desired) behavioral properties rather than 
evaluating against a single point of truth (i.e., a benchmark). Failure of a 
model to adhere to expected behavior then invalidates the assumption 
that the model is functioning correctly. It is, therefore, useful to test 

Table 1 
List of terms and their definitions as used in this paper.  

Variable Definition 

n  Number of sample repetitions 
p  Number of model parameters/factors/inputs/dimensions 
N  Total number of model evaluations 
s  A targeted subset of model parameters, or groups of parameters, for 

analysis such that s < p  
c  The number of available computer cores for the purpose of running a 

model for diagnostic sensitivity analysis 
t  The time (in hours) available to conduct diagnostic sensitivity analysis 
r  The estimated runtime of the model (in hours), assumed to be ≤ t   
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against a broad range of expected behavioral patterns as models are 
modified and coupled, and to do so frequently throughout the modeling 
cycle. 

3. SA in the evaluation process 

Sensitivity analysis (SA) can play multiple roles in the model eval-
uation process. A common use of SA is to screen and rank factors 

Box 1 
Example unit test which checks that the model run with all zero inputs returns 0.0 as its output. The output from the pytest framework is shown 
below indicating the test passed as expected.

Box 2 
Example property-based test. The sign of the result should be consistent with whether the sum of positive terms is greater or smaller than the sum 
of negative terms. The test generates 100 test cases with values for x between − 100 and 100. Test results indicate that although the earlier unit 
test passed, the property-based test failed.
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(parameters and input variables) according to their influence on model 
outputs (Razavi et al., 2020; Saltelli et al., 2008). SA may also be used to 
analyze the bounds and uncertainties of a model’s parameters and its 
predictions, and is valuable in assessing model identifiability (Guillaume 
et al., 2019; Shin et al., 2015). Model sensitivities have also been 
assessed as part of a diagnostic evaluation procedure, to aid in verifying 
models and their structure (Gupta et al., 2008; Pianosi et al., 2016; 
Sieber and Uhlenbrook, 2005). Typical applications of diagnostic SA 
concern themselves with the identification of model components or 
parameters that explain (or should explain) differences between simu-
lated and observed system behavior (Gupta et al., 2008; Reiter, 1987; 
Saltelli et al., 2004). Diagnostic SA typically assumes that model 
development is complete. Rarely is it framed as an approach to test and 
validate model behavior throughout the model development cycle. 

A key consideration in the selection of an SA method (or methods) is 
its appropriateness for the intended aim constrained by the available 
computational budget. Screening and ranking parameters, for example, 
requires substantially fewer model runs to accomplish compared to 
obtaining estimates of parameter sensitivities (Herman et al., 2013; 
Sarrazin et al., 2016). Screening for parameters on which to conduct 
further analysis is a common practice that aids in conserving computa-
tional budget (Cuntz et al., 2015; Mai and Cuntz, 2020). Fixing the 
resultant insensitive parameters constraints the number of parameter 
combinations to be run for later Global SA or Bayesian uncertainty 
analysis. The trade-off is a risk that fixing parameters may introduce 
large errors in the quantities of interest. 

In the following subsections, we describe typical SA approaches and 
their suitability in the diagnostic context. For context, brief descriptions 
of the terms used are provided in Table 2. 

3.1. Sensitivity analysis methods 

In typical local sensitivity analysis (LSA), each model parameter is 
assigned a “best guess” baseline value and then changed (‘perturbed’) by 
setting to some pre-selected value or multiplying by some proportion 
and then returned to their baseline value whilst others remain fixed 
(Campolongo et al., 2011). The derivative is calculated for each change 
and the process repeated for each parameter one after the other, giving it 
its name “One-At-a-Time” (OAT). Any changes to the model output are 
thus attributable to the parameter that was perturbed. Such approaches 
are defined as “local” as they are only capable of providing indications of 
sensitivity at specific points in parameter space. In contrast to global 
sensitivity analysis (GSA), LSA cannot provide indications of in-
teractions between parameters and their effect on model outputs (Salt-
elli et al., 2019; Wagener and Pianosi, 2019). The OAT approach 
described here is referred to as a ‘pure OAT’ to distinguish it from other 
(global) approaches, which may also vary parameters one-at-a-time. 

There are other approaches to SA that do not rely on OAT. Variance- 
based methods are a commonly used class of GSA which involve the 
perturbation of parameters all-at-a-time (Douglas-Smith et al., 2020). 
Although more appropriate for parameter sensitivity estimation 

compared to pure OAT, variance-based approaches can be difficult to 
apply for early diagnosis of model issues where large numbers of pa-
rameters and long runtimes are involved. Sufficient samples are needed 
to obtain accurate sensitivity estimates, and this can increase exponen-
tially with the number of parameters involved. There is, however, no 

Box 3 
The example function (#1) from Li et al. (2010) with an incorrect implementation. Note the subtraction of x5 and compare with (Eq (2)).

Table 2 
Terms used to describe the role of sensitivity analysis.  

Term Description Reference for more 
information (where 
applicable) 

SA Sensitivity analysis – 
LSA Local sensitivity analysis – 
GSA Global sensitivity analysis – 
OAT One-At-a-Time analysis – 
R-OAT Radial One-At-a-Time analysis Campolongo et al. 

(2011) 
PoI Parameter of Interest – 
QoI Quantity of Interest – 
Parameter 

sensitivity 
Measures of sensitivity may have 
a direct interpretation, e.g., the 
magnitude of effect of an input on 
the output, or the variance 
attributable to an input. 

(Hamby, 1994; Saltelli 
et al., 2008) 

Screening The identification of insensitive 
parameters; those that have little 
to no effect on model outputs. 
Screening may also be used as a 
diagnostic test for parameter 
inactivity (proposed in this 
paper). 

(Herman et al., 2013;  
Saltelli et al., 2008;  
Sarrazin et al., 2016) 

Ranking The ordering of parameters by 
their influence on model results 

(Pianosi et al., 2016;  
Saltelli et al., 2008) 

Parameter 
identifiability 
and equifinality 

“Parameter identifiability 
analysis assesses whether it is 
theoretically possible to estimate 
unique parameter values from 
data, given the quantities 
measured, conditions present in 
the forcing data, model structure 
(and objective function), and 
properties of errors in the model 
and observations.” 
If the objective function is 
insensitive to a parameter, it 
means that the objective function 
is flat, and the parameter is not 
identifiable. 
A related concept is that of 
equifinality, which refers to the 
principle that the same output 
may be obtained using different 
methods, models, parameters, 
and combinations of parameter 
values with the same set of 
observations. In short, multiple 
conceptualizations may lead to 
equally acceptable outcomes. 

Guillaume et al. (2019) 
Beven and Freer (2001)  
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universally applicable rule that provides a reliable estimation of the 
number of samples required, which changes from method to method, 
sampling regime, the number of parameters, the model itself and its 
quantities of predictive interest (Wagener and Pianosi, 2019). 

Pure OAT is unsuitable for comprehensive analysis of sensitivities in 
complex models with non-linear behavior as wider areas of parameter 
space must be explored to capture global indications of parameter in-
teractions (Razavi and Gupta, 2015; Saltelli and Annoni, 2010; Yang, 
2011). Despite these shortcomings, OAT remains prevalent in model 
assessment against published advice (Ferretti et al., 2016), although the 
situation does appear to be slowly improving (Douglas-Smith et al., 
2020). One clear advantage that OAT has, exploited in the PbSA 
approach of this paper, is its conceptual and computational simplicity 
relative to other methods. 

The Morris method (Morris, 1991) is an extension of the OAT 
approach (Vanrolleghem et al., 2015), being capable of providing 
adequate indications of sensitivity for a variety of purposes in the 
context of complex nonlinear models (Sun et al., 2012). The Morris 
method changes parameter values one-at-a-time (and so is sometimes 
referred to as Morris One-At-a-Time) but does so in a stepwise manner, 
without dependence on nominal values, through a process known as 
trajectory sampling. Unlike the pure OAT approach, parameter values 
are not reset to their original start points and instead are kept until all 
parameters have been modified. The process is repeated n times so that 
the total number of model evaluations is N = n⋅(p + 1), where usually 
n ≈ p or less (Norton, 2009). Thus, the number of model evaluations 
increases quadratically with the number of parameters, unless n≪ p in 
which case the increase is linear. 

The sensitivity index produced by the Morris method indicates the 
relative change in the quantity of interest regarding the changed 
parameter value (the average elementary effect, μ), the average absolute 
change in parameter value, which accounts for the effect negative values 
may have (denoted as μ*), and its standard deviation (σ), which in-
dicates interaction and non-linear effects. A high σ indicates that a 
parameter is interacting with others (Braddock and Schreider, 2006; 
Pianosi et al., 2016; Saltelli et al., 2008). The Morris method is often 
recommended for screening and ranking purposes (Cuntz et al., 2015; 
Saltelli and Annoni, 2010) as it requires fewer model runs to arrive at an 
acceptable parameter rank or screening conclusion compared to other 
common SA approaches (see, for example, (Braddock and Schreider, 
2006; Cuntz et al., 2015; Herman et al., 2013; Sun et al., 2012)). 

An alternative to the Morris approach is the application of OAT with 
a “radial design”, wherein the pure OAT approach is repeatedly applied 
around different “start points” (Campolongo et al., 2011). In this Radial 
approach (referred to as R-OAT from hereon), the model is evaluated n⋅ 
(p+1) times, where n is the number of repetitions. It is noted here that 
R-OAT transforms OAT from a local to global SA when n > 1. Thus 
R-OAT is equivalent to pure OAT when n = 1, and the total number of 
model evaluations is the same as with the Morris method. Unlike the 
Morris method, however, R-OAT does not require a specific sampling 
scheme and can leverage existing schemes such as Latin Hypercube, 
Sobol’ sequences, or even simple Monte Carlo to gain an indication of 
variance-based indices (Campolongo et al., 2011; Pianosi et al., 2016). 

R-OAT is particularly appealing within the IEM context due to its 
simplicity and scalability, leading to its application being relevant 
throughout the model development life cycle. As suggested previously 
by Campolongo et al. (2011), a collection of SA results can be built up in 
stages where and when necessary. Smaller samples for diagnostic pur-
poses can be built on, with additional samples added for screening and 
ranking. Larger samples can be used to obtain an indication of global 
effects via variance-based indices, assuming no implementation or 
integration errors are identified. 

There are alternatives to variance-based approaches, such as 
moment-independent (also known as density-based) approaches from 
which usable indicators can be obtained with a reduced number of 

samples relative to variance-based approaches. The PAWN method 
(Pianosi and Wagener, 2015, 2018), for example, was found to be able to 
identify parameters of significance with 10% of the samples needed by 
the Sobol’ method for a 26-parameter hydrological model (200 
compared to 2000 samples; Zadeh et al., 2017). 

With the PAWN and Sobol’ methods, a dummy parameter can be 
used to obtain an indication of insensitive parameters. A dummy 
parameter is an inactive factor that does not have any influence on the 
behavior of the model (i.e., it is completely insensitive). Parameters that 
are awarded a sensitivity rank equal to or less than the dummy 
parameter are assumed to be insensitive. The focus therein, however, is 
on assessing parameter sensitivities rather than expected model 
behavior. 

The use of emulators, which approximate the model response surface 
with an abstract formalism, is one oft-suggested approach to resolving 
issues of computational complexity and runtime (e.g. Yang et al., 2018), 
and could in principle be used to speed up testing. Developing emula-
tors, however, requires sufficient areas of parameter space to be repre-
sented. The time taken to obtain the necessary samples for a complex 
model is typically prohibitive in the context of the model development 
cycle. By the time the emulator is ready, the model is likely to have 
undergone significant changes such that the emulator represents an 
obsolete version. A further consideration is that many methods require 
that the response surface have a level of smoothness for it to be 
approximated and that the parameterization of the original model is not 
exceedingly high (Oakley and O’Hagan, 2004; Sudret, 2008). The above 
criteria are often not met in the case of IEMs. The error in emulators also 
needs to be evaluated prior to use, as emulation of an IEM with con-
ceptual or implementation issues renders any subsequent uses of the 
emulator beyond diagnostic tests inappropriate, making their develop-
ment too costly for the sole purpose of obtaining indicative results. 

3.2. Example diagnostic SA 

To provide an illustrative, if simplistic, example of diagnostic SA 
within the development cycle, a hypothetical model developer could 
apply the Morris method (Morris, 1991) to gain an indication of the 
behavior of the (incorrectly implemented) model introduced above (see 
Box 2 and 3). The Morris sensitivity index indicates the relative change 
in the quantity of interest regarding the changed parameter value (μ), 
the average absolute change in parameter value (μ*) which accounts for 
the effect negative values may have, and its standard deviation (σ) 
which indicates interaction and non-linear effects (Campolongo et al., 
2011). The method as implemented in the SALib (Sensitivity Analysis 
Library; Herman and Usher, 2017) package for Python is used here for 
demonstration purposes, which applies the improved sampling method 
introduced in Ruano et al. (2012). Relevant code for this example may 
be found in Iwanaga (2020). 

For the example linear function (Eq (2)), two properties are ex-
pected. First, the effect of each parameter is expected to be positive 
given the quantity of interest is the sum of all inputs. Second, the 
contribution of parameters to the quantity of interest is expected to be 
equal, again due to the linear nature of the model. Although the second 
property is satisfied, the results indicate that x5 is having a negative 
effect due to the erroneous implementation. Fig. 2 depicts this unex-
pected result for the erroneously implemented example function (see 
also Eq (2) and Box 3). 

In the software testing paradigm, diagnostic SA is a form of property- 
based test as the model property (i.e., its sensitivities) are being inves-
tigated and evaluated, although modelers usually apply this in a more 
‘manual’ manner through the visualization and qualitative assessment of 
results. Diagnostic SA may be an effective complement to ‘traditional’ 
software development tests, particularly in complex integrated 
modeling contexts, as the correct functioning of code in isolation does 
not necessarily imply conceptually correct integrated model behavior 
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(Voinov and Shugart, 2013). One barrier to the adoption of diagnostic 
SA is the reported lack of norms around investigating model sensitivities 
(Saltelli et al., 2019). Use of SA, in general, is reportedly low with the 
complexity and lack of understanding of recommended SA techniques 
being one suggested reason for the lack of uptake (Ferretti et al., 2016; 
Saltelli et al., 2019). There may also be resistance towards the adoption 
of the new and unfamiliar (known as the status quo bias; Samuelson and 
Zeckhauser, 1988) as hypothesized in Ferretti et al. (2016). 

4. Parameter (in)sensitivity as a property to test 

The IEM development context can involve multiple modeling para-
digms, disciplinary/sectoral knowledge and feature the adoption of 
multiple technologies, including different computational infrastructure 
and programming languages (Hannay et al., 2009; Hut et al., 2017; 
Hutton et al., 2016; Sletholt et al., 2012). As mentioned in the Intro-
duction, this leads to a situation in which no single modeler has a full 
and complete understanding of the models involved. Given the complex 
development context of IEMs, one fundamentally important property 
that IEM and other model developers can target for indicative assess-
ment is the inappropriate sensitivity of parameters known to have 
cross-system influences. 

The principal idea here is that parameter sensitivities are generally a 
robust property of model behavior that provide indications of correct 
model implementation and integration. Parameter activity or inactivity 
(i.e., complete insensitivity) is a property that will remain invariant even 
as the model itself changes and evolves through the model development 
cycle and as the precise model outputs change. Thus, diagnostic SA 
applied as a form of property-based test to regions of parameter space in 
which model behavior is expected to be sensitive (or insensitive) can 
then provide early confidence that other, more computationally 
demanding, processes can proceed without issue. 

For IEMs, conceptual analysis of the relationships between the 
models can be invoked to identify parameters to test (an example is 
provided in Section 5). Quantitative assessment of SA results within the 
automated testing process could alert modelers to unintended changes 
that unknowingly affect model applications. Such tests may also guard 
against issues of technical uncertainty (specifically computational 
infrastructure uncertainty), as model behavior may differ under 
different computational contexts (Bhandari Neupane et al., 2019; Iwa-
naga et al., 2020a; Walker et al., 2003). 

4.1. Testing for inactivity with Property-based SA 

To provide a concrete example with the earlier example function, 
another error is introduced, perhaps in the process of correcting the 
earlier implementation issue (shown in Box 4), which cancels out the 
effect of parameter x5. Diagnostic SA results with the Morris method are 
shown in Fig. 3, highlighting the issue for modelers to investigate. This 
simplistic example is intended to illustrate the concept; a more 

Box 4 
The example function with another bug introduced in the process of correcting the earlier issue shown in Box 3. Note that an addition of x5 has 
been accidentally included rather than replacing the earlier subtraction of x5.

Fig. 2. Example of diagnostic sensitivity analysis using Morris. Identical, or 
near identical, positive effect (indicated by μ) would be expected for the 
example linear function. Diagnostic results instead show negative effect from x5 

given the incorrect implementation. The μ* values indicate equal contributions 
from all parameters as is expected. The σ metric is not shown here to reduce 
clutter in the figure as it is unimportant for the purpose of this illustration. The 
number of grid levels for the Morris approach is set to 4 as suggested in the 
literature (Campolongo et al., 2007). Results were obtained with 12 model 
evaluations (n = 2). 

Fig. 3. Unexpected results (with Morris method) for the model with imple-
mentation error which renders x5 inactive. Results obtained with 12 model 
evaluations. 
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expansive example is provided in Section 5. 
Although the Morris method is applied in this specific diagnostic 

case, the same conclusion of inactivity can be reached with a purely One- 
At-a-Time (OAT) analysis with p + 1 model evaluations in the worst case 
(i.e., N = 6 for the example function). As indicated in Section 2.1, 
identified issues with the model implementation (or integration) 
through the failure of a test at any point may negate the need to run 
further tests. Failure of OAT to produce expected results negates the 
need to apply other, more computationally intensive, tests and SA. For 
this reason, the total number of evaluations to invalidate the model may 
be less than p+ 1. Hypothetically, it may not be necessary to test all 
parameters, as in cases where only a certain subset of parameters 
(denoted as s, where s < p) is expected to influence model interactions. 
In such cases, inappropriate model behavior could be determined with 
N = 2, …, s + 1 model evaluations. 

Unexpected results should be investigated before any further ana-
lyses proceed. Use of a purely OAT approach is heavily discouraged in 
the literature (Saltelli et al., 2019; Saltelli and Annoni, 2010) and it is 
suggested as appropriate here only because of the expectation that other 
forms of tests and SA will be applied after property-based SA tests pass. It 
is stressed here that relying on OAT for purposes outside this first-pass 
diagnostic context is not encouraged. In the case of IEM development, 
property-based tests that focus on parameters that influence model in-
teractions can be a computationally effective approach to obtaining a 
first-pass indication of correct conceptual and technical model 
integration. 

4.2. Example Property-based SA for parameter inactivity 

We devise two property-based testing strategies for the quick, first- 
pass, identification of model integration issues. The first is a form of 
OAT referred to as extremity testing, and the other follows a more usual 
sensitivity analysis approach using R-OAT. As noted previously, failure 
of these tests indicates the presence of issues that should be further 
investigated prior to the application of more computationally expensive 
diagnostics (e.g., a global sensitivity analysis) or operationalization of 
the model. Both approaches require that the conceptual relationships 
between parameters at their extremes and the targeted QoIs are known 
beforehand. 

With extremity testing the model is run just twice (i.e., N = 2). One 
run is to be conducted with the targeted parameters perturbed to their 
lower extremes, and the other run with parameters set to their upper. An 
example is shown in Box 5. In practice, any sufficiently large pertur-
bation should suffice, and the upper and lower extremes are suggested 
here for conceptual simplicity and ease of application. Under usual ap-
plications of SA, extremity testing comes with a risk of Type I and II error 
(a false positive or negative) due to non-monotonicity. The approach is 
applicable in this specific case as the conceptual relationship between 
QoIs and parameters is an a priori expectation. Diagnostics are being 
carried out in a restricted (local) area of parameter space where sensi-
tivities are expected to exist. The primary concern is to determine 
whether the effect can be identified before the application of the model 
and more rigorous analysis such as with GSA. Note that diagnostics may 
also be carried out in regions of parameter space that are known to 
produce no effect, wherein larger than expected (i.e., non-zero) sensi-
tivities can also indicate an issue. 

PbSA, in this case using R-OAT, can be useful in identifying the 
conditions in which unexpected behavior occurs, thereby helping to 
avoid a potentially time-consuming debugging exercise. Two re-
quirements can then be set for a GSA method to be a practical comple-
ment in the IEM development context. It would be desirable for any 
samples to be reusable in a later GSA if results are found to be accept-
able. Another requirement is that the time taken to conduct such ana-
lyses should not exceed the available computational budget for such 
analyses to be timely and useful. 

The illustrative examples provided in earlier sections showcase a 

diagnostic approach from both software development and SA perspec-
tives. In these examples, however, the hypothetical modeler has suffi-
cient understanding of the model and its implementation details to apply 
and evaluate results from both tests and diagnostic SA. In the context of 
integrated environmental modeling, this may be a luxury rather than a 
given due to the aforementioned interdisciplinary nature of IEM devel-
opment (Iwanaga et al., 2021; Knapen et al., 2013). In Section 5 we 
describe the case of the Campaspe Integrated Model and the usefulness 
of PbSA with extremity testing as an indication of valid model 
integration. 

5. An example with the Campaspe Integrated Model 

The Campaspe Integrated Model (CIM) (Iwanaga et al, 2018, 2020a) 
is a hydro-environmental-economic model used to explore water man-
agement options. The CIM is highly complex, featuring interactions 
between six non-linear component models, each representing a specific 
system. It can be considered a system-of-systems model in which a 
representation of the socio-environmental system is built up from mul-
tiple independent and interacting constituent models (Little et al., 
2019). In the hypothetical development context, individual model de-
velopers are disciplinarily diverse with their own traditions, practices 
and preferred modeling approaches. A common language and perspec-
tive of the modeling being conducted may still be developing (MacLeod 
and Nagatsu, 2018; Thomas and McDonagh, 2013). Modelers may also 
be geographically spread, inducing delays in communication that in-
crease the risk of inadvertent errors being introduced. 

To reflect this interdisciplinary context, the model is treated here as a 
gray-box for the purpose of the example. Modelers involved in the 
integration of constituent models may have working knowledge of the 
represented system and the operation of each model (e.g., imple-
mentation and usage), but are not necessarily disciplinary specialists 
themselves. Thus, the primary concern in the initial stage is to gain 
confidence that operation of the IEM is both conceptually and techni-
cally sound by testing the assumptions associated with the conceptual 
understanding (Iwanaga et al., 2020a; Wilson et al., 2017). Falsifying 
the assumption that the model is integrated correctly also helps to pre-
serve available computational budget. 

In the development IEMs, the relationships between all parameters 
and QoIs may not be fully known because of the complex model in-
teractions that occur. Parameter activity/inactivity may be a proxy that 
indicates correct model integration. Testing for the “obvious” behavior 
(i.e., change of PoI have flow-on effects that should affect the QoI), and 
continual confirmation that the behavior is present throughout the 
development cycle is valuable in that errors or conceptual mismatches 
could be highlighted, and corrected, earlier in the modeling cycle. In 
other cases, the conceptual understanding that the model integrator has 
may not be complete and so the testing process could be helpful in 
improving modelers’ understanding of the IEM. New knowledge or 
model configurations may invalidate previously “obvious/assumed” 
behavior; in which case the tests serve to alert modelers to a change in 
context. Change in context should subsequently be documented and the 
relevant tests updated to reflect this new understanding. 

In this example, the model integrator is principally focused on the 
policy, surface water hydrology, and farming system models, however 
the entire model also includes representations of climate, groundwater 
and ecology. An example of the initially known interactions between the 
constituent models of interest is provided in Fig. 4. Further description 
of the CIM may be found in (Iwanaga et al., 2020a). Interactions be-
tween all models affect the main quantity of interest selected here; that 
is, the long-term surface water allocation index, which indicates the 
average volume of water made available to water users over the simu-
lation period. The CIM has 53 parameters which may all be varied. 
Runtime of the model is variable depending on the scenario being run 
but typically takes 30 minutes. 

The influence of a single PoI – “irrigation efficiency” – is investigated 
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in this hypothetical context. The parameter relates to the efficiency of 
water application for “pipe and riser” irrigations, a common irrigation 
mode available to farmers in the Campaspe region. We consider the 
effect on modeled long-term average surface water allocations. 
Rendering the PoI static simulates an inadvertent change that intro-
duced an implementation or integration error. Interactions between 
models are consequently inappropriately represented. Specific details of 
the PoI are provided in Table 3. 

Irrigation efficiency relates to the proportion of water that reaches a 
crop’s root zone. The higher the efficiency rating, the less water that is 
“wasted” or “lost” from a farmer’s perspective to evaporation, run-off, or 
deep drainage (e.g., aquifer recharge). Hence, the more efficient an 
irrigation system, the less water required to maintain crop productivity 
for a given spatial area, and the less water extracted from the dam. Water 
is allocated each year to farms by the policy model. Excessive use of 
water by farmers in one year can reduce farm water availability in 
subsequent years, making efficient irrigations desirable. 

Given the available computational budget (as contextualized in 

Section 2.1), overnight execution of tests between 5pm and 9am (i.e., 16 
h) would allow < 128 model evaluations on a (currently) typical 4-core 
machine, using Eq (1) above, assuming a consistent 30-min runtime. A 
lesser number should be selected to ensure model runs resolve within the 
available time as runtime should not be expected to be consistent (as 
explained in Section 2.1). Relevant to the point here is the application of 
the Morris method for a REALM model as reported in Braddock and 
Schreider (2006). The REALM model is similar to the CIM in terms of 
geographic region (targeting the neighboring Goulburn catchment) and 
its use in water allocation modeling. Computational considerations 
which constrained the number of available model samples are high-
lighted therein. Use of cloud-based testing infrastructure is ignored for 
the purpose of illustration and may potentially be cost-prohibitive 
depending on the project budget. It is unlikely that indicative results 
would be obtained with GSA. Development and use of emulators are 
similarly precluded given their requirement for sufficient areas of 
parameter space to be represented, which is not possible within the 
allotted time. 

Box 5 
Example automation of extremity testing where the bounds of each parameter are set to − 100 and 100. Output has been modified for clarity. In 
this specific case, checking for a lack of change in the ‘result’ variable relative to ‘nominal_result’ or a ‘y_diff’ equal to 0.0 also suffices. This test 
could be repeated with varying parameter values using a sampling scheme (e.g., Sobol’, Latin Hypercube) or monte carlo.
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5.1. Extremity testing results 

To demonstrate the diagnostic use of OAT, interactions between the 
surface water and policy models are initially deactivated such that dam 
level calculations never account for the volume of water used by farms. 
Therefore, pipe and riser irrigation efficiency (the PoI) will not directly 
influence the long-term surface water allocation index (the QoI). Func-
tionally, the deactivated parameter is equivalent to a dummy parameter. 

In this example, an extremity test is applied by those integrating the 
models (the ‘model integrators’). All 53 parameters are perturbed be-
tween their lowest and highest values with a cost of N = 2 model runs. 
Unexpected results (e.g., no change, or smaller-or-larger than expected 
change) indicate issues which modelers should investigate. Grouping 
parameters by their parent model components could also give at least an 
indication of which model in the IEM the issue stems from. The example 
results show that significantly higher volumes of water are allocated in 
the deactivated case, much more than what would be expected under 
“normal” circumstances (as shown in Fig. 5). The reason is that the farm 
water orders are never considered, and the dam is never depleted. 

Such errors may inadvertently creep in during model development 
and integration. Examples include misunderstanding of the model 
interoperation (e.g., what outputs from one model relate to an input to 
another) implementation error (e.g., a bug in a model), or technical 

Fig. 5. Extremity testing results where all parameters are perturbed between their lower and upper bounds (i.e., N = 2). Change in surface water allocations in the 
disabled case far exceed what is possible from parameter perturbations alone. 

Table 3 
Description of the parameter of interest: irrigation water application efficiency.  

Parameter of Interest Nominal Value 
(and Range) 

Reference(s) 

Pipe and Riser Irrigation 
Efficiency (%) 

60% (60–90%) (Finger and Morris, 2005;  
Tennakoon et al., 2013)  

Fig. 4. A simplified component interaction di-
agram showcasing the feedback loop between 
constituent models, as initially envisioned by 
the model integrator. The farm model de-
termines the volume of water to apply to satisfy 
crop needs. The volume of water required is 
dependent on the efficiency of the irrigation 
system (the Parameter of Interest). The water is 
extracted from the dam (represented in the 
surface water model) and the subsequent water 
levels inform the future volume of water allo-
cated for agricultural use and thus, long-term 
surface water allocations (the Quantity of In-
terest). The inter-connection between the sur-
face water and policy models is switched on (*) 
and off (**) to generate two case results for this 
study, simulating an inadvertent implementa-
tion and/or integration error.   
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issues (e.g., different compilers producing different machine code). It is 
acknowledged here that the presented approach is viable in cases where 
the rough order of magnitude effect is known. The results additionally 
indicate that the QoI will be affected even if the PoI is completely 
deactivated, suggesting that the QoI is affected by other factors. Thus, 
the conceptual understanding (depicted in Fig. 4) is not complete; there 
are other factors which influence the QoI. Example code, data, and 
figures presented in this paper are provided as supplementary material 
via the Open Science Framework (see Iwanaga, 2020; Iwanaga et al., 
2020b). Further description of other model analyses conducted on the 
CIM can be found in Iwanaga et al. (2020a). 

A single parameter can be targeted (i.e., s = 1), either after the above 
issue has been identified and further confirmation is desired, or where 
the relative change from perturbing all parameters is unknown. In this 
specific case, any perturbation of the PoI should be sufficient, as the 
behavioral property being tested for is the presence of change in the QoI 
when all other parameters are set to their nominal “best guess” values. 
An OAT test with a further two model runs is thus applied to the PoI 
(illustrated in Fig. 6). Because the interaction between models is 
disabled, the results show no change in long-term surface water allo-
cation. It is re-emphasized here that the diagnostic property-based test 
targets areas of parameter space for which the PoI and QoI are expected 
to be sensitive, and that diagnostic applications of SA should be con-
ducted alongside other testing processes. 

5.2. A global approach to Property-based SA 

In this example parameter activity/inactivity is used as a proxy to 
indicate correct model integration. The relationship between the PoI and 
QoI could be tested using R-OAT and Morris to confirm the presence of 
some sensitivity across parameter space. The R-OAT and Morris methods 
are applied here given that they are known to provide reliable in-
dications with fewer samples compared to other GSAs (as noted in 
Section 2.1). Samples were generated by producing n⋅ (p+1) parameter 
sets, such that n points in parameter space were sampled based on the 
targeting distribution. 

As shown in Fig. 5, other factors may influence the QoI and so a non- 
zero sensitivity value is to be expected given that these GSA approaches 
report the average effect with parameter interactions. For this reason, 
we adapt the dummy threshold approach from Zadeh et al. (2017), 
wherein a parameter is considered insensitive if the reported sensitivity 
value is comparable to the sensitivities reported for the dummy 
parameter. In this case, we apply such a threshold to indicate an unex-
pected lack of activity: an “activity threshold”. 

An “activity threshold” of 0.1 is empirically set for this example, a 
value lower than expected sensitivities for the parameter in question for 
the available number of samples, but higher than typical sensitivity 

thresholds (e.g., 0.05; Sarrazin et al., 2016). As the PoI is expected to be 
active, its reported sensitivities should be above this threshold, and 
values lower than the threshold indicate a cause for concern. Testing for 
the property of parameter activity in this manner is more robust 
compared to searching for absolute inactivity as computational (preci-
sion) error – compounded as the models within the IEM continually 
interact – may introduce variability in results (Dunford et al., 2015). 
Unexpected interactions (based on modelers’ current understanding of 
model interactions) may also cause non-zero sensitivities. 

Such tests could be incorporated as part of an automated test suite. 
Existing property-based testing frameworks could also be leveraged to 
aid in pinpointing areas of parameter space wherein errors of concern 
occur (e.g., Löscher and Sagonas, 2017). The number of repetitions 
possible under the hypothetical 16-h time limit (i.e., 5pm to 9am) is n =

2, i.e., total number of possible model runs is N = 108 given that a 
model run takes roughly 30 min. Performing an additional repetition 
(N = 162 when n = 3) would exceed the available time limit, taking 
over 20 h. We take 540 model evaluations (i.e., n = 10) purely to 
illustrate response of μ*. 

In this example, indicative confirmation that the model is not 
behaving as expected could be obtained with n ≤ 2 using R-OAT (N =

108, see the disabled case in Fig. 7). In general, how low n can be de-
pends on the parameter and model context, and some initial experi-
mentation is likely required. Similar results may be obtained with the 
Morris method (Fig. 8) in the disabled case, although in the active case 
concrete confirmation does not occur until n = 9 (i.e., N = 486). The 
results for both (i.e., no sensitivity at N = 54 for R-OAT and insufficient 
activity until N = 486 for Morris) suggest that the sampling scheme 
plays an important role in the efficacy of GSA methods for diagnostic 
purposes. 

The diagnostic context severely limits the number of samples that 
could be obtained in a timely manner and, for this reason, other GSA 
methods were not wholly considered. Preliminary results are included in 
Appendix A for the Saltelli (2002), EASI (Plischke, 2010), and DMIM 
(Plischke et al., 2013) methods, which indicate the unreliability of GSA 
methods at such low sample sizes. These results indicate potential issues 
to be overcome if these methods are to be applied for diagnostic pur-
poses in the context of rapid, iterative, model development and testing. 
In cases where no issues are identified, it is desirable for obtained 
samples to be reused to conserve computational budget. 

6. Discussion and conclusions 

This paper outlined a role SA can play in software testing practices in 
the IEM development process. Specifically, local OAT analyses coupled 
with R-OAT and/or Morris can provide a first-pass indication of the 
correctness of technical and conceptual integration of constituent 

Fig. 6. Change in results from a targeted OAT testing (N = 2). Given the model context, we would expect to see even minor changes. Analysis of model runs with the 
surface water model interactions disabled (left hand side) correctly finds no parameter effect on surface water allocation. 
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models, particularly in terms of checking the effects of active/inactive 
parameters on (expected) model behavior. Including such property- 
based diagnostics as part of an automated test suite can aid in 
conserving a limited computational budget, which is often desirable 
even in cases where there is an abundance of computational time 
available. 

With the Campaspe Integrated Model used as an example, the lack of 
an expected relationship between a PoI and QoI could be identified using 
extremity parameter value testing with just N = 2 runs when an activity 
threshold is applied. Although global sensitivity analysis methods can be 
computationally demanding, the use of R-OAT is shown to be a 
computationally efficient approach to assessing expected behavior. 
Although the Morris method was able to identify inactivity of the 
parameter of interest, it required more model runs to do so, at least in 
the presented example case. It is emphasized here that for the purpose of 
integrated model testing, the number of parameters to be perturbed 
could be further reduced in all approaches described through qualitative 
assessment that identifies which parameters would have system-level 
(or inter-system) implications. Targeting these parameters, or orga-
nizing these into groups, such that the number of perturbations is much 
fewer than the total number of model parameters would reduce the 
overall computational effort involved to gain an indicative result. 

Additionally, a failing test may negate the need to conduct further 
diagnostics as the assumption that the model is operating correctly is 
falsified, thereby aiding in conserving computational budget. More 

complete analyses could follow in cases where no Property-based SA 
tests fail. In a “full” property-based testing approach, the framework 
applied would generate a random set of inputs and iteratively narrow 
the parameter space to specific areas that cause unexpected model 
behavior (Löscher and Sagonas, 2017). Such tests could be augmented to 
use GSA methods that require comparatively limited number of samples, 
such as R-OAT. Use of ‘given data’ methods such as PAWN (Pianosi and 
Wagener, 2015), HDMR (Li et al., 2002) or methods with flexible sam-
pling requirements such as STAR-VARS (Razavi et al., 2019) could also 
be explored to identify potential advantages and limitations (e.g., Puy 
et al., 2020). 

These “given data” methods may be more suitable in the IEM context 
due to their ability to leverage available samples, and may also be used 
to complement any diagnostic analyses conducted towards a compre-
hensive GSA (Mora et al., 2019). The use of dummy parameters in 
combination with extremity testing under conditions in which model 
parameters (or targeted subset of parameters) are known to be active 
could also be explored. Alternate OAT-based global analyses that are 
potentially more efficient for obtaining indications of parameter inter-
action (e.g., Borgonovo, 2010), may also be beneficial. 

There are many approaches to validating computational models. 
Model developers can adopt a mix of testing practices from both soft-
ware engineering and statistical/mathematical analysis to cover the 
range of issues that may occur during model development. Ideally, 
modelers would not restrict themselves to techniques found in one 

Fig. 8. Similar to R-OAT, the Morris method is capable of determining insensitivity in the disabled case but required 486 evaluations (i.e., n = 9) to confirm correct 
behavior in the enabled case. Dashed line indicates the parameter activity threshold of 0.1. 

Fig. 7. Elementary Effects (EE) analysis on Radial OAT (R-OAT) samples demonstrating a lack of effect on the QoI (surface water allocations). X-axis refers to the 
total number of model evaluations. R-OAT was able to determine expected behavior at N = 108 (i.e., n = 2) model evaluations for both active and inactive cases. 
Dashed line indicates the parameter activity threshold of 0.1. 
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discipline over the other. There are, however, barriers to the adoption of 
this hybrid approach. For one, it requires the technical knowledge and 
capacity of modelers to develop and maintain tests, including the 
application of relevant SA techniques. 

It is demonstrated here that a diagnostic property-based testing 
approach with SA methods is a useful, pragmatic, and computationally 
efficient approach to providing a line of evidence that the model pa-
rameters are, in fact, having an (expected) effect. In the IEM develop-
ment context, any single model may itself require teams of domain 
specialists to fully understand, and no single person can be expected to 
grasp, all aspects, especially in cases where legacy models are adopted. 
Assessing the expected behavioral properties of a model could be 
leveraged to reduce the time taken to identify and correct model 
implementation and integration errors. 
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Appendix A 

Here, we showcase some preliminary results with three global sensitivity analysis approaches, namely Saltelli (2010), EASI (2010), and DMIM 
(2013). Unreliable results are obtained for all approaches at these relatively low sample sizes. EASI and DMIM are “given data” approaches, for which 
Morris samples are used. For the Saltelli method, only first order indices (S1) are shown (using the approach described in Saltelli et al., 2010) estimated 
with a cost of n⋅(p + 2). In practice, total, first and second order indices may be estimated at a cost of n⋅(2p+2) runs (Saltelli, 2002). The results for the 
Saltelli analysis include negative values (Fig. 9), which indicate an insufficient number of samples (Saltelli, 2008; Sharifi et al., 2019), which is to be 
expected given the known high sampling requirements of Sobol’-based approaches (Razavi and Gupta, 2015).

Fig. 9. Negative first-order sensitivity values (S1) from the Saltelli method analysis for both inactive and active cases.  

The EASI analysis technique indicates that an effect is occurring when interactions are disabled (i.e., Type I error, as shown in Fig. 10). While the 
EASI approach does not require a specific sampling scheme (Plischke et al., 2013), the results produced may be sensitive to the sampling approach. 
Very little difference was found between disabled and enabled cases when results were obtained with Morris sampling (see Fig. 11). In both cases EASI 
was unable to distinguish the (lack of) effect of an inactive parameter at these low sample sizes.                
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Fig. 10. First order effect (S1) of irrigation efficiency on surface water allocations using OAT samples. EASI analysis indicates the parameter is sensitive where model 
interactions are disabled. 

Fig. 11. Example of EASI analysis on results taken with Morris sampling. Results of first-order sensitivities (S1) appear near identical indicating larger Morris 
samples are necessary for a distinction to be made with EASI. Note that the y-axis for the top panel is in log scale. 

DMIM was unable determine the lack of influence from the PoI (see Fig. 12 and Fig. 13) with similar issues.          
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Fig. 12. DMIM analysis on OAT samples.  

Fig. 13. DMIM analysis on Morris samples.  

When compared to the results of OAT-based GSA (Morris and R-OAT in the main text), it appears that methods which indirectly estimate first-order 
sensitivity while varying multiple parameters at once do not correctly identify inactive parameters, at least at the given sample sizes. Furthermore, a 
significantly larger number of model evaluations may be required to achieve convergence which may exceed the available time for diagnostic testing, 
particularly in the case of complex and highly parameterized IEMs. 
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Löscher, A., Sagonas, K., 2017. Targeted property-based testing. In: Proceedings of the 
26th ACM SIGSOFT International Symposium on Software Testing and Analysis, 
ISSTA 2017. Association for Computing Machinery, New York, NY, USA, pp. 46–56. 
https://doi.org/10.1145/3092703.3092711. 

MacLeod, M., Nagatsu, M., 2018. What does interdisciplinarity look like in practice: 
mapping interdisciplinarity and its limits in the environmental sciences. Stud. Hist. 
Philos. Sci. 67, 74–84. https://doi.org/10.1016/j.shpsa.2018.01.001. 

Mai, J., Cuntz, M., 2020. Computationally inexpensive identification of noninformative 
model parameters by sequential screening: efficient elementary effects (EEE) (v1.0). 
Zenodo. https://doi.org/10.5281/ZENODO.3620895. 

Mora, E.B., Spelling, J., van der Weijde, A.H., 2019. Benchmarking the PAWN 
distribution-based method against the variance-based method in global sensitivity 
analysis: empirical results. Environ. Model. Software 122, 104556. https://doi.org/ 
10.1016/j.envsoft.2019.104556. 

Morris, M.D., 1991. Factorial sampling plans for preliminary computational experiments. 
Technometrics 33, 161–174. https://doi.org/10.1080/00401706.1991.10484804. 

Mossalam, A., 2018. Projects’ issue management. HBRC J. 14, 400–407. https://doi.org/ 
10.1016/j.hbrcj.2017.12.001. 

Norton, J.P., 2009. Selection of Morris trajectories for initial sensitivity analysis. IFAC 
Proceedings Volumes, 15th IFAC Symposium on System Identification 42, 670–674. 
https://doi.org/10.3182/20090706-3-FR-2004.00111. 

Oakley, J.E., O’Hagan, A., 2004. Probabilistic sensitivity analysis of complex models: a 
Bayesian approach. J. Roy. Stat. Soc. B 66, 751–769. 

Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., Wagener, T., 
2016. Sensitivity analysis of environmental models: a systematic review with 
practical workflow. Environ. Model. Software 79, 214–232. https://doi.org/ 
10.1016/j.envsoft.2016.02.008. 

Pianosi, F., Wagener, T., 2018. Distribution-based sensitivity analysis from a generic 
input-output sample. Environ. Model. Software 108, 197–207. https://doi.org/ 
10.1016/j.envsoft.2018.07.019. 

Pianosi, F., Wagener, T., 2015. A simple and efficient method for global sensitivity 
analysis based on cumulative distribution functions. Environ. Model. Software 67, 
1–11. https://doi.org/10.1016/j.envsoft.2015.01.004. 

Plischke, E., 2010. An effective algorithm for computing global sensitivity indices (EASI). 
Reliab. Eng. Syst. Saf. 95, 354–360. https://doi.org/10.1016/j.ress.2009.11.005. 

Plischke, E., Borgonovo, E., Smith, C.L., 2013. Global sensitivity measures from given 
data. Eur. J. Oper. Res. 226, 536–550. https://doi.org/10.1016/j.ejor.2012.11.047. 

Puy, A., Lo Piano, S., Saltelli, A., 2020. A sensitivity analysis of the PAWN sensitivity 
index. Environ. Model. Software 127, 104679. https://doi.org/10.1016/j. 
envsoft.2020.104679. 

Rabitz, H., 1989. Systems analysis at the molecular scale. Science 246, 221–226. https:// 
doi.org/10.1126/science.246.4927.221. 

Razavi, S., Gupta, H.V., 2015. What do we mean by sensitivity analysis? The need for 
comprehensive characterization of “global” sensitivity in earth and environmental 
systems models: a critical look at sensitivity analysis. Water Resour. Res. 51, 
3070–3092. https://doi.org/10.1002/2014WR016527. 

Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Lo 
Piano, S., Iwanaga, T., Becker, W., Tarantola, S., Guillaume, J.H.A., Jakeman, J., 
Gupta, H., Melillo, N., Rabitti, G., Chabridon, V., Duan, Q., Sun, X., Smith, S., 
Sheikholeslami, R., Hosseini, N., Asadzadeh, M., Puy, A., Kucherenko, S., Maier, H. 
R., 2020. The future of sensitivity analysis: an essential discipline for systems 
modeling and policy support. Environ. Model. Software 104954. https://doi.org/ 
10.1016/j.envsoft.2020.104954. 

Razavi, S., Sheikholeslami, R., Gupta, H.V., Haghnegahdar, A., 2019. VARS-TOOL: a 
toolbox for comprehensive, efficient, and robust sensitivity and uncertainty analysis. 
Environ. Model. Software 112, 95–107. https://doi.org/10.1016/j. 
envsoft.2018.10.005. 

T. Iwanaga et al.                                                                                                                                                                                                                                

https://doi.org/10.1007/s10584-014-1211-3
https://doi.org/10.1007/s10584-014-1211-3
https://doi.org/10.1038/ngeo2283
https://doi.org/10.1038/ngeo2283
https://doi.org/10.18174/sesmo.2020a16226
https://doi.org/10.18174/sesmo.2020a16226
https://doi.org/10.1016/j.scitotenv.2016.02.133
https://doi.org/10.1016/j.scitotenv.2016.02.133
http://refhub.elsevier.com/S1364-8152(21)00056-6/sref19
http://refhub.elsevier.com/S1364-8152(21)00056-6/sref19
http://refhub.elsevier.com/S1364-8152(21)00056-6/sref19
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
https://doi.org/10.1007/978-981-15-1960-4_8
https://doi.org/10.1126/science.1116681
https://doi.org/10.1098/rstb.2011.0180
https://doi.org/10.1098/rstb.2011.0180
https://doi.org/10.1016/j.envsoft.2019.07.007
https://doi.org/10.1002/hyp.6989
https://doi.org/10.1007/BF00547132
https://doi.org/10.1007/BF00547132
https://doi.org/10.1016/j.envsoft.2014.12.005
https://doi.org/10.1016/j.envsoft.2014.12.005
https://doi.org/10.1109/SECSE.2009.5069155
https://doi.org/10.21105/joss.00097
https://doi.org/10.5194/hess-17-2893-2013
https://doi.org/10.5194/hess-17-2893-2013
http://refhub.elsevier.com/S1364-8152(21)00056-6/sref31
http://refhub.elsevier.com/S1364-8152(21)00056-6/sref31
https://doi.org/10.1002/2017WR020665
https://doi.org/10.1002/2017WR020665
https://doi.org/10.1002/2016WR019285
https://doi.org/10.17605/OSF.IO/NUZAF
https://doi.org/10.1016/j.ejrh.2020.100669
https://doi.org/10.17605/OSF.IO/85EDC
https://doi.org/10.17605/OSF.IO/85EDC
https://doi.org/10.1016/j.envsoft.2020.104885
https://doi.org/10.1016/j.envsoft.2020.104885
https://doi.org/10.5194/piahs-379-1-2018
https://doi.org/10.1016/j.infsof.2014.05.006
https://doi.org/10.1016/j.infsof.2014.05.006
https://doi.org/10.1016/j.envsoft.2013.05.005
https://github.com/pytest-dev/pytest
https://doi.org/10.1016/j.envsoft.2012.06.011
https://doi.org/10.1016/j.envsoft.2012.06.011
https://doi.org/10.1016/j.infsof.2016.10.001
http://refhub.elsevier.com/S1364-8152(21)00056-6/sref43
http://refhub.elsevier.com/S1364-8152(21)00056-6/sref43
https://doi.org/10.1021/jp9096919
https://doi.org/10.1016/S0009-2509(02)00417-7
https://doi.org/10.1016/j.envsoft.2018.11.011
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1016/j.shpsa.2018.01.001
https://doi.org/10.5281/ZENODO.3620895
https://doi.org/10.1016/j.envsoft.2019.104556
https://doi.org/10.1016/j.envsoft.2019.104556
https://doi.org/10.1080/00401706.1991.10484804
https://doi.org/10.1016/j.hbrcj.2017.12.001
https://doi.org/10.1016/j.hbrcj.2017.12.001
https://doi.org/10.3182/20090706-3-FR-2004.00111
http://refhub.elsevier.com/S1364-8152(21)00056-6/sref54
http://refhub.elsevier.com/S1364-8152(21)00056-6/sref54
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.1016/j.envsoft.2018.07.019
https://doi.org/10.1016/j.envsoft.2018.07.019
https://doi.org/10.1016/j.envsoft.2015.01.004
https://doi.org/10.1016/j.ress.2009.11.005
https://doi.org/10.1016/j.ejor.2012.11.047
https://doi.org/10.1016/j.envsoft.2020.104679
https://doi.org/10.1016/j.envsoft.2020.104679
https://doi.org/10.1126/science.246.4927.221
https://doi.org/10.1126/science.246.4927.221
https://doi.org/10.1002/2014WR016527
https://doi.org/10.1016/j.envsoft.2020.104954
https://doi.org/10.1016/j.envsoft.2020.104954
https://doi.org/10.1016/j.envsoft.2018.10.005
https://doi.org/10.1016/j.envsoft.2018.10.005


Environmental Modelling and Software 139 (2021) 105013

17

Reiter, R., 1987. A theory of diagnosis from first principles. Artif. Intell. 32, 57–95. 
https://doi.org/10.1016/0004-3702(87)90062-2. 

Ruano, M.V., Ribes, J., Seco, A., Ferrer, J., 2012. An improved sampling strategy based 
on trajectory design for application of the Morris method to systems with many input 
factors. Environ. Model. Software 37, 103–109. https://doi.org/10.1016/j. 
envsoft.2012.03.008. 

Saltelli, A. (Ed.), 2008. Sensitivity Analysis, Paperback ed. Wiley paperback series. Wiley, 
Chichester.  

Saltelli, A., 2002. Making best use of model evaluations to compute sensitivity indices. 
Comput. Phys. Commun. 145, 280–297. https://doi.org/10.1016/S0010-4655(02) 
00280-1. 

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., Wu, Q., 
2019. Why so many published sensitivity analyses are false: a systematic review of 
sensitivity analysis practices. Environ. Model. Software 114, 29–39. 

Saltelli, A., Annoni, P., 2010. How to avoid a perfunctory sensitivity analysis. Environ. 
Model. Software 25, 1508–1517. https://doi.org/10.1016/j.envsoft.2010.04.012. 

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., 2010. 
Variance based sensitivity analysis of model output. Design and estimator for the 
total sensitivity index. Comput. Phys. Commun. 181, 259–270. https://doi.org/ 
10.1016/j.cpc.2009.09.018. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., 
Tarantola, S., 2008. Global Sensitivity Analysis. The Primer. Wiley, West Sussex, U. 
K.  

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2004. Sensitivity Analysis in 
Practice: A Guide to Assessing Scientific Models. Halsted Press, New York, NY, USA.  

Samuelson, W., Zeckhauser, R., 1988. Status quo bias in decision making. J. Risk 
Uncertain. 1, 7–59. https://doi.org/10.1007/BF00055564. 

Sarma, G.P., Jacobs, T.W., Watts, M.D., Ghayoomie, S.V., Larson, S.D., Gerkin, R.C., 
2016. Unit Testing, Model Validation, and Biological Simulation. F1000Res 5. 
https://doi.org/10.12688/f1000research.9315.1. 

Sarrazin, F., Pianosi, F., Wagener, T., 2016. Global sensitivity analysis of environmental 
models: convergence and validation. Environ. Model. Software 79, 135–152. https:// 
doi.org/10.1016/j.envsoft.2016.02.005. 

Sharifi, A., Ahmadi, M., Badfar, H., Hosseini, M., 2019. Modeling and sensitivity analysis 
of NOx emissions and mechanical efficiency for diesel engine. Environ. Sci. Pollut. 
Res. 26, 25190–25207. https://doi.org/10.1007/s11356-019-05613-0. 

Shin, M.-J., Guillaume, J.H.A., Croke, B.F.W., Jakeman, A.J., 2015. A review of 
foundational methods for checking the structural identifiability of models: results for 
rainfall-runoff. J. Hydrol. 520, 1–16. https://doi.org/10.1016/j. 
jhydrol.2014.11.040. 

Sieber, A., Uhlenbrook, S., 2005. Sensitivity analyses of a distributed catchment model to 
verify the model structure. J. Hydrol. 310, 216–235. https://doi.org/10.1016/j. 
jhydrol.2005.01.004. 

Sletholt, M.T., Hannay, J.E., Pfahl, D., Langtangen, H.P., 2012. What Do We Know about 
Scientific Software Development’s Agile Practices?, pp. 24–36. https://doi.org/ 
10.1109/MCSE.2011.113. 

Sudret, B., 2008. Global sensitivity analysis using polynomial chaos expansions. Reliab. 
Eng. Syst. Safety Bayesian Netw. Depend. 93, 964–979. https://doi.org/10.1016/j. 
ress.2007.04.002. 

Sun, X.Y., Newham, L.T.H., Croke, B.F.W., Norton, J.P., 2012. Three complementary 
methods for sensitivity analysis of a water quality model. Environ. Model. Software 
37, 19–29. https://doi.org/10.1016/j.envsoft.2012.04.010. 

Tennakoon, S., Richards, D., Milroy, S., Harris, G., 2013. Water use efficiency in the 
Australian cotton industry. In: Waterpak: A Guide for Irrigation Management in 
Cotton and Grain Farming Systems. Cotton Research and Development Corporation, 
pp. 22–27. 

Thomas, J., McDonagh, D., 2013. Shared language:Towards more effective 
communication. Australas. Med. J. 6, 46–54. https://doi.org/10.4066/ 
AMJ.2013.1596. 

Vanrolleghem, P.A., Mannina, G., Cosenza, A., Neumann, M.B., 2015. Global sensitivity 
analysis for urban water quality modelling: terminology, convergence and 
comparison of different methods. J. Hydrol. 522, 339–352. https://doi.org/ 
10.1016/j.jhydrol.2014.12.056. 

Verweij, P.J.F.M., Knapen, M.J.R., de Winter, W.P., Wien, J.J.F., te Roller, J.A., 
Sieber, S., Jansen, J.M.L., 2010. An IT perspective on integrated environmental 
modelling: the SIAT case. Ecol. Model. 221, 2167–2176. https://doi.org/10.1016/J. 
ECOLMODEL.2010.01.006. 

Voinov, A., Shugart, H.H., 2013. “Integronsters”, integral and integrated modeling. 
Environ. Model. Software 39, 149–158. https://doi.org/10.1016/j. 
envsoft.2012.05.014. 

Wagener, T., Pianosi, F., 2019. What has Global Sensitivity Analysis ever done for us? A 
systematic review to support scientific advancement and to inform policy-making in 
earth system modelling. Earth Sci. Rev. 194, 1–18. https://doi.org/10.1016/j. 
earscirev.2019.04.006. 
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Chapter 6: Socio-technical scales in socio-
environmental modelling 

This chapter explores issues related to scale in the modelling of SES. A multi-disciplinary 

socio-technical lens is used to identify and articulate the practices, issues and challenges that arise 

when dealing with the various influences and effects of scale. The term “system-of-systems” is 

more readily adopted as part of the framing in lieu of the usual terms found in the environmental 

modelling disciplines, acting as a bridge to the systems engineering perspective.  
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1. Introduction 

Socio-environmental systems (SES) function across a range of inter- 
related scales that collectively represent a system of systems (SoS). 
The term SoS has been used since the 1950s and various definitions exist 
(Nielsen et al., 2015). In this paper, we distinguish between an SoS as a 
collection of human and natural systems, and SoS models which are 
engineered representations of an SoS. The former is defined as an 
interconnected collection of multiple, heterogeneous, distributed sys-
tems that collectively may give rise to emergent behavior, where each 
system represents a process or set of processes. In the modeling of SoS, 
we follow Little et al. (2019) who define SoS models as “a collection of 
independent constituent systems, in which each fulfills its own purpose 
while acting jointly towards a common goal.” (p. 84). In environmental 
modeling, SoS models may take the form of Integrated Assessment 
Models (IAMs) or, more generally, Integrated Environmental Models 
(IEMs), which are commonly applied to inform environmental man-
agement processes (Ewert et al., 2011; Iwanaga et al., 2020; Letcher 
(Kelly) et al., 2013; Matott et al., 2009). 

Central to SoS modeling is the view of system representations as a 
multi-tier structure with different levels of abstraction, where systems 
and indicators at lower levels can be scaled up to higher levels. These 
representations capture processes that operate at different scales (e.g. 
temporal, spatial, organizational) in contrast to ‘single-system’ ap-
proaches, which assume such drivers to be exogenous and, crucially, do 
not account for any feedback mechanisms between the represented 
systems. This view also sets the focus on how to integrate knowledge 
from the different disciplines involved and coordinate information ex-
change among these in a consistent and meaningful way. Knowledge 
integration is not limited to the technical coupling of models, but to 
integration among multi-scale stakeholder and expert processes. This 
combined socio-technical focus makes scale issues and their treatment a 
core consideration of SoS modeling. 

1.1. The need for a holistic treatment of scale 

A crucial ingredient in SoS modeling is attending to the socio- 
technical processes involved. Representation of scales is defined by 
modelers for a particular purpose and is ultimately subject to human 
processes (Meadows, 2008). Accordingly, the representation of an SoS is 
the end-product of what the people involved implicitly or explicitly have 
chosen to represent, and how they implemented their choices. These 
then influence the model structure and uncertainties embedded, and the 
consideration of its different dimensions, analyses conducted, and data 
and methods used (Glynn et al., 2017; Gorddard et al., 2016; Voinov 
et al., 2018). Such choices are subject to the available knowledge, ex-
periences, biases, beliefs, heuristics and social values, as well as the 
perceived purpose(s) of the modeling. 

A key scale issue in SoS modeling is the development of a consistent 
and defensible characterization of scale (Elsawah et al., 2020). Existing 
systems analysis and modeling approaches tend to come from 
entrenched disciplinary paradigms and so with a specific focus on their 
scales and facets, and embedded language and terms. Inconsistencies 
then manifest in the conceptualization and treatment of scale in SoS 
approaches, which prevent researchers from: (1) understanding the 
implications of scale choices; (2) formulating, implementing and vali-
dating models that are relevant to the questions of interest; (3) pre-
dicting future SoS responses in support of decision making (Elsawah 
et al., 2020; Little et al., 2019; Razavi et al., 2020); and (4) communi-
cating modeling results in ways that help identify trade-offs and syn-
ergies within an SoS and among the systems under investigation 
(Fridman and Kissinger, 2019; Miyasaka et al., 2017). Addressing issues 
that arise from the conceptualization and representation of multiple 
scales are often omitted or left for future discussion (Ayllón et al., 2018). 

Discrepancies in the treatment of scale can be addressed firstly by 
developing a shared understanding of the system(s) being analyzed 

through a holistic interdisciplinary process (Thompson, 2009; White 
et al., 2019). There is increasing recognition that holistic approaches are 
necessary to enable an integrated assessment of scale issues in 
socio-environmental (social-ecological) systems (Schlüter et al., 2019a, 
2019b; Hoekstra et al., 2014). The rise of inter/multidisciplinary fields, 
such as socio-hydrology (Elshafei et al., 2014; Sivapalan et al., 2012) 
and eco-hydrology (Hannah et al., 2004; Porporato and 
Rodriguez-Iturbe, 2002), gives further credence to this need. For SoSs in 
particular, it is necessary to additionally acknowledge the 
socio-technical influences on their modeling. Explicit inclusion of the 
socio-technical perspective pushes beyond traditional modeling ap-
proaches, as it advocates assimilation of not only the data and mecha-
nistic processes across different systems, but also includes the 
knowledge and information held in the social institutions involved in the 
modeling. 

1.2. Purpose 

The purpose of this paper is to advance knowledge and imple-
mentation of interdisciplinary SoS modeling by identifying and articu-
lating the practices, issues and challenges involved with respect to issues 
of scale. Central to this interdisciplinary lens is making concrete the 
multidimensional nature of scale issues and the interplay among these. 
Here, the term “interdisciplinary” is favored over trans- or multi- 
disciplinary as the focus is on the “blending” of disciplinary knowl-
edge (White et al., 2019). 

The primary audience of the paper is modelers, albeit in different 
domains and scientific disciplines with an interest in adopting an SoS 
approach as a methodological framework in SES modeling. In the 
following (Section 2), we first provide definitions for the key terminol-
ogy used throughout this paper. These definitions are not intended to be 
universal but are provided to contextualize and aid in communication 
given the range of disciplines involved in SES modeling. In Section 3, we 
explore issues of scale which need to be considered throughout the 
modeling. We then describe in Section 4 the long-term challenges to-
wards resolving such scale issues and suggest paths to be taken in the 
shorter-term. 

2. Concepts and definitions of scale 

2.1. The process of defining scales 

SoS models principally provide a representation of the interactions 
that occur between the systems involved. Holistic integration of 
knowledge from the various disciplines involved is necessary so that the 
implications of the different methodological choices on scale can be 
understood (Elsawah et al., 2020). To this end, a three-day workshop 
was held in October 2019 in which a culturally and disciplinary diverse 
group of 20 participants convened to share their knowledge. An addi-
tional 3 contributed in complementary ways to the drafting of this 
paper. Contributors originated from Europe, North America and the 
Asia-Pacific and included engineers, economists, social scientists, 
mathematicians, physicists, hydrologists, computer scientists and 
ecologists. 

To prevent miscommunication, we developed a set of terms (outlined 
in Section 2.2) to build a shared language (Rubin et al., 2010; Spitzberg 
and Cupach, 1989; Thompson, 2009). Although prior definitions of 
“scale” are available (see for example Cash et al., 2006; Gibson et al., 
2000), it was considered useful to develop a shared, empathetic un-
derstanding of each other’s perspectives (Banerjee et al., 2019; Thomas 
and McDonagh, 2013). The process additionally served to break down 
cognitive constraints (MacLeod and Nagatsu, 2018), which may other-
wise blind researchers to relevant notions of scale allowing disciplinary 
bias to creep in and knowledge gaps to form. The range of disciplines 
involved in SES modeling often makes addressing cognitive constraints 
difficult, as there are different notions of scale, and related terms are 
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used in different ways depending on context. This variance has been 
observed in the use of common terms with conflicting definitions be-
tween (and sometimes within) disciplinary fields (Bridle et al., 2013). 

2.2. Scale terminology in SoS modeling 

Defining the terminology associated with scales was an arduous 
process at first, owing to the diversity amongst workshop participants. A 
brief overview of the resulting primary terms used in this paper is pro-
vided in Table 1. For the discussion here, “scale” is taken to have an 
expansive definition, covering the scope of work to be conducted in the 
treatment and representation of system processes. Aspects of scale that 
had unanimous consensus included the commensurability of the choice of 
scale within the purpose of the modeling, and the consistency of spatial 
and temporal scales across models. It was also acknowledged that scale 
can mean many things beyond the spatial and temporal, for example the 
less tangible such as treatment of ethical considerations within the 
modeling process (e.g. Häyhä et al., 2016). Regardless of definitions, 
treatment of scales - and the choices made in this treatment - influences 
the model uncertainties and the outcomes of the modeling. 

Commensurability refers to the appropriateness of the selected ap-
proaches and methods for the SoS modeling purpose. Broadly speaking, 
these approaches can be described as being subject to socio-technical 
considerations, which are the focus of the discussion in this paper. The 
social (human) aspect of modeling includes the circumstances of 
collaboration, project management and participatory processes, as well 
as those settings influencing the technical aspects, including modeling 
and computational considerations. 

The spatial and temporal features of a system are often the primary 
aspects around which scale is traditionally considered and framed. 
These define the time and space of interest (both their horizons and 
discretization) and the events and processes that are considered 
important to represent (Cash et al., 2006). The spatial scales selected 
may be influenced by the temporal scales of interest, and vice versa. 
Their dependence can be intensified by the fact that spatio-temporal 
scales are often influenced by factors outside their defined boundaries. 

Such influences may be important but may not be well understood or 
ignored (Zhang et al., 2014b, 2014a). 

Resolution defines the granularity of system representation and refers 
to the unit of spatial/temporal scale represented in each system. Reso-
lution may be spatial or temporal in nature but extends in other ways 
such as to social units (individuals to families to communities, etc.) and 
thus may be represented so as to conform to a semantic or conceptual 
hierarchy (Cash et al., 2006). Choice of resolution is highly dependent on 
the modeling context, generally informed by the availability of data, the 
needs of the model (including for numerical stability, sensitivity and 
model identifiability), and model purpose. 

Hierarchy and their respective levels of organization relate to the 
representation of nested relationships among systems (Ostrom, 2007). 
For example, various governance systems may co-exist at a range of 
scales with separate administrative or institutional concerns (Daniell 
and Barreteau, 2014). Team-based organizations are one example where 
the hierarchical scales may not be constrained to specific locations, with 
members performing a variety of roles within an organization that may 
be geographically spread across different time zones. 

Actors influence and define the aspects of scale that are considered 
and may be both human and non-human entities which affect or influ-
ence one another. The term has its roots in the social sciences (an 
example may be found in Wessells, 2007). Actors have roles and carry 
out one or more activities in the system and can be represented indi-
vidually or collectively. Human actors have attributes such as values, 
goals and mental models, which influence their behavior (Pahl-Wostl, 
2007). Non-human actors are defined here in a literal sense (i.e. not an 
individual biological person) such that organizations, flora and fauna 
are non-human actors but may still exhibit collective culture and per-
sonalities (Hobday et al., 2018; Schneider et al., 2013). A system can 
encapsulate many actors and may be an actor itself. 

The different types of system modeling encompass many terms that 
are often used interchangeably across the sciences. As alluded to in the 
introduction we are guided by, but do not directly adopt, definitions as 
applied in system-of-systems engineering (cf. Dahmann and Baldwin, 
2008). Here, a single-system model targets a specific system, for instance 

Table 1 
Brief descriptions of the primary terms defined in this paper and relevant literature. Where no references are provided, the terms are assumed to be generic and widely 
known.  

Term Definition Relevant Literature 

Spatial/temporal Spatial and temporal aspects define, respectively, the bounds or horizons over the space 
and time frame of the events and processes of interest as well as their discretization in a 
model. 

N/A 

Multi-system model A catch-all term referring to any model that represents multiple systems. N/A 
Emergence or emergent 

behavior/simplicity/ 
complexity 

Here, emergence relates to the behavior of the system and can span from simple to 
complex. Emergent complexity describes the complex, possibly chaotic, behavior that 
arises from the collective interactions of simple constituent systems, whereas emergent 
simplicity is the opposite. 

Bar-Yam (1997) 

System and System of systems At its core a “system” refers to a collection of processes and mechanisms that may interact 
depending on context. 
A system of systems is represented as a collection of autonomous constituent systems that 
give rise to collective behavior. A constituent model may, itself, be a system-of-systems 
model. A system-of-systems model then is an interconnected, tiered, network of models. 

(Eusgeld et al., 2011; Little et al., 2019; Tranquillo, 
2019) 

Integrated model A model which consists of two or more separate and separable models, connected through 
a common computational framework to allow automated interactions between models to 
occur. 

(van Ittersum et al., 2008; Voinov and Shugart, 
2013; Whelan et al., 2014) 

Resolution/Granularity The represented unit of scale at which a system component is modeled (e.g. unit of 
distance, volume, time, social unit, etc.) 

(Ewert et al., 2011; Groen et al., 2019; Neumann 
et al., 2019) 

Actor Actors are entities, both human and non-human (e.g. objects, biota, flora and fauna, 
institutions, and organizations), which influence the modeling, the pathways taken 
throughout the modeling process, and their representations within a model. 
Actors may themselves be composed of actors, such that a system is an actor within a 
larger system (e.g. engine in a car, team within a company, etc.). Actors may influence one 
another through a network of relationships and be modeled as such. Actors may embody 
collective culture and personalities, as may be the case with teams and organizations. 

(Cresswell et al., 2010; Macy and Willer, 2002; Tate, 
2013; Hobday et al., 2018; Schneider et al., 2013) 

Hierarchy/Level The ordered linkage crossing scales, which may be spatial/temporal (neighborhood to 
city) or virtual/conceptual (employee and employer), and these may be nested within one 
another. 

(Ostrom, 2007; Schweiger et al., 2020; Steinhardt 
and Volk, 2001)  

T. Iwanaga et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 135 (2021) 104885

4

an agricultural system without explicit representation of the hydrolog-
ical dynamics or climatic influences. Consequently, single-system 
models constrain themselves to the concerns and considerations of a 
single sector. Models concerned with a single system may, of course, use 
several models internally (e.g. crop growth, soil water properties, etc.) 
and these are referred to here as component models. 

A direct approach to representing additional systems can be 
accomplished by applying, albeit separately, a selection of single-system 
models for a given problem domain. In such cases, knowledge gained in 
the application of a model may inform the use of another. Data from one 
model may be fed into another, and vice versa, typically via manual 
processes. For example, a weather forecast model may be used to pro-
vide inputs to an agricultural model to determine seasonal effects on 
crops, and the agricultural model may provide land surface boundaries 
to the weather forecast model. 

Multi-system representations can be integrated by coupling models 
together such that data interoperation occurs in an automated fashion. 
Individual “system level” models are then referred to as constituent 
models. The advantage of multi-system models over their single system 
relatives is that the impacts and feedback mechanisms can be repre-
sented across/between their individual scales (Elag et al., 2011; 
Tscheikner-Gratl et al., 2019; Wang et al., 2019). Multi-system models, 
with their explicit representation of system interactions, are therefore 
capable of providing more holistic assessment compared to the use of 
individual models in isolation (Kelly (Letcher) et al., 2013). 
Component-based modeling stems from Component-Based Software 
Engineering (Vale et al., 2016; Hutton et al., 2020) and common usage 
in environmental modeling typically makes no distinction between 
constituent and component models (e.g. Malard et al., 2017). A 
conscious decision has been made here to adopt the term “constituent” 
from the systems engineering field (Nielsen et al., 2015) to convey this 
distinction. 

It is important to note that “integrated” and “multi-system” models 
could then equally apply to both single-system models with several 
component or constituent models. The requirement for a model to be 
regarded as “integrated” is that its (component or constituent) models 
are coupled together through the use of a common automated infra-
structure to facilitate data interoperation (see for example, Malard et al., 
2017; Whelan et al., 2014). By necessity, multi-system integrated 
models are more complex and may involve a variety of modeling par-
adigms (e.g. Bayesian networks, agent-based, system dynamics, etc.) 
and their combinations. 

An SoS model is then regarded here as an integrated model with 
constituent models. Each constituent model may be a single-system or 
another SoS model such that a tiered network of relationships between 
models is formed, with each representing a layer of abstraction. In SoS 
modeling, each constituent model may operate across different spatial/ 
temporal scales, hierarchical levels, and resolutions to incorporate 
multiple aspects of distinctly separate (disciplinary or sectoral) domains 
and modeling paradigms. An SoS perspective allows, but does not pre-
scribe, consideration of complex system properties including non-
linearities, interdependencies, feedback loops, thresholds and 
emergence. 

3. Scale issues to consider 

Models are developed through a life cycle of various phases, each 
with specific considerations and steps (the “modeling cycle”; Grimm and 
Railsback, 2012; Hamilton et al., 2015; Jakeman et al., 2006). SoS 
modeling is more complex compared to ‘single-system’ models due to 
the number of people and disciplines involved as well as the de-
pendencies between the constituent models. Similarly, management of 
the modeling process is made more complex, as there is not a single 
modeling cycle, but multiple cycles occurring asynchronously. Each 
actor and model may have separate objectives and purposes, priorities 
and differing levels of available resources not to mention the need to 

consider the availability of resources for the SoS modeling as a whole. 
The sections below are adapted from the modeling phases identified 

in Badham et al. (2019) and Hamilton et al. (2015), wherein the actions 
undertaken in each modeling phase are described. In contrast, we 
identify the relevant phases within an SoS context and outline the 
considerations with respect to scale issues. Fig. 1 depicts the high-level 
considerations/objectives within each phase. While the sections below 
are presented in a sequential manner, we stress that modeling is an 
iterative and concurrent process. 

3.1. Scoping phase 

In this phase, the objectives of the modeling are clarified by defining 
the problem and how modeling is intended to address it. Examples of 
model (or modeling) purpose could be to fill gaps in knowledge, to 
support learning and communication processes, to validate current un-
derstandings and assumptions, to predict what might happen in the 
future, or to carry out scenario analysis (Badham et al., 2019; Kelly 
(Letcher) et al., 2013). Ideally, this scoping phase results in a clear un-
derstanding of the model types and components that need to be devel-
oped or, in later iterations, their limitations with respect to the model 
purpose and how to address these. 

3.1.1. Problem definition and scoping 
While the overarching purpose of the SoS model may be known, the 

specifics may be less clear at the outset. Development of a consistent and 
shared view of the scales to be considered involves communication of 
the scope and interactions across the constituent systems between all 
involved (see Fig. 2). This process can aid in identifying and addressing 
areas that require reconciliation of different views that often exist across 
the stakeholders. Awareness of the scale issues will likely evolve as the 
modeling progresses through the iterations. The choice of modeling 
pathways and methodological framework employed is heavily informed 
by this awareness (MacLeod and Nagatsu, 2018). 

Involvement of stakeholders, including domain experts, through 
participatory processes can inform the identification of relevant scales in 
the face of uncertainty and (poor) data availability (Hamilton et al., 
2015; Kragt et al., 2013). Stakeholders can also play a role in selecting 

Fig. 1. The phases in the modeling cycle (adapted from Badham et al., 2019, 
and Hamilton et al., 2015) with key considerations within each phase. 
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and combining data, furthering holistic consideration of system actors 
and aid in developing the model purpose. The relationship between 
actors and their roles in framing the scale, scope and purpose of the 
modeling has been previously recognized (Kragt et al., 2013; Refsgaard 
et al., 2007) and is further explored in the next subsection. 

Insufficient consideration or agreement regarding the overarching 
purpose of the SoS model may ultimately affect model performance and 
outcomes (Connor et al., 2019). The higher number of actors in SoS 
modeling increases the difficulty in reconciling different or mismatched 
perspectives, requirements and purposes. This is a “problem of hetero-
geneity” (O’Connell and Todini, 1996) and is not restricted to any single 
discipline. Often, and by necessity, the scale of the modeling is to be 
commensurate with its purpose, including the level of certainty being 
sought, and the available resources. 

Purpose and use of constituent models may be mismatched if con-
flicting perspectives over the scope of the modeling are not addressed. 
Modelers that have different goals in mind may only consider scales 
relevant to their immediate (and often discipline-specific) concerns, 
leading to an improper selection of constituent models. There is poten-
tial for a high degree of mismatch between constituent models even if 
modelers coordinate their efforts. Unexpected cascades of effects 
through scales is commonplace in complex systems (Tranquillo, 2019), 
and could arguably be taken as the rule rather than the exception. 

Change in scale may also occur during the modeling process, due to 
new information that triggers a necessary change in model context. The 
scale of model interactions to be represented can also influence the 
number and type of constituent models included, and overall system 
complexity. The choices regarding scale then have implications for how 
well interactions among systems can be represented with respect to the 
model purpose. Scope creep, wherein the scale of the modeling is 
continually extended to cover contexts not originally envisioned (cf. 
Barton and Shan, 2017), may eventually compromise modeling efforts, 
as available resources get stretched too thinly to achieve sufficient 
progress (Sarosa and Tatnall, 2015). 

Choice of scales is further compounded in cases where system bounds 
cannot be clearly and definitively defined. Coastal zones, atmospheric 
systems, and natural resource management systems are examples of 
systems with ambiguous system boundaries. Social systems and their 
dynamic structures are another example that do not have clear bound-
aries yet place important, even governing, conditions on system 
behavior. Such social systems, and their influences, are so far under- 
represented in current integrated assessment efforts (Zare et al., 
2017). The lack of clear boundaries of such systems are often considered 
to be part of the problem (Voinov and Bousquet, 2010). 

Reconciling conceptual differences and perspectives between human 

actors can be demanding but not insurmountable. There are various 
methods available for group decision making, such as the Delphi tech-
nique (Gokhale, 2001), which can be used to help the group reach 
agreement on the definition of the problem and/or the system bound-
aries. The subsequent modeling itself can be used to combine and 
reconcile different views among stakeholders, and may be useful in 
cross-cultural or particularly contentious settings (cf. Potter et al., 
2016). The influence of modeler and stakeholder bias can also be con-
strained such as by using numerical optimization and/or exploratory 
modeling processes (Martin et al., 2017; Reichert, 2020). The influence 
of personal preferences is restricted by using the exploratory approach 
as it focuses on identifying the relevant scales and conditions (or com-
binations of conditions) that normally lead to desirable outcomes. 

3.1.2. Stakeholder planning 
Here, “stakeholder” refers to the individual or groups that may affect 

or be affected by the modeling or have an interest in its outcomes 
(Freeman, 2010). Thus, in this context, the modelers (and teams of 
modelers) are also stakeholders. There is a plethora of 
stakeholder-focused approaches (e.g. in integrated modeling, partici-
patory modeling), but these methodologies are still limited in their ca-
pacity to deal with scale-specific questions and challenges brought by 
SoS modeling (Jordan et al., 2018). Generally, participatory approaches 
aim to bring together the multiple goals, issues, and concerns of interest 
from multiple scales and governance systems by developing a mutually 
beneficial relationship between stakeholders (Thompson, 2009). 
Thoughtful consideration of transparency, traceability and governance 
issues in engagement and participatory processes (Cockerill et al., 2019; 
Glynn et al., 2017) will be essential for optimizing saliency, legitimacy, 
and credibility of the SoS modeling (Cash et al., 2003). 

The participation of a higher diversity of stakeholders in such pro-
cesses allows for a more holistic representation to be developed, 
covering potential ‘blind-spots’ in the system conceptualization and 
avoiding the “siloing” of knowledge (Hoekstra et al., 2014). Including 
further perspectives may increase the complexity of the modeling, and 
so requires careful management of individual expectations and biases 
(Martin et al., 2017). Management of an SoS may at times be predicated 
on effective management of stakeholders and their level (and capacity) 
of involvement (Ostrom, 2007; Boone and Fragaszy, 2018). 

Increases in the variety of perspectives also increases potential for 
conflict - defined here as disagreements of any degree - between teams, 
team members and/or stakeholders. On the one hand, there is evidence 
that conflict plays a positive role in learning and effective teamwork 
(Tjosvold et al., 2003). Such positive benefits, however, may only occur 
in cases where there are high levels of pre-existing trust within the 

Fig. 2. Continuous and repeated interactions between human actors (domain experts, stakeholders, modelers, etc. represented by the different colored circles), and 
between their social groups, are necessary throughout the modeling process to ensure mismatches in system conceptualization and constituent model scales 
are avoided. 
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group, and when the conflict is task-related rather than interpersonal 
(De Dreu, 2008). Power dynamics within teams and stakeholders 
therefore need to be considered (National Research Council, 2013). 
Identification and focus on objectives that require participants to work 
together (known as goal interdependence) is an identified foundation 
towards project success and may additionally help in avoiding conflict 
(Knight et al., 2001; Lee et al., 2015; Tjosvold et al., 2003). Careful 
design and management of interactions between teams and stakeholders 
requires an explicit consideration of how the multiple, and at times 
contradictory, objectives might align or connect. Approaches to conflict 
resolution and prevention (e.g. boundary critiquing, Midgley and 
Pinzón, 2011) are promising, but still under-utilized techniques. 

Effective stakeholder engagement will in practice be impacted by 
geographic spread (Allen and Henn, 2006), as the realities of scheduling 
rarely allow all stakeholders to be engaged at the same time and place. 
Additionally, a diversity of stakeholders (e.g. policy makers, scientists, 
and the public) mean material and modes of communication may need 
to be tailored for each. Online participation platforms and technologies 
extends the reach to participants and are appealing for their asynchro-
nous and distributed modes of engagement (Yearworth and White, 
2018). These relatively new technologies are simply tools, however, and 
a capacity to both use and leverage their advantages is also required 
(Cooke et al., 2015). Regardless of how interactions are to occur, 
without documenting a Record of Engagement and Decision-making 
(RoED, Cockerill et al., 2019), the original purpose, assumptions, and 
social and biophysical context of the engagement and resulting model 
choices might be lost, leading to mismatches in understanding, 
conceptualization, and implementation. The literature is still limited on 
the effectiveness of using different participatory methods for different 
purposes and audiences (Voinov et al., 2018). Nevertheless, plans for 
stakeholder engagement for SoS modeling should explicitly consider the 
scaling challenges, and devise strategies to deal with these. 

3.1.3. Preliminary conceptual model 
The preliminary conceptual model represents the current under-

standing of the system and the relationship between constituents, 
including identification of key drivers, interactions and outputs of in-
terest (Badham et al., 2019). In describing and capturing the essence of 
the system, development of the conceptual model helps with the design 
of the subsequent (computational) model as well as making concrete the 
model purpose. Two scale-specific aspects are to be considered here: the 
approach used for conceptual model development (see Table 2 for a 
general overview) and the formal representation (e.g. equations, tech-
nical specifications, etc.). The processes that are included or excluded 
based on actors’ perceptions, priorities, beliefs, and values under the SoS 
context will inevitably influence the data leveraged, the properties of the 
computational model, and therefore the paths taken. 

Few mapping techniques exist that focus on illustrating multi-scale 
representations. Scale separation maps (Hoekstra et al., 2007) or 
Stommel diagrams (Scholes et al., 2013) represent the scales of the 
constituent systems on a two dimensional space-time map. System dia-
grams, such as the representations used in van Delden et al. (2011) and 
Oxley and ApSimon (2007), organize the system components according 
to their spatial and/or temporal scales, and show the interactions be-
tween these components. On the other hand, coupling diagrams (Fal-
cone et al., 2010) show the flow of data between models. 

A further approach is to use the ODD protocol, named after its three 
blocks: Overview, Design concepts, and Details (Grimm et al., 2006). 
The original purpose of the ODD protocol was to describe and enable 
transparent communication of agent-based models (ABMs) to ensure 
their replication and the reproducibility of results based solely on the 
model description (Grimm et al., 2020). The conceptualization involved 
in the Overview block mandates identifying the scales of the processes or 
system components to ensure a shared understanding of the system 
being modeled. This is further complemented with the identification of 
relevant resolutions and spatial/temporal bounds. At this stage, the 

bounds can be vaguely defined (e.g. local, regional, global). This initial 
assessment of the scales involved may be revised throughout the 
modeling process as understanding improves. The ODD protocol is 
under continual development, and planned additions extend its 
consideration and applicability of use to other areas not previously 
considered (as outlined in Grimm et al., 2020). 

If differences in conceptual understanding of the scales and their 
interactions cannot be reconciled at this stage, it is possible to create 
multiple alternative models representing the different hypotheses which 
can be tested in later stages of the modeling process. Such an approach 
can also assist in assessing uncertainty rooted in model building choices, 
as the treatment of scale may affect model outputs and outcomes 
(further discussed in Section 3.2.4). Although conceptual diagrams can 
be developed without specifying the scales involved, explicit consider-
ation of scale is valuable for avoiding misinterpretation of the concep-
tualization and ensuring key variables and processes are included. A 
useful reflexive exercise, not usually reported but aiding transparency, is 
to identify what alternative approaches were considered, or could have 
been considered, and how these may have affected results and outcomes, 
if adopted. 

3.2. Development phase 

3.2.1. Collecting data, information, and knowledge 
Data, information and knowledge for each constituent model may 

come from the field or through literature, solicited through expert and 
stakeholder engagement, or collected through analysis. Considerations 
towards data collection in the integrated setting have been previously 
explored in Badham et al. (2019). Correctly communicating and inter-
preting data across heterogeneous systems, however, requires that the 
data are interoperated between constituent models and that model 
behavior across scales remains valid and meaningful (Renner, 2001). 
For this purpose, metadata serves an essential role. 

Transparency in the collection process and approval from those 
involved in the modeling are necessary to ensure that collected data 
remain conceptually relevant across scales. Furthermore, transparency 
in the context of data collection and usage is a key factor to develop trust 
among stakeholders and model users, and future adoption of the con-
stituent models (Barba, 2019; Gray and Marwick, 2019). Data may need 
to be transformed to be fully relevant for the context of its intended use, 
such as up-or-downscaling to ensure compatibility with other processes. 
Ideally, metadata would include information on the data collection, 
uncertainty and transformation process, which aids in determining the 
appropriateness of data for the SoS model. Explicit descriptors of both 
input and output data can assist in identifying the commensurate level of 
data collection with respect to available resources. 

Modeler bias can have a compounding effect as the choice of data 
collection, as well as the metadata that describes the data, influences 
how system interactions are perceived, and thus conceptualized (Bhat-
tacherjee et al., 2008). What may be considered irrelevant in one field 

Table 2 
Description of the general approaches in the development of multi-scale models, 
adapted from Ingram et al. (2004).  

Approach Description 

Top-down Creation of a coarse generalized model which is then progressively 
refined to an appropriate mix of scales. 

Bottom-up Models are developed at the smallest resolution initially 
conceptualized to be necessary and are then expanded to encompass 
scales as further information becomes available. 

Middle-out Development of the SoS model begins at the scale richest in data or 
information, working “outwards” towards smaller and larger scale 
models, as necessary. In SoS modeling, what is “richest” is likely to be 
subjective to each discipline and available understanding. 

Concurrent The process of constructing models to represent all hierarchical levels 
at the same time.  
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may dictate modeling pathways in another. In an SoS setting there are 
many more participants involved and so there is a high degree of un-
certainty stemming from the decisions made as a result. 

Data quality and informativeness (e.g. accuracy or precision) pro-
vided by constituent models may also be diverse. Diversity of data ob-
tained from a diversity of sources, however, runs the risk of conflicting 
information (Gray et al., 2012). Modelers from different disciplines may 
also utilize different scales for the same process, resulting in in-
consistencies, and thus errors, the sources of which are difficult to 
identify. In this regard, non-quantitative sources of information, gath-
ered from literature and/or through stakeholder engagement, may 
become key assets that resolve such issues (Grant and Swannack, 2007). 
In cases where data describing a particular linkage in an SoS model are 
not available, theoretical relationships, generally applicable empirical 
relationships, or model process and output can be useful representations 
for the purpose of the SoS model (Rai et al., 2002). The documentation 
developed in the Scoping phase can be leveraged to ensure applicability 
and validity with regard to the model purpose. 

3.2.2. Construction 
Construction of computational SoS models requires the marrying of 

domain expertise from across the various disciplines involved with 
technical software development knowledge. While the overarching 
context may be well-defined within the scoping phase, it is in this 
Construction step that the individual components, and the scales they 
represent, are developed, and coupled, tested and validated. Here, 
existing models may be repurposed or new models developed. The 
specifics of their initialization, interoperation, method of execution and 
management of the data involved are to be determined and prototyped 
in this phase (Igamberdiev et al., 2018; Madni and Sievers, 2014). 

A balanced approach is needed in SoS model development that takes 
several factors into account. There is a danger that the models them-
selves become treated as pieces of software that merely require 
connection, ignoring the socio-technical context for their intended use 
(Voinov and Shugart, 2013). Another issue is the overparameterization 
of constituent and component models (Brun et al., 2001; Nossent and 
Bauwens, 2012), as simply integrating these models to form an SoS 
model exacerbates issues of uncertainty and identifiability (consider-
ations of which are explored in the following sections). At the same time, 
ignoring the technical considerations of integration is also inadvisable 
(Verweij et al., 2010). Mitigating the issues that consequently arise be-
comes increasingly difficult as more systems and scales are included 
(Voinov and Shugart, 2013; Wirtz and Nowak, 2017). 

Requisite systems could be represented at the level of detail neces-
sary for the SoS model purpose through a tiered modeling structure 
(Little et al., 2019). Implementation of such a tiered approach can 
involve developing metamodels or entirely different system models. 
Metamodels being simplified representations of more complex models 
(revisited in Section 3.3). Two pertinent issues in SoS model construc-
tion are the focus below: managing the conceptual inter-connection 
between models, and the process of integration. 

3.2.2.1. Conceptual integration. Conceptual integration of constituent 
models can benefit from requiring that constituent models be mecha-
nistic as opposed to black boxes. When a model is implemented as a 
black box, it becomes difficult to evaluate and understand (Lorek and 
Sonnenschein, 1999). SoS modeling may make use of pre-existing 
models which constitutes re-purposing, implying the transference of 
the model assumptions, limitations, and scale to a new context. It is 
emphasized here that model suitability within its original context is not 
necessarily applicable to the new context (Ayllón et al., 2018; Belete 
et al., 2017; Voinov and Shugart, 2013). Availability of code alone, for 
example, does not imply transparency. What is important is the 
contextual information that is necessary to assess the suitability of the 
model purpose and functionality. 

A key challenge then is ensuring the box remains open and trans-
parent rather than closed and opaque. Opaque development can be 
attributed to the modular nature of constituent model development, 
with the teams working separately - both conceptually and geographi-
cally - and often split along disciplinary lines. Such teams can be 
described as self-organizing (Sletholt et al., 2012) but may lack 
cross-disciplinary knowledge (cross-functionality, as in Hidalgo, 2019; 
Hoda et al., 2013). The lack of interdisciplinary communication between 
teams then results in black, or at best gray, box models to those not 
involved in their development. 

What is important in this interdisciplinary context is clear docu-
mentation and an organizational culture that supports the perpetuation 
of the relevant contextual knowledge. As previously mentioned in Sec-
tion 3.1.3, describing the model and its conceptual linkages in a single 
canonical document via the ODD Protocol (introduced in Section 3.1.3) 
is one approach that could be leveraged. Furthermore, a “nested ODD” 
approach may be adopted in the case of complex SoS models wherein the 
constituent models may be another SoS model. 

3.2.2.2. Technical integration. Technical integration refers to the cor-
rectness of model interactions, recognizing the distinction between 
conceptual or abstract representation (e.g. an equation or flow diagram) 
and its implementation as software. Successful technical integration of 
computational models requires the necessary engineering expertise to be 
available (Knapen et al., 2013). Crucial considerations are that constit-
uent models interact and accordingly that errors will propagate (cf. 
Dunford et al., 2015), and that each constituent model may undergo its 
own separate development cycle which invariably necessitates continual 
adjustments to be made. 

Flexibility of integration is often desirable as it allows the model to 
be resilient against changes in the modeling scope. Flexibility facilitates 
investigations into model structure (of both constituent and component 
models) and the technical design considerations that lead to flexibility 
allows for the composition of different combinations of relevant code 
and data represented through a nested hierarchy (e.g. ‘loose coupling’; 
Elag et al., 2011; Vale et al., 2016; Whelan et al., 2014). Use of inte-
gration frameworks are helpful in that they allow the treatment of in-
dividual models as loose, composable, modules that provide some 
flexibility in dealing with the range of scales involved. 

Current integration frameworks typically have their roots in specific 
disciplines and tend to focus on physical processes (cf. Ayllón et al., 
2018). The Open Modeling Interface (OpenMI, Moore and Tindall, 
2005), for example, has had to evolve from its initial focus in the hy-
drological sciences to accommodate an interdisciplinary modeling pro-
cess (Buahin and Horsburgh, 2018). Thus, while the processes and 
requirements of such frameworks may be generally applicable, there 
remains some difficulty in their generic implementation and adoption 
within the interdisciplinary context of SoS modeling. 

In some cases, such frameworks may be overly complex or otherwise 
unsuitable for the purpose and context in which the modeling is being 
conducted. Such difficulties may be resolved in the future as improve-
ments to these frameworks are ongoing (Voinov and Shugart, 2013). 
Often modelers adopt a less formalized approach to avoid an inappro-
priate or constraining framework. In either case, ensuring semantic and 
conceptual correctness between models is typically left to the modelers 
themselves (cf. Hutton et al., 2020). Direct, manual, “tight-coupling” of 
models without the use of integration frameworks is still very much the 
norm. 

More recent efforts include a collaborative web-based platform 
through which the conceptual, semantic and technical integration oc-
curs (OpenGMS, in Chen et al., 2019; Chen et al., 2020). Faster feedback 
between participants then allows identified issues to be addressed 
earlier. Other approaches provide a curated ontological set of de-
scriptors for common phenomena of interest (e.g. snowmelt or rainfall). 
These can be referred to as “system variables” (as in Pacheco-Romero 
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et al., 2020) and efforts to record their quantities (e.g. centimetre, 
grams, etc.) and relevant operators in a specific metadata format have 
also been undertaken (e.g., the Standard Names, in Hobley et al., 2017). 
Having the inputs and outputs described and documented in such a way 
aids in reducing potential mismatches in later (re)use and could be used 
to enable later automated model coupling. Frameworks do not yet fully 
automate conversions or identify incompatible or inconsistent usage (e. 
g. litres per second to degrees Celsius) although this is likely to change in 
the near future. 

Both the selected framework and constituent models may change 
over the course of the modeling cycle along with the scales represented. 
Such changes may affect its appropriateness with respect to the model 
purpose. For example, adoption of a particular framework or model may 
increase the computational requirements or necessitate changes to 
constituent models to allow interoperation. Inadequate consideration of 
the concerns and requirements of the modeling as a whole may occur in 
cases where cognitive constraints are still in place. The modeling process 
may be smoothed if requirements of the later phases are kept in mind 
during the design, construction (or selection) of models, and the re-
sources allocated – including the availability of expertise – to each of 
these activities. 

3.2.3. Model calibration 
Calibration is the process of tuning parameters or altering the func-

tional forms of equations or relations to achieve desired model behavior 
(Bennett et al., 2013). In SoS modeling, issues such as non-identifiability 
and equifinality (Beven and Freer, 2001; Guillaume et al., 2019), curse 
of dimensionality (Bellman, 2015), computational burden (Razavi et al., 
2010), and data representativeness (Beven and Westerberg, 2011; Singh 
and Bárdossy, 2012) may all be amplified. 

Calibration implies the existence of appropriate and sufficient data to 
calibrate models against. Availability of data relevant for the modeling 
purpose is a requirement no matter how perfect the model may be. 
Conversely, a lack of data does not imply subsequent modeling is not 
useful. A model with high uncertainty may still characterize uncertainty 
in a way that is meaningful to decision makers, for example indicating 
the comparative tradeoffs between available management options 
(Reichert and Borsuk, 2005). Assessment of uncertainty can be helpful in 
determining the relative “worth” of data to be collected to better char-
acterize uncertainty and inform future modeling or research 
(López-Fidalgo and Tommasi, 2018; Partington et al., 2020). Such 
optimal experiment design approaches may also be leveraged to maxi-
mize the use of available data (Bandara et al., 2009; López–Fidalgo and 
Tommasi, 2018; Vanlier et al., 2014). 

Arguably, model calibration within the SoS paradigm can take three 
general approaches: (1) calibration of each constituent model indepen-
dently before integration, (2) calibration of all models together after 
integration, or (3) a combination thereof. The first approach is the 
simplest and most straightforward as each constituent model would be 
calibrated within its own domain (Phillips et al., 2001). While prag-
matic, it ignores the effect of representing different scales across the 
represented SoS and system-system interactions, which in turn affects 
model behavior and performance of the individual constituent model. If 
a model is considered “calibrated” when both an acceptable level of fit 
and reasonable parameter values are found (as in Anderson et al., 2015), 
calibration in the disintegrated context does not necessarily transfer to 
the integrated context. In other words, what is “reasonable” in one 
context may not be so in another, and the selected parameter values may 
not be robust to the change in context that integration brings due to the 
different scales, interactions and data space involved. 

The second approach is seemingly the most comprehensive approach 
to model calibration, as every possible interaction between models could 
be present in the process of model calibration (Huang et al., 2013). 
Interdisciplinary knowledge is leveraged to ensure calibrated values are 
both reasonable for the expanded operationalization. This then enriches 
the data space for individual constituent models and improves their 

performance (Jones et al., 2017). The approach, however, has the 
following major barriers:  

• The search space for model calibration will be excessively large (Ling 
et al., 2012). In addition, new (possibly erroneous) interaction effects 
might emerge between the parameters of one model with those of 
another model, especially with different scales of information, which 
makes the response surface extremely complex for model calibration. 
The calibration process might then become computationally 
cumbersome and/or infeasible.  

• The available data with different scales may not be enough to 
properly constrain the model in the process of calibration (Ingwersen 
et al., 2018), as it is not identifiable from the data (Guillaume et al., 
2019). There is a risk of overfitting as well, as the available data 
might be insufficient to produce a generalized model that covers the 
integrated domain.  

• Expert knowledge for each model may have scale constraints and 
may not be easily transferable to the full SoS domain (Howard and 
Derek, 2016). 

In the third approach, models are integrated one-at-a-time, incre-
mentally adding complexity so that the influence of each constituent 
model can be directly attributed and subsequent issues can be addressed. 
This approach may include modifying the conceptualization as neces-
sary and sequentially calibrating the resulting integrated configurations 
(Duchin, 2016; Duchin and Levine, 2019). While this approach may be 
as pragmatic as the first, and perhaps as comprehensive as the second, 
the disadvantage is the time and computational cost to perform 
sequential coupling and calibration. Such an approach would seem more 
practical in cases where there is little disciplinary friction and a rela-
tively small number of models to be integrated. 

In all approaches above, the role of expert knowledge in determining 
the acceptability of the calibration cannot be understated. In manage-
ment contexts, for example, change in policy (e.g. the governing rule-
sets) may impart shifts in system behavior that may be hard to discern by 
examining quantitative data alone, and even more difficult to represent. 
Machine learning approaches may assist in identifying and representing 
non-stationary system behavior (e.g. Rui Wu et al., 2019; Razavi and 
Tolson, 2013) but still require intensive data for training and validation 
by experts where possible (Razavi and Tolson, 2013), and scale issues 
still exist between different single-system models or different levels of 
model integration. Such information in one system may have implica-
tions for how other constituent models are calibrated, and so interdis-
ciplinary communication, awareness and consideration of the 
intertwining issues is necessary to safeguard against mismatches. 

A calibration method which seems not to have been used explicitly 
for SoS models is pattern-oriented modeling (Grimm and Railsback, 
2012; Railsback and Grimm, 2019; Wiegand et al., 2004, 2003). Here, a 
set of patterns observed at different scales and levels of organization is 
used to reject, as a set of filters, unsuitable parameter combinations and 
process representations, and may be closely related to the use of hy-
drologic signatures for (hydrological) model calibration and testing 
(Gupta et al., 2008). As for parameters, this approach corresponds to the 
rejection method in Approximate Bayesian Computing (van der Vaart 
et al., 2016). The basic idea is that a combination of “weak” patterns, 
which by themselves do not contain much information and thus would 
not reject many parameter combinations, can be as efficient as using a 
“strong” pattern, which is highly distinctive, but might not be available. 
For models with multiple scales, this approach holds high potential as it 
would help to keep both the SoS and constituent models within realistic 
operation spaces. 

3.2.4. Uncertainty analysis 
SoS models often target large problem domains which necessitate 

complex models for their assessment and by their nature have a high 
degree of uncertainty. For the discussion here, we speak to the 
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quantitative and qualitative aspects of uncertainty, which may be 
further classified based on their source or primary influence. Prior 
literature, for example, speaks of model structure, technical, parameter, 
scenario, contextual and predictive uncertainty (for further description, 
see Beven, 2009; Pianosi et al., 2016; Walker et al., 2003). 

Quantitative approaches aim to measure the effect of uncertainty in a 
specific parameter, input or assumption on an output and allow the 
numerical characterization of the output distribution and therefore 
model behavior (Saltelli et al., 2019; Zimmermann, 2000). Qualitative 
uncertainty, however, cannot be characterized with a value and arises 
from sources such as the biases and subjective beliefs of human actors 
(Chen et al., 2007). Qualitative uncertainty can also arise from the 
modelers’ subjective judgment, linguistic imprecision and disagreement 
across actors involved (Linkov and Burmistrov, 2003; Refsgaard et al., 
2007). 

One reason for increased model uncertainty in SoS modeling is the 
complexity that is largely a result of the increased scope of modeling, 
which comes with a larger number of models and people (and their 
perspectives) involved. The increase in the number of actors typically 
results in an increase in the overall number of parameters and their 
possible interactions (Oreskes, 2003), the number of possible decision 
pathways in the modeling process (Lahtinen et al., 2017), and the level 
of stakeholder influence at each decision fork (Ostrom, 2007). 

Increasing model complexity allows for a higher-fidelity model, but 
can also increase the perceived uncertainty in a traditional sense; known 
as the complexity paradox (Oreskes, 2003). Characterizing “true” un-
certainty in an SoS model, however, is impossible as it requires a model 
that represents everything perfectly including unknown unknowns 
(Hunt, 2017). Uncertainty may then compound with each interaction 
across constituent models in the SoS framework, propagating some 
amount of error (Dunford et al., 2015). Thus, it becomes progressively 
difficult to gain insights as to what effect and influence the combinations 
of these have (structural and parameter identifiability as in Bellman and 
Åström, 1970; Guillaume et al., 2019). High levels of model uncertainty 
need not be a barrier to effective decision support, however, and is 
ameliorated by providing estimates or assessments of such uncertainties 
(Reichert and Borsuk, 2005), both quantitative and qualitative. Different 
strategies and further considerations for uncertainty assessment are 
needed in SoS modeling compared to single-system modeling. 

One commonly suggested approach to restricting model complexity 
(and possibly runtime) is to screen for insensitive parameters (Pianosi 
et al., 2016). Such parameters are said to have negligible influence on 
model output and so may be “fixed”, i.e., made static in subsequent 
analyses, or otherwise removed from the model. Another is to “tie” 
related parameters so that they may be represented by a single 
“hyperparameter” (Raick et al., 2006). Reducing the number of pa-
rameters, however, does not necessarily equate to a reduction in un-
certainty. Rather, it may simply mean consideration of an uncertainty 
source is determined to be unimportant for a given context or purpose 
(Pianosi et al., 2016), and doing so may trade off model fidelity under 
new unseen conditions. 

Use of a constituent model within an SoS model as opposed to its 
individual operation, or its modification or simplification through 
parameter screening and tying constitutes a change in context. There-
fore, parameters initially found to be influential might become inactive 
and non-influential (and vice versa), or the relationships that led to 
parameters being tied may change. The change of context also changes 
the relevance of the assumptions and objectives, and what constitutes an 
appropriate uncertainty analysis (Song et al., 2015). Uncertainty anal-
ysis conducted in one context is not valid across all scales. Thus, pre-
mature model simplification may ultimately affect the appropriateness 
of the SoS model for its overarching purpose. A comprehensive sensi-
tivity analysis under current and possibly alternative conditions can 
provide valuable insights into a key question: “when and how does un-
certainty matter?“, as discussed in Razavi et al. (2019). An alternate view 
is that, given the likelihood of limited computational resources, efforts 

to characterize and communicate uncertainties to stakeholders may be 
more beneficial than an exhaustive sensitivity analysis (Reichert, 2020; 
Anderson et al., 2015). 

An additional consideration is that a constituent model may be a 
legacy or third-party model that cannot be modified (e.g., due to lack of 
access to the underlying code). This would introduce some hidden or 
uncharacterized uncertainty into the SoS modeling. In this case, meta-
modeling (expanded on in the next subsection) might provide some help 
in simplifying the model. 

Explicit documentation of the criteria used for each constituent 
model can ensure relevance of its application and reduce contextual 
uncertainty (see Walker et al., 2003) across all the scales involved. 
Accordingly, in the recent update of the ODD protocol (Grimm et al., 
2020), a standard format for describing models, the element “Purpose” 
has been changed to “Purpose and patterns”, with patterns being the 
multiple criteria for ensuring a model’s structural realism, as defined in 
the “pattern-oriented” modeling strategy (Grimm, 2005; Grimm and 
Railsback, 2012). The effect and relative importance of model structure 
uncertainty may be assessed through expert and stakeholder knowledge 
of alternate models (van der Sluijs, 2007) and Bayesian approaches 
could be applied to characterize the known unknowns (Clark, 2005). 
Uncertainty matrices have also been suggested as a tool to qualitatively 
identify and document the source, type and nature of uncertainty and 
assess its relative priority in a table-like format (see Refsgaard et al., 
2007; Koo et al., 2020). 

Increased consideration of technical uncertainty (adopting the term 
from Walker et al., 2003) is another area which warrants further 
consideration in the SoS modeling context. Choice of what infrastructure 
and technologies to use is likely to stem from the prior experiences of the 
team(s) involved. Constituent models may be run on different infra-
structure than was originally intended, especially as issues around 
computational reproducibility are addressed (Barba, 2019; Hutton et al., 
2016). Identical code run under different computational environments 
may produce different results (see for example Bhandari Neupane et al., 
2019). Such infrastructure may differ in physical or virtual architecture 
(e.g., laptop, supercomputer, or operating systems) or method of gen-
erating/interpreting code (e.g., different languages, compilers, package 
versions). Various combinations of these may be used and may also 
differ in the development and application phases. For these reasons the 
influences of different and interoperating infrastructure are important 
considerations (Iwanaga et al., 2020). 

Correlation between parameters is another issue that is often ignored 
in the characterization and attribution of uncertainty (Do and Razavi, 
2020). Correlation refers to statistical dependency between parameters. 
It is different from interaction effects which refer to the presence of 
non-additive operations among two or more factors embedded in 
constitutive equations of the model. In SoS modeling the issue is further 
escalated as possible correlations between the factors of different models 
needs to be accounted for. Ignoring correlations can falsify any esti-
mation of uncertainty (Do and Razavi, 2020). 

3.2.5. Testing and evaluation 
Testing and evaluation can assist in the assessment of the ramifica-

tions of scale choice. In this step reasonableness of model structure and 
interpretability of relationships within models are assessed along with 
the traditional analysis of model behavior. Not all outputs produced by 
the constituent models may be relevant for the SoS model purpose and 
the validity of their outputs are affected due to the integrated nature of 
SoS modeling. For any evaluation to be effective, the specific model 
outputs of interest that are relevant for the model purpose must be well 
understood. Outputs may be at a particular spatio-temporal scale, for 
instance a long-term average of a model output over a large spatial 
domain or an extreme event at a specific point location. Issues may also 
stem from the conceptual suitability of constituent models as uncer-
tainty may be propagated throughout and may compound as more 
models are integrated (Dunford et al., 2015). Thus, the first step in 
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testing and evaluation involves attempting to refute aspects of SoS 
model structure and functional relationships within the model based on 
their lack of correspondence with the represented system and the model 
outputs. Stakeholders could be leveraged to evaluate the conceptual 
alignment and appropriateness of the SoS representation at the selected 
scales. 

Evaluation of the behavioral relationships at the integrated level is 
similar to scientific hypothesis testing (Wilson et al., 2017) or “con-
ceptual testing” (Iwanaga et al., 2020) wherein functional relationships 
within the SoS model are examined. Such tests may be especially useful 
in cases where the internal workings of a model are inaccessible or 
otherwise unknown but expected behavior of the constituent model in 
the integrated context can be characterized (Iwanaga et al., 2020). These 
approaches can be used to identify impossible or implausible aspects of 
the SoS model output. If any aspect of model structure or any functional 
relationship within the model can be shown to be an inadequate rep-
resentation of the corresponding aspects of the real system, then that 
particular portion of the model is refuted (Li et al., 2016). Examination 
of model behavior over a range of inputs will also help to expose addi-
tional inadequacies in the model (Bennett et al., 2013). 

The interesting aspect in this regard is that successful testing and 
evaluation of the constituent models does not guarantee correctness of 
the SoS model and vice versa. Testing and evaluation may happen at 
different scale levels, and acceptable model behavior depends on the 
model purpose and consequent measures or indicators of interest. Model 
behavior of constituent models could be examined quantitatively 
through assessment of the intermediate data in the models to ensure 
their behavior is consistent with a priori expectations. 

It is necessary to test the software used to interoperate data across the 
different hierarchical levels using relevant testing approaches. These 
include checking the mapping of input-outputs between models, con-
version of units, use of metadata to perform semantic operations, and 
translation of spatial temporal dimensions (Ayllón et al., 2018; Belete 
et al., 2017; Voinov and Shugart, 2013). Testing processes found in 
software engineering may additionally aid in conducting such checks 
(see for example, Laukkanen et al., 2017; Verweij et al., 2010; Yoo and 
Harman, 2012). 

It may also be possible that some data gaps or uncertainties from 
constituent models have a lesser or negligible effect on the SoS model 
depending on how the constituent model is leveraged at the SoS level. 
Furthermore, constituent models may present overlapping and/or con-
flicting data or assumptions that will only be revealed when testing and 
evaluating their integration. A common example is double counting un-
certainty due to embedded assumptions in the model or failure to detect 
correlated variables with a common cause. 

The next step focuses more specifically on the correspondence be-
tween model projections and observed data. Strictly speaking, data used 
in model testing and evaluation must be independent of data used to 
develop the model (Raick et al., 2006). A variety of visual, statistical, 
and machine learning methods are widely used to evaluate SoS models. 
The choice of method, however, should be based on the fundamental 
questions of what scenarios and observations to use in the evaluation. 
Evaluation of models under the range of conditions similar to those of 
interest can aid in identifying limitations of the model (Ramaswami 
et al., 2005). 

Sensitivity analysis is now regarded as standard practice in modeling 
(Norton, 2015; Pianosi et al., 2016; Razavi and Gupta, 2015). The 
sensitivity of SoS model behavior to changes to its constituents and their 
interactions is the target of the assessment (Moriasi et al., 2007). An 
issue stemming from the likely overparameterization of constituent 
models is equifinality and the lack of identifiability. Equifinality refers 
to the phenomenon of different implementations or combinations of 
model structure, parameter values, and their interactions producing 
equally acceptable results (Wagener et al., 2003; Beven, 2006). Identi-
fiability then refers to the ability to attribute the influence on model 
outputs to unique model parameters or structure (Muñoz et al., 2014; 

Guillaume et al., 2019). Therefore, the greater the number of parame-
ters, the less identifiable the model becomes. 

Sensitivities are assessed as part of identifiability analysis, typically 
by ranking parameters based on their influence on outputs which can aid 
in determining what parameters require focused efforts to reduce un-
certainty or improve identifiability (e.g. Factor Prioritization; Nossent 
and Bauwens, 2012). Information from sensitivity and identifiability 
analysis can then aid in simplifying the model (as discussed in the pre-
vious section). Similar to what was noted in Section 3.2.3, naively 
applying sensitivity and identifiability analysis without consideration of 
the SoS context may adversely affect modeling outcomes. 

Assessment of sensitivities would ideally rely on global, rather than 
local analyses for reasons that have been expounded in prior literature 
(see for example Pianosi et al., 2016; Saltelli and Annoni, 2010). Use of 
global sensitivity analyses in model assessment has seen increasing use, 
despite the lack of uptake or reported use of available software tools to 
conduct such analyses (Douglas-Smith et al., 2020). Still, the importance 
of such analyses tends to be under-appreciated (Saltelli et al., 2019). 

One practical reason for the lack of global sensitivity analyses is that 
they are typically computationally expensive to perform and the SoS 
models themselves typically exhibit long runtimes. Dependencies and 
correlations between parameters across constituent models and their 
respective scales pose another challenge (Koo et al., 2020). Metamod-
eling (expanded on in the next section) along with recently developed 
sampling and analysis methods may be more amenable to the SoS 
context. Examples of such methods that warrant further investigation 
include moment-independent methods (such as PAWN; Pianosi and 
Wagener, 2015) which can be applied independent of the sampling 
scheme used, and variogram-based approaches (e.g. STAR-VARS; Razavi 
and Gupta, 2015) which can reportedly account for temporal and spatial 
correlations. Adaptive sampling of the parameter space, through 
sparse-grids for example, in combination with these analysis techniques, 
may also aid in reducing the computational costs associated with 
sensitivity and uncertainty analyses (Buzzard and Xiu, 2011; Xiong 
et al., 2010). 

3.3. Application phase 

A critical aspect in the application of SoS models is that constituent 
models evolve independently. Development of each constituent model, 
by necessity, is led by disciplinary experts and undergoes separate, 
asynchronous, development cycles. As each model may come from 
different paradigms and sources of knowledge, the implementation may 
be adjusted over time or even replaced in response to newly acquired 
knowledge. Advancing towards trial model applications using the ex-
pected type and volume of data as early, quickly and often as possible 
allows modelers to encounter issues in the model application earlier in 
the process (Warren, 2014). Experience gained with each iteration 
subsequently serves to rectify and protect against future application 
challenges. Application of the model then requires monitoring and 
scrutinizing to ensure the underlying models (including their metadata, 
represented knowledge and application context) remain current and 
appropriate. 

When models are integrated, the runtime may prevent practical 
application for its primary purpose, such as social learning through 
interactive use with stakeholders, or for global sensitivity analyses. One 
option to overcome this problem is to simplify the constituent models for 
the specific purpose. Doing so requires a high degree of knowledge of the 
constituent models, however, and may not be practical in cases where 
legacy models are used. Spatially explicit models can especially be a 
problem in regard to runtime, and a solution for reduction in compu-
tational burden may be achieved through aggregating grid cells into 
similar zones (e.g. groundwater model aggregated into hydraulic con-
ductivity zones; Elsawah et al., 2017). 

In cases of high runtime, replacing the most computationally 
expensive constituent models with metamodels may be a viable option. 
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Metamodels approximate the input-output behavior of the original 
model (Castelletti et al., 2012; Christelis and Hughes, 2018; Pietzsch 
et al., 2020) and therefore provide simplified representation(s) of more 
complex models (Asher et al., 2015; Razavi et al., 2012). Metamodels 
leverage the emergent simplicity of complex systems and although there 
are a variety of methods available to accomplish this, generally meta-
models require the complex models (i.e. the original constituent models) 
to be available beforehand. Metamodels, being approximations of an 
original model’s response surface, are most relevant to the conditions 
existing in the datasets upon which they are tuned, so care needs to be 
taken if using them under conditions that transcend those extant in the 
data. System forcing data beyond that experienced, such as climate 
change or groundwater extractions, are of particular concern in this 
regard. If possible, simply allocating more computational resources (e.g. 
supercomputers) may be the most pragmatic and resource efficient 
alternative, especially considering the time taken to investigate and 
implement the options listed above. It is acknowledged, however, that 
more computational capacity may not be available. 

3.3.1. Analysis and visualization 
In the management context, where SoS models are typically applied, 

there is a need to adequately describe the level of uncertainties in the 
SoS model and its predictions. Individual stakeholders may react 
differently to uncertainties and levels of uncertainty (Cockerill et al., 
2019). Presenting scenario results relative to the modeled baseline 
neatly reduces the inherent biases that come with relying on stakeholder 
preferences to inform desirable thresholds, as would usually occur in 
multi-criteria, or multi-objective, analysis approaches (Maier et al., 
2016; Martin et al., 2017; Reichert and Borsuk, 2005). With such an 
approach, the acceptability of a (possible) maximum or minimum 
relative change becomes the focus of stakeholder discussion. 

Software tooling for supporting analyses of model results (including 
sensitivity and uncertainty analyses) typically necessitates interaction 
between the analysis software and the model(s), which may require the 
development of additional interfaces (i.e. code or supporting software). 
Due to the number of models involved, the associated parameters, and 
the possibly dynamic model structure (Wirtz and Nowak, 2017), main-
taining these interfaces in the SoS context may quickly become un-
wieldy. Additionally, it may be desirable to replace entire models to 
analyze the influence of model structure and the scales they represent 
(Ewert et al., 2011), thus potentially rendering existing interfaces 
obsolete. Recent efforts circumvent this issue by supporting the 
near-seamless transition between the nested hierarchical representation 
common in SoS design to the conceptually simpler “flat” structure ex-
pected in typical analyses (e.g. Schouten and Deits, 2020). An example 
of nested and flattened representations of a node network is provided in 
Appendix 1. 

A common requirement shared with tooling for conducting analyses 
(e.g. for sensitivity and uncertainty analysis, and exploratory modeling) 
is the provision and definition of parameter values. These may consist of 
a “default” value, a range within which values may vary, whether these 
values are categorical, scalar, or regarded as constants (examples may be 
found in Adams et al., 2014; Kwakkel, 2017; Pianosi et al., 2015; Razavi 
et al., 2019). Categorical values may indicate substitution with other 
data types or a collection of data types (e.g. rasters, climate sequences, 
etc.). Such information may be the minimum necessary to conduct such 
analyses, to reproduce and replicate results, and to support later auto-
mation of these activities. Parameter values in effect represent di-
mensions of scale and the inappropriate selection of their values and 
ranges may result in misleading results (Shin et al., 2013; Wagener and 
Pianosi, 2019). 

3.4. Perpetuation phase 

As in Badham et al. (2019), perpetuation is about the intended in-
fluence the modeling is to have into the future. The focus here is on the 

scale of documentation and process evaluation in SoS modeling which is 
informed by the level of consensus among stakeholders and modelers as 
to its purpose. In the research context, for example, there is a newfound 
expectation that the model be developed and provided in a manner that 
supports reproducibility and replicability. Reproducibility is the ability 
to recreate results, whereas replicability captures the ability of the 
model to generate new but consistent data in other applications (Patil 
et al., 2016). 

Where SoS models are used by external stakeholders, some amount 
of technical support is likely expected. Without this, use of the model 
and thus its impact is likely to be minimal. Computational models are 
software in that they are made of code, and so continued use comes with 
a baseline cost to cover maintenance, improvements, and updating of 
documentation. Such capacity is crucial in contexts where long-term 
management and decision support is an acknowledged requirement. In 
such cases the design, implementation and documentation of the model 
should plan for these long-term activities from the beginning. In the SoS 
context this implies retaining the interdisciplinary knowledge within a 
team or organization (e.g. Cockerill et al., 2019; Kragt et al., 2013). 

3.4.1. Documentation 
Whereas earlier sections spoke to the content of documentation, this 

section focuses on the role of documentation in an interdisciplinary 
setting such as SoS modeling. Documentation is a conduit through which 
information and knowledge are propagated and provides the necessary 
context for model evaluation (Cockerill et al., 2019). Without sufficient 
documentation, it is difficult to understand the context that led to any 
specific issue, including mismatches between constituent models. Lack 
of context then affects the perceived validity of the model conceptuali-
zation, restricts model use, rendering the model inappropriate or invalid 
for its purpose. 

The act of documenting itself allows for reflexive and transparent 
communication and for new insights to be gained. Undocumented as-
sumptions regarding scale and their influence may compromise other 
constituent models, thus holistic awareness of the SoS issues can be 
obstructed by a lack of documentation. Long-term maintenance and use 
of the model may also be impeded (Ahalt et al., 2014). No individual 
holds the knowledge and awareness of the modeling details in their 
entirety, let alone the effects of interactions between models. It is 
therefore important to recognize that writing and maintaining docu-
mentation should be a team effort, and a culture to support this should 
be fostered. 

In practice there are few incentives for documenting models to such 
an extent. A key problem in SoS model documentation is that details of 
the constituent models important for the SoS team may be considered 
unnecessary for the teams developing the constituent models. Once 
again, this stems from potential disconnects between the purpose of the 
SoS model and the individual (or original) objectives of each constituent 
model. In the sciences the focus is often on the publication of papers at 
the expense of ensuring model reuse or reproducibility and replicability 
(Easterbrook, 2014; Joppa et al., 2013; Peng, 2011; Schnell, 2018). 
There is an increasing push to change the culture surrounding the 
publication process, however, to better recognize, credit and incentivize 
model code publication. For example, a number of organizations have 
begun supporting “Open Code Badges” to highlight reproducible work 
(https://www.comses.net/resources/open-code-badge/). 

3.4.2. Process evaluation 
The extent to which the modeling has achieved its overarching 

purpose is evaluated in this step (Badham et al., 2019). This evaluation 
extends beyond the technical performance of the SoS model (Bennett 
et al., 2013) to consider outcomes of modeling as a social process. 
Success of a model depends on the beliefs and expectations of the 
intended users and in their satisfaction with the model and its results 
(Hamilton et al., 2019). It may also depend on the biases and beliefs of 
the model creators (Glynn et al., 2017) and in an alignment of 
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expectations between creators and users (Sterling et al., 2019). The 
suitability of the success criteria is dependent on the context of the 
project, including not only the model purpose, but also the character-
istics of the problem, such as its complexity and the resources that were 
available (Hamilton et al., 2019). 

Process evaluation in SoS focuses on two facets: achievement of goals 
and longevity of the models. In terms of goal achievement, process 
evaluation considers whether the goals of the SoS model were supported 
by its constituent models and, where applicable, whether constituent 
models achieved their own goals. Although satisfying the goals of the 
constituent models may seem an indirect path to satisfying the goals of 
the SoS model, this interpretation is misleading. An SoS approach to 
modeling, instead of simply a multi-modeling approach, leverages the 
autonomy and independence of the constituent models. Constituent 
models still need to be capable of yielding their own outcomes, 
regardless of how those models are used in the context of the SoS model 
(Salado, 2015). 

Evaluation of the longevity of the SoS model, referring to the ability 
to leverage or reuse the SoS model over time, requires the development 
and assessment of a targeted plan for its sustainment that includes: (1) 
monitoring the evolution of the constituent models; (2) identifying al-
ternatives for models that may cease their validity, availability or 
accessibility during the lifetime of the SoS model; (3) establishing a 
strategy for the continued evolution of the SoS model, including the 
development of potential transformation frameworks and implementa-
tions; and (4) identifying opportunities to facilitate the sustainment of 
constituent systems aligned with the sustainment of the SoS model. 

Process evaluation for SoS models may consider adopting a reflexive 
process in which questions are asked of those involved in the modeling, 
such as ‘did the modeling process help to improve understanding of the 
system/problem?’ or ‘did the modeling process help facilitate commu-
nication between stakeholders?’ (Hamilton et al., 2019). The line of 
questioning can then leverage input from the various perspectives 
available, including those of experts and stakeholders for the different 
constituent systems of an SoS. Bias in the model, such as whether their 
respective positions were adequately represented, may then be assessed. 
Alternative conceptions and processes of the system and their scales 
could also be assessed at this stage (Voinov et al., 2016). 

4. The paths forward 

4.1. A grander vision and commensurate funding 

Addressing all the scale-related issues outlined in the paper requires 
a level of cooperation and concerted integrative effort that is by and 
large not possible given the usual short-term funding of the sciences (e.g. 
Saltelli, 2018). Recent publications have also brought attention to de-
ficiencies in the current science resourcing structure, characterized in 
part by competition over limited funding and an emphasis on (number 
and citation counts of) publications. Existing funding mechanisms may 
well be detrimental to the quality of science produced (Binswanger, 
2014; Sandström and Besselaar, 2018). 

Limited resourcing is one reason for the multiple, albeit siloed, ef-
forts with a focus on single case studies (Pulver et al., 2018; Hoekstra 
et al., 2014), and the necessity of excluding salient aspects of the 
modeling (such as adequate participatory processes; Eker et al., 2018) or 
making less than ideal choices about the model or data (e.g. using 
existing coarser scale data rather than collecting new data at a finer 
scale). Commentary by researchers highlight the importance of inter-
disciplinary work (Kretser et al., 2019; Meirmans et al., 2019), which is 
typically not funded to the same extent as monodisciplinary efforts 

(Kwon et al., 2017; Bromham et al., 2016). Regardless of the importance 
of such holistic assessments these real-world constraints essentially 
make holistic SoS modeling and analyses unrealistic. 

On the other hand, examples of large concerted efforts can be found, 
such as in astronomy and physics which have produced groundbreaking 
work with the Event Horizon Telescope (e.g. first photograph of a 
blackhole, Akiyama, 2019) and the Large Hadron Collider (e.g. discov-
ery of the Higgs boson, Aad et al., 2012). These resource intensive 
projects are important and could substantially influence future societal 
development. At the same time, lesser importance is placed by funding 
organizations on interdisciplinary socio-environmental works which 
arguably have a more immediate impact and benefit to society. 

A grander vision for SoS research, in line with large-scale collabo-
rations in other fields, is vital to achieve a truly holistic consideration of 
SoS modeling for resolving socio-environmental issues. Realizing this 
vision itself requires fundamental shifts in how such interdisciplinary 
work, and associated expertise, are viewed and funded (Elsawah et al., 
2020). Greater funding focused on education and training of interdis-
ciplinary system practitioners is fundamental for greater cohesion and 
consensus in the socio-environmental sciences (Little et al., 2019). While 
alternative funding models have been suggested for the sciences (see for 
example Meirmans et al., 2019; Higginson and Munafò, 2016), the 
current state of affairs is unlikely to change in the near future. Thus, any 
benefits from a systemic change, if they occur at all, will be experienced 
only in the long-term. 

Although disciplinary experts may collaborate, pool resources, 
engage with stakeholders and gain experience in interdisciplinary work 
in the process of investigating a socio-environmental issue, this is not an 
effective way forward. In the medium-term, existing case studies could 
be leveraged to perform a comparative meta-analysis to determine the 
level of influence system connections have, and the scales at which such 
connections matter (Pulver et al., 2018). Such meta-analyses could 
extend to the practices used to manage the socio-technical influences in 
the modeling process. Shifts towards leveraging collections of studies for 
meta-analyses are emerging in fields such as psychology to allow for 
what is known as “statistical objectivity” towards reported findings in 
the literature (Freese and Peterson, 2018). Although the focus there is in 
resolving issues of replicability, the same approach can be additionally 
leveraged to characterize scale commonalities. 

We conclude here by re-emphasizing three key considerations which 
can reinforce current SoS modeling efforts in a move towards the larger 
consensus needed for this grander vision. 

4.2. Strengthen interdisciplinary communication 

Here lies the crux of the challenge in developing a tiered SoS model. 
It is not only necessary for the science and engineering to mesh together 
appropriately, but it is fundamental that the modeling process also 
consider and embed the socio-technical considerations. While we as 
modelers struggle with the former, the latter is too often ignored. As 
there are a variety of participants, and therefore disciplinary perspec-
tives involved, a key set of considerations are in the social dimensions 
that provide the interface between modeling efforts. 

Integrating multiple perspectives requires an integrative approach 
which is ultimately necessary to navigate towards a beneficial system 
change (why else do we model?). Choices made in the treatment of scale 
are unavoidable and may result in conflicting decisions with separate 
implications. Just to name one, members of teams may have a path pre- 
selected without full consideration of the implications on the system 
representations, leading to further issues when such decisions are not 
communicated. 
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The next generation of systems modelers would ideally embody a 
culture that is cognizant of the socio-technical issues, considerations, 
and their influences throughout the modeling process (e.g. Little et al., 
2019). Such a systemic cultural shift can only be developed in the longer 
term, however, and so in the meantime clearer communication requires 
adequate resourcing for documenting decisions made, and code and 
data used, including their maintenance. Practices for the co-production 
of knowledge to fulfill the needs and requirements of the modeling is 
necessary for advances to be made (Norström et al., 2020). 

There is often a preference for face-to-face meetings to facilitate the 
necessary level of communication but that may not always be possible. 
Geographic distance, scheduling conflicts, travel restrictions and other 
factors may preclude such activities. Communication technologies play 
a critical role in mitigating some aspects of the issue. For example, travel 
and social distancing restrictions during the COVID-19 pandemic has 
prohibited many teams from meeting in person, forcing reliance on 
technologies such as video conferencing. Regardless of the mode of 
communication, a team and organizational culture of consistent and 
continual communication is one necessity repeatedly highlighted to 
resolve a variety of scale issues and the conflict that may arise between 
actors throughout the modeling process. Incorporating knowledge 
beyond the bounds of one’s own disciplinary training is crucial to the 
holistic attention to and incorporation of scales and to avoid the siloing 
of information and knowledge, and to break down cognitive constraints. 

4.3. Improve documentation processes 

The importance of documentation is another aspect that was 
repeatedly raised throughout this paper. Documentation of the modeling 
process communicates, and makes accessible, the decisions, actions, the 
context of those decisions and actions, and reflection on those choices to 
those who may or may not have been active participants in their making. 
Insufficient documentation affects many aspects from the pace of model 
development throughout the modeling cycle, quality of model integra-
tion especially across disciplinary boundaries, and the perceived quality 
of the modeling conducted. A lack of documentation accessibility 
additionally affects the (re)use and maintenance of the SoS model (or its 
constituents) and so could lead to duplication of effort across those 
involved in modeling SESs. 

One approach to ensure that documentation is made a priority is to 
adopt a documentation-driven development and design approach 
(Heeager, 2012). Such approaches are exemplified by the ODD Protocol 
(Grimm et al., 2020, 2014, 2010). In this paradigm, documentation is 
developed first, serving as a vehicle for discussion, ideally prior to any 
model development (Heeager, 2012). Ambiguities in the documentation 
(and thus the modeling) may be addressed earlier in the process as a 
result, and documentation could be iteratively revised, commensurate 
with any changes to modeling scale. Furthermore, maintaining Records 
of Engagement and Decision-making (RoED, Cockerill et al., 2019) to 
document the process and pathway decisions were made in a 
context-appropriate manner may be crucial to ensuring conceptual and 
technical validity throughout the modeling cycle. Sufficient, rather than 
exhaustive, documentation to describe model context would be 
preferred (Ambler, 2002; Cockerill et al., 2019). 

4.4. Explicit consideration of scale and uncertainty 

There is an increasing expectation that SoS models can more 
completely represent processes within an SES, however, it is impossible 
to model everything for all purposes. Further explicit consideration of 
the inter-relationships between scales, choices made in representing 
scale, and their influence on uncertainty is paramount in the SoS 

context. Identifying, managing and reconciling the disparate treatment 
of scale is a key step towards a holistic approach, as opposed to the 
concurrent, but separate, processes currently applied (Cheong et al., 
2012; Elsawah et al., 2020). 

As noted several times throughout this paper, the socio-technical 
context has an inordinate influence on uncertainty. In addition to the 
communication and documentation considerations outlined above, an 
avenue for a more holistic assessment of uncertainty includes the use of 
robustness analysis (Grimm and Berger, 2016). In such analysis, a model 
with multiple systems is systematically deconstructed through forceful 
changes to the model parameters, structure, and process representations 
within each system to assess uncertainty. Use of these approaches with 
pattern-oriented modeling processes, which filter unsuitable represen-
tations across scales, may also be helpful in this regard (Grimm and 
Railsback, 2012; Gupta et al., 2008). 

Additionally, qualitative and quantitative uncertainties could be 
jointly assessed through the representation of multiple plausible futures 
that stem from different sets of assumptions through exploratory ap-
proaches (Maier et al., 2016; Roberts et al., 2018; Rounsevell and 
Metzger, 2010). A related approach is a multi-model approach wherein 
an ensemble of equally plausible models are applied to identify the in-
fluence of structural and qualitative uncertainty (Matott et al., 2009; 
Tebaldi and Knutti, 2007; Uusitalo et al., 2015). Using an ensemble of 
estimates (such as the average or median of model outputs) may have 
the benefit of providing more robust and accurate forecasts (Willcock 
et al., 2020). Applying these on different computational platforms may 
additionally assist in identifying technical uncertainties (Iwanaga et al., 
2020). 

It was noted throughout this paper that the scale of the modeling 
itself should be commensurate with the available resources and purpose. 
A holistic SoS model may not be entirely possible given resource con-
straints, however relationships between systems can still be acknowl-
edged and represented (albeit simplistically). Doing so allows some 
assessment of the uncertainties at least, and constitutes a step towards 
holistic SoS modeling so long as the underlying assumptions are 
explicitly documented (e.g. Kloprogge et al., 2011). 
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Appendix 1 

Example of hypothetical model inputs for a hydrological routing model provided in a nested data structure (left column) compared to a more 
traditional “flat” format (right column). Nested structures are arguably better suited for representing collections of data structures and their re-
lationships (e.g. a network or graph structure) and, pragmatically, are typically more amenable to the inclusion of comments and multiple values 
associated with specific parameters, reducing cognitive overhead. While perhaps more readable, a disadvantage of nested representations is the 
additional complexity that may be perceived.
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2017. Development of a software tool for rapid, reproducible, and stakeholder- 
friendly dynamic coupling of system dynamics and physically-based models. 
Environ. Model. Software 96, 410–420. https://doi.org/10.1016/J. 
ENVSOFT.2017.06.053. 

Martin, D.M., Powell, S.J., Webb, J.A., Nichols, S.J., Poff, N.L., 2017. An objective 
method to prioritize socio-environmental water management tradeoffs using multi- 
criteria decision analysis. River Res. Appl. 33, 586–596. https://doi.org/10.1002/ 
rra.3103. 

Matott, L.S., Babendreier, J.E., Purucker, S.T., 2009. Evaluating uncertainty in integrated 
environmental models: a review of concepts and tools. Water Resour. Res. 45 
https://doi.org/10.1029/2008WR007301. 

Meadows, D.H., 2008. Thinking in Systems: A Primer. Chelsea Green Publishing. 
Meirmans, S., Butlin, R.K., Charmantier, A., Engelstädter, J., Groot, A.T., King, K.C., 
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Chapter 7: Reflexive lessons for effective 
interdisciplinarity 

This chapter explores the interplay between teams and scale within the context of SoS 

modelling for SES and its subsequent influence on (model) uncertainty and complexity. The 

exploration is conducted through reflexive analysis of the modelling processes within two, 

unrelated, case studies to draw out lessons across five fundamental themes that are especially 

applicable within the interdisciplinary system-of-systems modelling context. As a publication, it 

serves as a companion to Chapter 6. The chapter was submitted to Elementa: Science of the 

Anthropocene and has been accepted for publication. 

 

Iwanaga, T.*, Wang, H-H., Koralewski, T. E., Jakeman A. J., Little, J. C., 2021. Towards a complete 

interdisciplinary treatment of scale: reflexive lessons from socio-environmental systems 

modeling. Elementa: Science of the Anthropocene 9(1), 

https://doi.org/10.1525/elementa.2020.00182 



PRACTICE BRIDGE

Toward a complete interdisciplinary treatment of
scale: Reflexive lessons from socioenvironmental
systems modeling

Takuya Iwanaga1,*, Hsiao-Hsuan Wang2, Tomasz E. Koralewski2, William E. Grant2,
Anthony J. Jakeman1, and John C. Little3

The pathways taken throughout any model-based process are undoubtedly influenced by the modeling team
involved and the decision choices they make. For interconnected socioenvironmental systems (SES), such
teams are increasingly interdisciplinary to enable a more expansive and holistic treatment that captures
the purpose, the relevant disciplines and sectors, and other contextual settings. In practice, such
interdisciplinarity increases the scope of what is considered, thereby increasing choices around model
complexity and their effects on uncertainty. Nonetheless, the consideration of scale issues is one critical
lens through which to view and question decision choices in the modeling cycle. But separation between team
members, both geographically and by discipline, can make the scales involved more arduous to conceptualize,
discuss, and treat. In this article, the practices, decisions, and workflow that influence the consideration of
scale in SESs modeling are explored through reflexive accounts of two case studies.Through this process and
an appreciation of past literature, we draw out several lessons under the following themes: (1) the fostering
of collaborative learning and reflection, (2) documenting and justifying the rationale for modeling scale
choices, some of which can be equally plausible (a perfect model is not possible), (3) acknowledging that
causality is defined subjectively, (4) embracing change and reflection throughout the iterative modeling
cycle, and (5) regularly testing the model integration to draw out issues that would otherwise be
unnoticeable.

Keywords: Reflexive analysis, Integrated assessment and modeling, System-of-Systems, Socioenvironmental
modeling, Interdisciplinary teams, Uncertainty

1. Introduction
Consideration of scale is a common activity in all system-
of-systems (SoS) modeling approaches involving the
integration of multiple models when representing any
complex socioenvironmental system (SES) of interest.
Unfortunately, such consideration is all too often con-
ducted tacitly, or at best minimally, and recently has been
considered a grand challenge in SES modeling (Elsawah et
al., 2020). Scale underlies many modeling concerns
including how to address model complexity, conceptual
mismatches, and uncertainty. In short, explicit consider-
ation of scale issues provides a valuable, and indeed

critical, lens to view the decisions made in any SES mod-
eling activity.

This article follows an earlier publication (Iwanaga et
al., 2021b) in which the current practices, issues, and
challenges with respect to scale were explored through
a sociotechnical lens. Scale can thus be characterized as
an expansive term relating not just to the properties of the
system under investigation but also the interplay between
the social and technical dimensions. These influence what
is considered, what is not, and what is eventually included
in the modeling. A crucial aspect is the influence of the
people involved and the subsequent technical processes
and decisions that produce a model for a given purpose.
These underlying influences, including scale decisions
taken, often remain implicit and are not explicitly dis-
cussed. But for reasons of saliency, legitimacy, and trans-
parency, they are best appreciated and considered by team
members in as complete a sense as possible, albeit taking
resources and time available into account.

Interdisciplinarity is now recognized as a crucial neces-
sity in understanding and dealing with the complexity of
socioenvironmental interactions (Hall et al., 2012; Saltelli
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and Funtowicz, 2017; MacLeod and Nagatsu, 2018; Ster-
ling et al., 2019). Challenges to a successful modeling
process and set of outcomes necessitate effective collabo-
ration, teamwork, and cross-disciplinary communication
and discussion of a high order among team members
(Nancarrow et al., 2013; Hall et al., 2018). Technological
solutions cannot resolve mismatches in understanding
among people, although they can facilitate and prompt
discussions. Thus, there is a need to examine the practices
and decision choices we make in any modeling activity,
but especially so for one as complex as in SES. Acknowl-
edgment of the human aspects that influence the choice
and treatment of scales in modeling, and their implica-
tions, is therefore crucial in moving beyond the status
quo. A key activity then is identifying the practices and
approaches that facilitate and promote effective interdis-
ciplinary cohesion among and within modeling teams.

The treatment of scale in the modeling process is an
essential and valuable activity for focusing the attention of
modelers on many of their key decisions. But that treat-
ment can be affected by the level of cohesion and reflex-
ivity within the collaborative process, which in turn may
have a substantial influence on modeling outcomes, espe-
cially with greater interdisciplinarity of the modeling issue
being addressed (Jones et al., 2011; Lahtinen et al., 2017).
The level of inclusivity in communication that leads to
interdisciplinary considerations and participation of all
stakeholders, where stakeholders may include modelers
themselves (following the definition in Freeman, 2010),
are then also issues of scale to be explored. Recent pub-
lications espouse similar positions in recognizing the role
that researchers play in shaping the scientific and policy
discourse (Crouzat et al., 2018; Connolly, 2020; Walsh et
al., 2020). We, as researchers, are perhaps coming to the
full realization that “the technique is never neutral” (Salt-
elli et al., 2020) and that we cannot divorce ourselves from
the influence we have on processes we take part in (Glynn
et al., 2017; Cockerill et al., 2019).

1.1. The reflexive approach

A (more) reflexive approach to interdisciplinarity has been
suggested over the years to aid in bridging the gap in
understanding between the research that is conducted
and the interdisciplinary processes that produce research
outcomes (Finlay, 2002; Preston et al., 2015; Lahtinen et
al., 2017). As with many terms that cross disciplinary
bounds, “reflexivity” has several meanings with different
practitioners holding differing views on its definition. The
term “reflexive” is adopted here to convey a more trans-
formative intent; the goal is to improve future practice
through reflection on the seemingly self-evident choices
and influences in the activities undertaken, the underlying
assumptions, the role one played in the decisions, and the
broader context in which these choices occur (Preston et
al., 2015; May and Perry, 2017; Bolton and Delderfield,
2018). Reflexive evaluation is therefore one approach to
considering the implication of scale choices, a practice
which can aid in identifying the lessons learnt that are
of benefit to future research (Krueger et al., 2016; Mon-
tana et al., 2020).

In this article, we draw five lessons through the reflex-
ive accounts of the treatment of scale across two interdis-
ciplinary socioenvironmental modeling case studies, also
drawing upon diverse literature, where appropriate, to
corroborate our experiences. As noted by others, the
reflexive approach is highly situation-specific, such that
there is no “one” approach to reflexivity (e.g., Montana
et al., 2020). The reflexive process applied here was, how-
ever, informed by descriptions of reflexivity given in Finlay
(2002) and May and Perry (2017), alongside accounts pro-
vided by Krueger et al. (2016) and Preston et al. (2015).

The described approaches involve critical self-analysis,
which we define in this context as analyzing one’s own
influence on the modeling process, and a process of joint
discussions to form reflexive accounts of our experiences.
The choices made in the modeling and their implications
were analyzed as part of the reflexive process to elicit the
how and why of the modeling and their influence on
outcomes. The adopted approach also involved a third
party who acted to provide an external viewpoint to elicit
further reflection and pushed forward the reflexive pro-
cess. The approach aided in drawing out the successes and
the struggles encountered when working within an inter-
disciplinary context. It is acknowledged here that the
described approach is subject to some uncertainty as not
all those involved in the original case studies could par-
ticipate (due to availability and the necessary time com-
mitment) and so may not include their valuable insights
and perspectives (a matter revisited in Section 2).

The reflexive approach encompasses not just the
“technical” decisionsmade (such as whatmodels to use and
the scope of stakeholder engagement) but also acknowl-
edges that the modeling teams form a social system in its
own right with their own complex interactions which influ-
ence the path taken. Model outcomes are therefore heavily
influenced by the social context of the modeling process as
well as the technical decisions made therein. Future efforts
can be improved by concretely acknowledging this inter-
play (Catalano et al., 2019; Sterling et al., 2019; Montana
et al., 2020). A sociotechnical view was taken to elicit these
aspects in the reflexive process.

In the next section, we briefly detail the modeling con-
ducted for the two case studies alongside the reflexive
accounts of the choices made in the consideration of mod-
eling scale, the team processes involved, and the decisions
made. Both studies employed an SoS approach involving
the integration of multiple models to represent the SES of
interest. The fundamental need to consider these scale
aspects has been previously articulated in Elsawah et al.
(2020), Little et al. (2019), Badham et al. (2019), and Ha-
milton et al. (2015), albeit from different perspectives. We
then synthesize the five main lessons learnt from the case
studies, which we hope might enhance future SES mod-
eling activities.

2. The case studies
The two case studies represent different facets of the is-
sues that SES modelers face within an SoS context. A
reflexive account for each case study is provided below
and is aligned with the basic steps in the modeling
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process. The subsections are not organized identically,
however, owing to the different experiences encountered
and the focus on providing a reflexive account. Key infor-
mation is briefly summarized here with an overview pro-
vided in Table 1, and readers who feel sufficiently
informed may skip ahead to Section 3 (Lessons learnt).

Both models are of the SoS type as they leverage con-
stituent models that individually represent separate sys-
tems wherein each model could, potentially, be applied
separately. As is typical of SoS approaches, each case study
(1) considered different time frames and spatial/temporal
granularities, (2) spanned multiple systems, and (3)
involved multiple disciplines and stakeholders. An aspect
of scale to be considered is the process of deciding which
representations are to be included or excluded and how
they are to be represented in terms of the scale of the
modeling to be conducted. Modeling scale therefore in-
cludes all aspects of the modeling process including the
conceptualization of the model, the relationships between
constituent models, model structures, boundaries, parame-
terizations, implementation approach, and the decisions
that underpin each of these. These decisions may be influ-
enced by factors external to themodeling concerns, such as
the available resources or imposed legacy software, but are
also influenced by the disciplinary representation within
the team, the interests represented by stakeholders, and
the level of interdisciplinary cohesiveness.

The first case study, referred to as the sugarcane aphids
in Great Plains (GPSCA) case study, focuses on areawide
integrated pest management of aphids infesting grain

sorghum fields across a large spatial area, incorporating
local- and regional-scale dynamics. More expansive de-
scriptions for each case study are available—Wang et al.
(2019) and Koralewski et al. (2019, 2020a) for the GPSCA
study and Iwanaga et al. (2018, 2020) for the Campaspe
case study. The GPSCA case study emphasizes modeling
choices from a technical point of view, while the Cam-
paspe case study offers a description of the team pro-
cesses, which influenced decisions during model
development.

2.1. The GPSCA case study

The sugarcane aphid is an economic pest of sorghum
worldwide (Singh et al., 2004), and outbreaks in U.S. sor-
ghum fields have been recurring annually since 2013.
Economic losses result from direct feeding, compromised
harvesting efficiency, and damage to harvesting equip-
ment and may exceed 50% of the yield (Bowling et al.,
2016). Aphids are highly prolific and disperse with wind
over long distances within the prairie-steppe region of the
North American Great Plains, which is the principal sor-
ghum production area in the United States (van Rensburg,
1973; Singh et al., 2004; USDA-NASS, 2010; Bowling et al.,
2016).

Two key tactics within an areawide integrated pest
management program for cereal aphids include deploy-
ment of aphid-resistant sorghum cultivars and selective
use of insecticides (Elliott et al., 2008; Giles et al., 2008;
Brewer et al., 2019). The model of Wang et al. (2019) was
developed to support wise use of these management

Table 1. Overview of each case study including the team context, socioenvironmental systems (SESs) involved, and
purpose of the modeling. DOI: https://doi.org/10.1525/elementa.2020.00182.t1

Case Study Team Context SESs Involved Time Steps Purpose

Sugarcane
aphids
in Great
Plains

Interdisciplinary group including
experts in areawide pest
management, entomology, and
ecological modeling located in
several states and employed by
federal, state, and private
institutions

The core modeling team consisted
of three ecological modelers, an
areawide pest manager, an
entomologist, and
a meteorologist/aeroecologist

Four in total:
agroecological systems
(sorghum growth,
aphid life cycle, and
crop management);
meteorological system
(airborne aphid
dispersal)

Once per model run:
crop management
model

Daily: sorghum growth
model, aphid life-
cycle model

Hourly: meteorological
dispersal model

Forecasting sugarcane
aphid infestations of
sorghum fields
within an areawide
pest management
program, providing
infestation forecasts
to areawide pest
managers and
sorghum producers

Campaspe Large group of participants across
different disciplines (>10)
geographically spread across
many institutions (>6). The team
included modeling specialists
across five systems, and one
generalist who developed the
farm model, aided in integrated
design and development, and
led the integration of models

Seven in total:
agricultural,
hydrological (surface
and groundwater),
ecological, climatic
variability, policy, and
recreational suitability

Daily: surface and
groundwater,
climate

Two weekly: agriculture
and policy

Once per model run at
end of scenario:
ecology and
recreational water
suitability index

Knowledge integration
and stakeholder
discussion of the
range of impacts
that changing
climatic and policy
contexts have on
water-related farm
and environmental
concerns
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tactics for sugarcane aphids. The purpose of the model was
to simulate areawide spatiotemporal patterns of sugar-
cane aphid infestations of sorghum fields, with a focus
on timing of initial infestations. Near-real-time model
forecasts could inform growing season activities such as
timing of field monitoring to detect aphids and optimal
insecticide use (Koralewski et al., 2020b). Model outputs
also could be useful for region-scale management recom-
mendations such as deployment of aphid-resistant sor-
ghum cultivars (Koralewski et al., 2020a).

2.1.1. Conceptualization

The core modeling team that developed the conceptual
model consisted of three ecological modelers: an areawide
pest manager, an entomologist, and a meteorologist/aero-
ecologist. Although we all conceptualized the SoS as con-
sisting of linked agroecological and meteorological
systems, agreement on representation of causal processes
operating within, and especially between, these two con-
stituent systems was achieved only after considerable
debate. The debate was centered explicitly on our choice
of appropriate temporal and spatial scales at which to
represent system processes. However, implicitly, we were
debating the level of causality to include in the represen-
tation of those processes. That is, did we require our
model, or parts thereof, to be interpretable as embodying
cause–effect relationships or did we require only that

model outputs correspond well with available real-world
observations. Below, we describe the details of the concep-
tual model of the integrated SoS that emerged as a shared
understanding of the modeling team (see also figure 1 in
Wang et al., 2019).

Important processes modeled in the agroecological sys-
tem included sorghum growth, aphid development, and
crop management. Both sorghum growth (through
phenological stages) and aphid development (through
life-cycle stages) were modeled primarily as a function of
environmental temperature. Crop management (i.e., deci-
sions to plant aphid-resistant sorghum cultivars and rules
for insecticide use) was modeled as a set of external vari-
ables. Important processes modeled in the meteorological
system included emigration (time and location of aphid
“takeoff”), wind-borne aphid migration, and immigration
(time and location of aphid “landing”).

Migration was modeled primarily as a function of wind
velocity and direction and flight duration. The processes of
emigration and immigration linked the agroecological
and meteorological systems, with emigration initiated in
the agroecological model (based on sorghum phenologi-
cal stage and aphid life stage) and immigration initiated in
the meteorological model (based on the deposition pat-
tern of aphids). Additional conceptual details on linkage
of the meteorological and agroecological components are
provided in Koralewski et al. (2019; figure 1 therein).

Figure 1. Relationship and interactions between constituent models and the key outputs of the Campaspe integrated
model (Iwanaga et al., 2020). Each box represents a constituent model. Dashed line around surface and groundwater
models is to simplify the diagram and does not signify a separate model. Arrowed lines indicate the process of data
interoperation; the direction of interaction and the data communicated between models. DOI: https://doi.org/
10.1525/elementa.2020.00182.f1
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The spatial extent of the model included the primary
sorghum-producing areas in the United States, including
Kansas, Oklahoma, and Texas. The spatial resolution was
set to 0.5� latitude by 0.5� longitude, which resulted in
about 700 georeferenced landscape cells of approximately
2,500 km2. This coarse-grained scale facilitated linkage of
the agroecological system of the SoS to an existing atmo-
spheric particle trajectory model (HYSPLIT; Stein et al.,
2015; see Section 2.1.3.2 on model construction). The
number of cells may vary annually depending on whether
or not sorghum is present in the cell during a given year.
The temporal scale was 1 year, which allowed for encom-
passing one sorghum growing season, and thus the max-
imum potential extent of aphid infestations, with
resolution of a daily step to capture important details
related to phenological development of sorghum and po-
pulation dynamics of aphids. Immigration of aphids from
outside of the southern boundary was approximated as
occurring from the Rio Grande Valley along the border
between Texas and Mexico based on reported field detec-
tion of aphids (Bowling et al., 2016). Aphids arrive in the
Valley from Mexico “unannounced” because producer re-
ports of infestations are not available from Mexico on
a regular basis.We elaborate our rationale for scale choices
in the subsection below.

However, before proceeding further, we reflect for
a moment on our modeling team for this case study. Our
team did not include a social scientist. This was not by
design, in the sense of an explicit decision in favor of
exclusion. Rather, it resulted from funding priorities
within the overall project and the associated restriction
on the number of modeling team members. Our team
also did not include sorghum producers. Our entomolo-
gist maintained close ties with numerous producers via his
agricultural extension activities and could explain their
perspectives and main interests with relative confidence.
Nonetheless, sorghum producers did not participate
directly in discussions among the members of the model-
ing team.

Ideally, a social scientist and at least one sorghum pro-
ducer would have been members of the core modeling
team from the beginning. These “social voices” would have
enriched our shared understanding of the SES and, argu-
ably, could have modified the course of model develop-
ment. For example, one of our livelier debates during
model development, which we describe below in Section
2.1.2.2, undoubtedly would have included a more detailed
discussion of the guidelines that have been developed for
sorghum planting dates and subsequent management
activities. We currently are exploring ways to quantify pro-
ducer decision making within predominantly biophysical
models (e.g., Wang et al., 2020b), which may be applicable
to the GPSCA model. But perhaps more challenging than
the quantitative details involved are the financial and
logistical problems that impede direct long-term involve-
ment of stakeholders in the model development process.

2.1.2. Scale choices

The multifarious reasoning that led to our choice of scales
is not intuitively obvious. In principle, we based our

determination of spatial and temporal scales (outlined
in Table 1) on model objectives, the ecology of the organ-
isms involved, the level of detail contained in information
available from literature and from stakeholders (sorghum
producers), and computational considerations. Sorghum
producers did not participate directly in discussions
among members of the core modeling team. However,
our entomologist maintained close ties with numerous
producers via his agricultural extension activities and
could represent with confidence their perspectives and
main interests. Spatial and temporal scales both spanned
several orders of magnitude. The spatial scale of interest
ranged from the regional management perspective
(approximately 1.75 million km2 of modeled area) to that
of the sorghum producers’ and field scientists’, focused on
a single sorghum leaf which, for practical purposes, en-
compasses an aphid colony. Temporal scales of interest
ranged from an approximately 9-month period of sor-
ghum availability in the region (for regional managers)
to a “near-real-time” estimation of aphid density in a sor-
ghum field (for sorghum producers and field scientists).

Scale choices were complicated further because
aphids are small (approximately 0.05 mg) and prolific
(population doubling time as short as a few days). Non-
winged (apterous) morphs are relatively sedentary,
whereas wind-borne dispersal can carry winged (alate)
morphs over long distances (hundreds of kilometer).
Thus, densities of local colonies can exceed 1,000 indivi-
duals per sorghum leaf, while emigrants from a single
colony can be dispersed over thousands of square kilo-
meters. Important life processes occurring during the
terrestrial portion of the aphid life cycle are commonly
measured in terms of daily rates, and the most common
metric used to record field measurements of aphid den-
sities is individuals per sorghum leaf. Sorghum develop-
ment through phenological stages also is measured in
terms of days (or “degree-days”) per stage. However,
important dynamics occurring during wind-borne aphid
migration result from physical environmental conditions
(wind velocities and directions) that are highly variable
over the entire U.S. Great Plains.

Reflecting on these various considerations, we needed to
“scale up” spatially and temporally from representation of
the agroecological processes occurring at the individual
aphid/sorghum leaf interface to generate seasonally vari-
able regional patterns of aphid infestations of sorghum of
interest at the areawide pest management level. Placing our
model objectives within the context of Levins’s (1966) clas-
sical modeling trade-offs (precision vs. generality vs. real-
ism), it also seemed clear that our priority was realism. That
is, we wanted to explicitly consider the agroecological char-
acteristics specific to the south-central U.S. Great Plains.

In addition, we wanted to explicitly consider stochastic
effects on these agroecological processes that are depen-
dent on meteorological conditions. Infestation forecasts
needed to be probabilistic. Within this context, the inher-
ent stochasticity of the SoS and the parametric uncertainty
associated with representations of system processes
shaped our scale decisions. To provide some insight into
our thought processes, we initially focused on the model
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output of most interest to end users and worked our way
back to sets of modeled processes that might generate
that output, noting the relative level of detail included
in representation of the various processes (Wang and
Grant, 2021).

2.1.2.1. Model output
The model output of most interest to end users (sorghum
producers) was a set of calendar dates indicating when
aphids were most likely to first infest their sorghum fields.
We began by conceptually bounding the level of detail at
one end with a deterministic, static, correlative model that
estimates a mean date of the first infestation of the south-
central U.S. Great Plains based on observed first infesta-
tion dates (which date back to 2013). At the other end, we
conceptually bounded the level of detail with a dynamic,
spatially explicit, individual-based model that represents
all of the individual sorghum leaves in the south-central
U.S. Great Plains and all of the individual aphids that
might infest them.

Given the purpose, a useful model needed to be prob-
abilistic, dynamic, and spatially explicit. Thus, regarding
spatial and temporal scales, we divided the south-central
U.S. Great Plains into smaller-sized areas and the approx-
imately 9-month period into shorter time steps. Further-
more, we knew that producers were most interested in
their sorghum fields and in associated management activ-
ities (e.g., planting, monitoring for aphids, pesticide appli-
cations), which might be shifted by a few days or weeks.
Areawide pest managers were interested in helping indi-
vidual producers make such decisions, but via more syn-
optic infestation forecasts, which could be individualized
by local agricultural advisors (e.g., in the United States,
agricultural extension agents working at the county level).
Thus, for end users, the model needed to provide daily
forecasts that could be interpreted at farm-level and
regional-level spatial scales.

2.1.2.2. Process representation
System processes needing to be explicitly modeled
included those at the sorghum/aphid/crop management
interface. As we mentioned in Section 2.1.1 on model
conceptualization, our main debates about scale choices
were primarily debates about the level of causality to
include in the representation of SoS processes. In partic-
ular, we debated whether our model, or parts thereof,
needed to be interpretable as embodying cause–effect
relationships. Below, to avoid an overly confusing descrip-
tion of process representation, we first present our final
shared understanding of the appropriate scales to use. We
then conclude this section with an attempt to provide
some insight into the sorts of debates that led to that
shared understanding.

Guidelines have been developed for sorghum planting
dates and subsequent management activities in terms of
latitudinal differences in weather patterns during the
growing season. Population dynamics of sugarcane aphids
on grain sorghum have been widely studied over the past
several years, although our ability to quantify with confi-
dence the effects of aphid-resistant sorghum cultivars,

natural aphid enemies, and proximate causes of emigra-
tion remains quite limited. The fact that migrating aphids
are dispersed by the wind as essentially inert particles
above the flight boundary layer (i.e., a few meters above
ground level) allows representation of migration via the
use of well-developed meteorological particle dispersion
models but also results in the uncertainty necessarily asso-
ciated with weather forecasts.

Thinking about positioning our representations of
these processes at the sorghum/aphid/crop management
interface with regard to the level of detail included in the
representations, it seemed that the modeled processes
should meet two criteria. They should generate output
directly comparable to personal observations commonly
made by end users, and they should be viewed by research
scientists as being acceptable mechanistic representations.
The most common observational metric used by produ-
cers and field biologists was the number of aphids on
a sorghum leaf. Usually, several leaves per plant and sev-
eral plants per field were sampled on a given day, with
results accumulated over time and summarized at field-,
farm-, county-, and regional-level spatial scales. Regarding
mechanistic (cause–effect) representation, we emphasized
the term “acceptable” to acknowledge that causality is
defined subjectively. The requisite level of detail to claim
that a process is represented mechanistically is to a large
degree problem-specific.

There was a reasonably narrow range of defensible le-
vels of detail to consider for the model to be viewed as
mechanistic. Aphid development, reproduction, mortality,
and emigration, as well as processes affecting the quality
of sorghum leaf (sorghum phenological development),
were represented as functions of environmental tempera-
ture modified by aphid density and seemed a defensible
“mark” along the level of detail scale for the agroecologi-
cal model. One step toward the more detailed representa-
tion might be marked by a representation of the processes
just mentioned explicitly in terms of the physiology
involved in sorghum and aphid development and the fre-
quency of physical contact among aphids. One step
toward a less detailed representation might be marked
by an implicit representation of these processes in terms
of sorghum phenological stage and aphid population den-
sity as functions of days since planting and days since
initial infestation, respectively, and emigration as a func-
tion of population density per se.

The level of detail for representation of agroecological
processes that met the two criteria just described sug-
gested a sorghum leaf and a day as appropriate spatial
and temporal scales. This left us with two final considera-
tions related to scale choice. One involved summarizing
numerically the results of mechanistically modeled daily
processes occurring on individual sorghum leaves in terms
of a set of calendar dates indicating when aphids were
most likely to first infest sorghum fields in the south-
central U.S. Great Plains. The other involved dealing with
potential phase shifts along the level of detail continuum
that might be needed when passing information about
migrating aphids between the agroecological and meteo-
rological models.
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The first step in summarizing results from individual
sorghum leaves involved deciding how many leaves we
needed to represent explicitly, how they might differ from
one another, and how aphids on one leaf might affect
aphids on another leaf. There is, however, relatively large
observed variation in aphids/leaf on a single plant,
aphids/plant within a single field, and aphid densities
among neighboring fields, as well as spatial variation in
environmental temperatures to which leaves (and the
aphids on them) were exposed.We felt comfortable, there-
fore, letting a single sorghum leaf represents a mean-field
approximation of the conditions of sorghum leaves over
an area large enough to be of interest from the synoptic
perspective of areawide managers.

We felt that forecasts summarized probabilistically
from this synoptic perspective also would be interpret-
able at the farm level by producers. Since we would be
executing sets of Monte Carlo simulations to make infes-
tation forecasts, which would encompass the environ-
mental stochasticity inherent in the modeled system,
they could be interpreted in a similar manner to local
weather forecasts. Producers were accustomed to infer-
ring probable future weather conditions for their specific
location based on weather forecasts for areas much
larger than their sorghum fields. They also were accus-
tomed to interpreting field-based observations of aphid
infestations summarized at the county level in terms of
infestation likelihoods for their fields. The final detail
involved in summarizing results based on dynamics
occurring on single sorghum leaves simply involved mak-
ing the required unit conversions. For this, we had esti-
mates of mean number of leaves per sorghum plant,
mean number of sorghum plants per hectare, and num-
ber of hectares of sorghum within various-sized areas of
the south-central U.S. Great Plains.

Regarding potential phase shifts along the level of
detail continuum that were needed when passing infor-
mation between agroecological and meteorological mod-
els, we identified two. One was conceptual and one was
quantitative. Conceptually, aphids were treated as inert
particles in the meteorological model as they are weak
flyers. Within the meteorological model, particle deposi-
tions were updated hourly (during the 12-h migration
time), but deposited particles (immigrating aphids) were
passed back to the agroecological model as daily cohorts.

Quantitatively, aphids underwent a phase shift
within the meteorological model in that we severed the
numerical connection between the number of aphids
emigrating and the number of aphids immigrating by
placing an arbitrarily small number of (super-) aphids
on each sorghum leaf receiving immigrants. Although
not ideal, we felt this phase shift did not compromise
the forecasting ability of the model. Given the variable
size of emigration events, the lack of data on mortality
rates during migration, and the dependency of success-
ful colonization on the time lag between arrival of im-
migrants and arrival of natural enemies, we felt
colonization could be represented appropriately as a sto-
chastic event occurring within any landscape cell in the
agroecological model (Wang et al., 2020a).

Having presented our final shared understanding of
appropriate scales, we now attempt to provide some
insight into one of the livelier scale debates with regard
to the level of detail with which to represent SoS pro-
cesses. As we described above, our final decision with
regard to aphid development, reproduction, mortality,
and emigration was to represent these processes as
functions of environmental temperature modified by
aphid density. Our meteorologist/aeroecologist would
have been satisfied with a “causal” representation of
aphid population dynamics that represented population
density as a function of number of days since initial
infestation and emigration as a function of population
density. Such a representation was perceived as unac-
ceptably phenomenological by our entomologist. Our
entomologist initially proposed a more mechanistic rep-
resentation of the aphid life cycle, which included,
among other things, mortality due to natural enemies
(predators and parasites). Arguably, aphid population
growth depends on timing and magnitude of mortality
imposed by their natural enemies, which depends on
species composition of the community of natural ene-
mies, which depends on the characteristics of the land-
scape surrounding a sorghum field. However, in view of
(1) the site-specificity of such relationships, (2) the fact
that connection of the terrestrial portion of the SoS
model with the aeroecological portion required just
a single number of aphids emigrating from each of the
approximately 2,500 km2 landscape cells, and (3) the
fact that the purpose of the model was to simulate
areawide spatiotemporal patterns of aphid infestations,
our entomologist agreed to a simpler “causal” represen-
tation of the aphid life cycle. The simpler representa-
tion upon which we finally agreed was acknowledged as
acceptably “causal” by our entomologist because of the
general acceptance among subject-matter experts of the
temperature dependency of insect reproduction and
development and the density dependency of aphid emi-
gration. Our meteorologist/aeroecologist doubted that
model output would be improved by this, from his
perspective, more complicated representation but
acknowledged the benefits in terms of increasing model
credibility.

2.1.3. Development

The integrated SoS model was built for use specifically
within the context of the areawide pest management pro-
gram for sugarcane aphids in the south-central U.S. Great
Plains. It was developed by the three ecological modelers,
all of whom worked at the same physical location. The
modelers maintained frequent direct communication with
the areawide pest manager, the entomologist, and the
meteorologist/aeroecologist, each of whom facilitated
indirect communication with a broad array of specific
subject-matter specialists, as well as sorghum producers
throughout the south-central U.S. Great Plains.

2.1.3.1. Collecting data, information, and knowledge
Several important processes included in the agroecologi-
cal model had been studied extensively. Data representing
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growth of sorghum and development of sugarcane aphids
to environmental temperature were available in the scien-
tific literature. Information on crop management (e.g.,
guidelines for planting and harvesting) for sorghum in the
U.S. Great Plains had been summarized and was easily
accessible. Other important processes, while generally
understood conceptually, could not be quantified based
on available data. Proximate causes of aphid mortality and
emigration remained topics of debate among subject-
matter specialists. We drew upon the knowledge of the
core modeling team, supplemented by the array of
subject-matter specialists with whom we communicated,
to quantify these processes.

Most of the important processes needed in the meteo-
rological model had been incorporated into an existing,
readily available, atmospheric particle trajectory model
(see next section), which we used to simulate wind-
borne aphid migration and subsequent immigration (par-
ticle deposition; aphids are weak flyers and, once airborne,
are dispersed essentially as inert particles).

Specifically, the agroecological component uses data
on air temperature at the soil surface and at 2 m above
the soil surface, sorghum planting and harvest dates,
and percentage of land on which sorghum was grown.
Published information was used to model sorghum
growth stages (Gerik et al., 2003), sorghum leaf area
(Roozeboom and Prasad, 2019), sorghum harvest dates
(USDA-NASS, 2010), aphid life stages (Davidson, 1944;
Poché et al., 2016), aphid reproduction (Brewer et al.,
2017; Hinson, 2017), and density-dependent reduction
of aphid population size (Brewer et al., 2017). EDAS 40-
km resolution data (National Oceanographic and Atmo-
spheric Administration, 2019) were used as input for
the atmospheric dispersion model HYSPLIT (Stein et
al., 2015). HYSPLIT also received georeferenced informa-
tion on emigrating aphids from the ecological compo-
nent of the model. References for data and other
sources of other information used to parameterize the
agroecological and meteorological models are available
in Wang et al. (2019).

Documentation to support interdisciplinary cohesion
followed established standards for documenting
individual-based (or agent-based) models in the field of
ecological modeling, including the overview, design con-
cepts, and details (ODD) protocol (Grimm et al., 2006,
2010).

2.1.3.2. Construction
The agroecological component of the integrated model
was constructed using the individual-based modeling
framework NetLogo (Wilensky, 1999). The need to
model aphid life-cycle processes at an acceptably
“causal” scale (see Section 2.1.2.2) prompted our choice
of an individual-based model. Our choice of NetLogo
over other types of modeling platforms within which
individual-based models can be developed (e.g., see Ch.
8 in Grimm and Railsback, 2005) was based on our
familiarity with NetLogo, its wide acceptance for
individual-based modeling in ecology (Grimm et al.,
2020), and its facilitation of model documentation via

the ODD protocol. Our choice of NetLogo imposed
computational limitations with regard to the number
of individual entities that could be represented explic-
itly during simulations, as we describe below. The mete-
orological component was constructed using the
established and widely used atmospheric particle trajec-
tory model HYSPLIT (Stein et al., 2015), which com-
putes airborne dispersal of aphids as inert particles.
The NetLogo and HYSPLIT components were connected
computationally with a custom-developed algorithm
“Link” (Koralewski et al., 2019), with data exchange
possible at a daily time step. The NetLogo platform is
often used for individual-based ecological models (see,
e.g., Thiele et al., 2014).

Two HYSPLIT input files EMITIMES and CONTROL are
used to pass georeferenced information on emigrants
from the agroecological component of the model. HYS-
PLIT estimates synoptic dispersal of aphids aloft. The geor-
eferenced information on aphid immigrants is passed
back to the agroecological component of the model, and
subsequent updates of landscape cell states follow. Con-
sidering the spatial resolution and the regional scale, and
to reduce the overall computational cost, a cohort of
aphids is represented by a collective super-aphid (Scheffer
et al., 1995).

An individual-based modeling approach allowed
explicit representation and customization of the stage-
and morph-specific reaction of sugarcane aphids to chang-
ing environmental conditions (e.g., sorghum phenological
stage and environmental temperature). These reactions, or
behavioral responses, of individual aphids were pro-
grammed in NetLogo via sets of equations, often embed-
ded within logical statements. The rules were realistic, that
is, they were interpretable in terms of sugarcane aphid
physiology and ecology on grain sorghum in the south-
central U.S. Great Plains. Population-level phenomena of
interest (e.g., migration events) then emerged as the
cumulative result of understandable cause–effect reac-
tions of individuals rather than as a correlate of an arbi-
trary index, such as calendar date.

The conceptual basis for our choice to use an exist-
ing atmospheric model was the universal applicability
of the laws of fluid mechanics upon which such models
are founded. Thus, our need for a realistic integrated
model, which required a “custom-built” agroecological
model to accommodate the unique biological character-
istics of the organisms involved, was not compromised
by the generality of a model based in the physical
sciences; of course, as per Levins (1966), we necessarily
sacrificed precision in the sense that any realistic eco-
logical model will contain stochastic effects, which will
inevitably reduce precision (Evans, 2012). As noted ear-
lier, aphids were treated as inert particles during the
migration phase. Parameterization of the particle dis-
persion model required specification of the point
sources (latitude and longitude) of particle emission
(aphid emigration), number of particles (aphids) emit-
ted, altitudes (meters above ground level) at which par-
ticles are dispersed (migration altitudes), and duration
(hours) of dispersal events (migration duration).
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Computational considerations limited the number of
entities that could be dealt with numerically during si-
mulations. We reduced the number of entities involved
in calculations by simulating the phenological develop-
ment of only one sorghum plant within each �2,500
km2 landscape cell and the population dynamics of the
aphids on only one leaf on each plant. That is, each
aphid population consisted of a series of daily cohorts,
with each cohort (superindividual) representing a variable
number of identical aphids. The number of aphids repre-
sented by a superindividual was initialized by a reproduc-
tion or immigration event and subsequently reduced by
mortality and emigration events. Each simulation, which
forecasted spatiotemporal patterns of aphid infestations
of sorghum during one growing season, required less
than an hour of runtime on a desktop personal com-
puter, and the necessary data input files for the meteo-
rological model fitted comfortably within available data
storage space.

Worthy of comment here is the fact that we did not
face model construction problems related to concurrent
development of the agroecological and meteorological
models. The following case study describes communica-
tion problems, both human and computational, associ-
ated with the integration of models that were being
developed concurrently (see Section 2.2.3.3). Although
we needed to develop a customized algorithm (“Link”)
to connect NetLogo and HYSPLIT, the information passed
between the two models (aphids treated as inert parti-
cles) did not change as a result of coding changes in
NetLogo during the development of the agroecological
model.

2.1.3.3. Model calibration
Model calibration was twofold. First, sorghum develop-
ment was calibrated to adjust simulated sorghum harvest
dates and number of days from planting to harvest to
those reported by USDA-NASS (2010). Second, the
regional migration of aphids was calibrated to adjust the
simulated spatiotemporal pattern of infestations to field
data from sorghum producers in Texas in 2017. This step
was accomplished by adjusting colonization probabilities
and did not require changes to the meteorological com-
ponent of the integrated model.

2.1.4. Uncertainty analysis

The primary source of uncertainty in the integrated SoS
model arose at the intersection of aphid terrestrial ecology
and airborne aphid dispersal. At the time this study was
published, we based this assessment on an informal sen-
sitivity analysis that consisted of qualitative analyses of
aphid infestation maps (based on expert opinion) pro-
duced by simulations with a variety of different iterations
of parameters in the agroecological and aeroecological
portions of the model (the maps analyzed were analogous
to those in figure 8 of Wang et al., 2019). We describe the
manner in which we conducted this initial, and a subse-
quent, sensitivity analysis in the next section on model
testing and evaluation. Initiation of emigration from local
populations likely depends on (1) host plant growth stage,

(2) pest density and (3) developmental stage, and (4)
weather or some combination thereof (Parry, 2013 and
references therein). There also was uncertainty regarding
duration of migration events, mortality while aloft (and
thus also vigor upon landing), and aphid responses to
meteorological factors in general while aloft (Eagles et
al., 2013). Since processes governing initiation of emigra-
tion were modeled at the surface of a sorghum leaf,
whereas processes governing airborne migration were
modeled over the entire south-central U.S. Great Plains,
scale issues pervaded uncertainty analysis. Furthermore,
end users of the model fell into two groups with different
spatiotemporal perspectives on system uncertainty.

Model purpose dictated that uncertainty analysis be
focused primarily on forecasts of timing of initial aphid
infestations of sorghum fields. Day-of-year of initial
infestation is a common metric used by both areawide
pest managers and sorghum producers to analyze and
discuss infestation dynamics. However, a statement that
an infestation may occur sometime during a 10-day
period is likely to be interpreted quite differently by
an areawide manager compared to a producer. From
the spatiotemporal perspective of an areawide manager,
a 10-day window of uncertainty associated with the
northward advance of an aphid infestation front over
the south-central U.S. Great Plains during the sorghum
growing season may provide useful planning informa-
tion. But from the spatiotemporal perspective of a pro-
ducer, such a window of uncertainty associated with the
first appearance of aphids in their sorghum field may
be less useful. Likewise, a forecasted infestation front
advancing via 2,500 km2 “footsteps” may provide useful
areawide management information but be less useful to
a producer with a few thousand hectares of sorghum.
Nonetheless, although synoptic areawide forecasts may
not contain the specificity desired by producers, they do
contain useful information if the forecast uncertainty is
interpreted within the appropriate spatiotemporal con-
text. Analogous to regional weather forecasts, uncer-
tainty inevitably increases with decreasing spatial
scale. SoS modelers might make more effective use of
this analogy when interpreting their uncertainty analy-
ses to end users.

2.1.5. Testing and evaluation

The initial assessment of model structure, linkages
between model components, and overall model function
was performed to verify overall correspondence with
model purpose and to identify potentially missing compo-
nents. Model behavior was then evaluated regarding the
ability to produce the general south-to-north temporal
trend in emergence of sorghum and the subsequent infes-
tation of sorghum fields by sugarcane aphids.

Simulated and observed spatiotemporal patterns of
aphid infestations were then compared to validate the
model. The simulated data were based on 10 replicate
stochastic simulations. The field data were collected in
Texas, Oklahoma, and Kansas during 2017 and were not
used in model development. The average simulated dates
of first aphid infestations were within the range of
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observed dates of first infestations in four of the five sor-
ghum growing regions (Wang et al., 2019; figure 5). The
ranges of observed dates were narrower than the corre-
sponding simulated ones, which was attributed to the fact
that all simulated infestations were detected whereas field
data were limited by temporal and spatial field sampling
constraints. Initial testing and evaluation details are avail-
able in Wang et al. (2019).

After publication of the work reported above, in which
model testing was limited by the ever-present combina-
tion of limited funding and impending deadlines, we were
fortunate to have the opportunity to extend our testing in
two areas of particular interest. The testing was basically
a sensitivity analysis that consisted of varying the value of
one parameter at a time in either the agroecological
model or the aeroecological model and qualitatively asses-
sing the effects on SoS model outputs. Both involved
aphid migration, the key process (which includes the pro-
cesses of immigration and emigration) connecting aphid
terrestrial ecology and airborne aphid dispersal. We were
interested particularly in evaluating more formally the
uncertainty in model outputs describing spatiotemporal
infestation trends resulting from uncertainty in the values
of key parameters affecting migration. First, we evaluated
the effects of altering timing of first appearance of aphids
in the southernmost U.S. Great Plains. The first appearance
of aphids is an initial condition of the agroecological
model representing immigration from an external source
(Mexico). Next, we evaluated effects of altering dispersal
duration, minimum dispersal height (meters above
ground level), and maximum dispersal height. Dispersal
duration and heights are parameters controlling airborne
dispersal in the aeroecological model. Results of these
new tests indicated alteration of the timing of first appear-
ance of aphids in the southernmost U.S. Great Plains
affected forecasted spatiotemporal patterns of infestation
(as indicated by georeferenced probabilities of first infes-
tations) throughout the entire south-central Great Plains
region (Koralewski et al., 2020a, 2020b). However, alter-
ation of the three dispersal parameters, over the 63 com-
binations of values tested, had little effect on
georeferenced probabilities of first infestations.

These new results more clearly identified the timing of
first aphid infestations in landscape cells as the primary
source of forecasting uncertainty in the integrated SoS
model. They also suggested some rescaling of modeled
processes that would be interesting to examine from the
standpoint of increasing utility of infestation forecasts for
sorghum producers, specifically, reducing the level of
detail with which we represent processes in the agroeco-
logical model and increasing the spatial resolution with
which we represent migration in the aeroecological
model. We have conducted a series of thought experi-
ments, which suggests accurate forecasting of timing of
initial infestations is more important than accurate fore-
casting of magnitudes of migrations and initial infesta-
tions within the context of areawide pest management
(Wang et al., 2020a). Given the high fecundity and rapid
development of aphids at temperatures characteristic of
the sorghum growing season, time lags between initial

infestation, and the presence of potential emigrants is
only a few days. Aphid colony growth versus local extinc-
tion depends on interaction of myriad processes (see Sec-
tion 2.1.2.2) that can be aggregated into a single stochastic
variable without increasing the level of uncertainty asso-
ciated with colony survival and production of emigrants.
However, increasing the spatial resolution of simulated
immigration points poses a technical problem. Although
there is increasing availability of high-resolution atmo-
spheric data and increasing sophistication of atmospheric
particle trajectory models, it is unlikely that data support-
ing field validation of fine-scale immigration forecasts will
be available in the foreseeable future.

2.2. The Campaspe case study

The Campaspe study focused on the long-term manage-
ment of water resources between agroeconomic and envi-
ronmental concerns at a regional scale, under a backdrop
of uncertain future climate and policy conditions. The
study area, the Lower Campaspe subcatchment, is in
South-East Australia and part of the Southern Murray–Dar-
ling Basin. The area is of ecological, socioeconomic, and
agricultural importance. Increasing agricultural and envi-
ronmental concerns and the impact of recent droughts
(e.g., the Millennium Drought, 1996–2010; Kendall, 2013)
have spurred a series of hotly contested water policy re-
forms. Regionally, riverine health is said to be poor (Mur-
ray–Darling Basin Authority, 2012; North Central CMA,
2014) and is set to become increasingly challenging, espe-
cially under uncertain climate conditions (Dey et al., 2019)
that are likely to exacerbate water availability. The Cam-
paspe integrated model (CIM) was developed to facilitate
discussion among stakeholders of the long-term implica-
tions of water management decisions and potential policy
changes, including conjunctive use of surface and ground-
water, under a range of uncertain futures.

The interplay between the scale decisions made by the
team and the implications regarding modeling scale and
treatment thereof is explored here. Some context on the
team and the model development approach is first pro-
vided (in Sections 2.2.1 and 2.2.2), followed by an explora-
tion of the scale issues, and the decisions in their treatment
in Section 2.2.3. The team aspects and decision choices
from a scale perspective are the focus of the exploration.

2.2.1. The team context

The team consisted of specialists and research students
across the fields of ground and surface water hydrology,
the social sciences, software engineering, economics, sys-
tems analysis, and uncertainty assessment. Local specia-
lists in water management, agricultural and ecological
matters were engaged as part of the project. Organization-
ally, the team spanned six Australian institutions. Sub-
groups within the team each focused on an aspect of
the SES. The bulk of the team had prior working relation-
ships conducting integrated assessments, but this was the
first time their models were so intimately integrated and
in a manner that accounted for feedbacks between
systems.
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The team previously underwent a self-reflection pro-
cess using a survey-based approach (discussed in Zare et
al., 2021). The “Monitoring and Evaluation” process
described therein aided in identifying opportunities for
improvement of practices that could better structure the
modeling processes and enhance team efficiency.
The account provided here differs from the first in that
the focus here is on the issues of scale that arise through-
out rather than demonstrating the value of self-reflection
in the modeling process. Common experiences then
inform the lessons learnt (discussed in Section 3).

2.2.2. Development and application

The CIM was developed to represent the spatiotemporal
forcing and system interactions that changing climatic,
market, and policy contexts have on water-related farm
decisions and profits, as well as catchment-scale groundwa-
ter and ecological concerns. Team members self-organized
to develop constituent models for this SoS model and, at
least initially, focused on the processes and issues of con-
cern specific to their system of interest. The approach, and
the number of people involved, then had interrelated im-
plications regarding the treatment of scale issues and the
decisions therein (which are explored in Section 2.2.3).
Here, the approach to construction and simulation of the
model is described to provide some context.

2.2.2.1. Construction
To address the spatiotemporal forcing and system interac-
tions that changing climatic and policy contexts have on
water-related farm and environmental concerns, an inte-
grated model built from a collection of system-specific
models was developed. Having experience in integrated
assessment, modelers were aware that models would be
dependent on data interoperated between models. A prac-
tical approach was taken in integrating these models, and
so the CIM operates on a linear feed-forward concept
where outputs from one model are fed into other models
with which it has a direct relationship (see Figure 1).
Interoperation of data occur at a daily time step for sur-
face and groundwater models and a two-weekly step for
policy and agricultural models. Feedback between models
occurs once at their respective time steps, except for the
two indicator models (i.e., ecology and recreation impact
evaluation) that are run at the end of a scenario. Further
detail on the models is provided in Appendix A.

It was known and expected early in the modeling pro-
cess that the constituent models were to be developed in
a variety of approaches and programming languages. Dif-
ferent development environments (e.g., laptop vs. super-
computer) would have to be accommodated. Technical
integration of the constituent models was achieved
through a purpose-built (software) framework developed
in Python. The primary reason for Python is that it is cross-
platform and is popular within the sciences as a “glue”
between models (Muller et al., 2015; Dysarz, 2018).

2.2.2.2. Simulation approach
Exploratory scenario modeling (ESM) was the selected
approach in simulating outputs with the CIM as it allows

for the consideration of a multitude of plausible futures in
conjunction with scenario, model, and decision uncer-
tainty (Maier et al., 2016; Horne et al., 2019). Certainly,
the involvement of researchers with a history and exper-
tise in uncertainty assessment brought considerations of
uncertainty to the forefront. Another key reason for the
adoption of ESM was to better enable the communication
of the scale of uncertainty to local stakeholders, which
may influence the decisions enacted (Maier et al., 2016;
Little et al., 2019).

Exploratory approaches involve many model runs, with
each run representing a possible plausible future (i.e.,
a scenario) under a variety of conditions. With the CIM,
these include hypothetical policy changes (e.g., conjunc-
tive use of surface and groundwater resources), changing
climate conditions, market prices for commodities and
input costs, and on-farm management options to allow
assessment of impacts on the agricultural, groundwater,
recreational, and ecological systems.

2.2.3. Scaling issues

The scales to be represented in the CIM were identified
through analyzing the needs and purpose of the individ-
ual systems of interest as well as the intersystem relation-
ships that needed to be represented. These included the
agricultural, hydrological (surface and groundwater), eco-
logical, climatic variability, policy, and recreational sys-
tems. Specific aspects of these to be represented by
models were informed by the range of local stakeholder
interests and concerns. Interactions between the seven
systems then enhance or degrade the ability to meet the
needs of all water users over time. From these, the spatial
and temporal scales (including extent and granularity)
that were amenable to the context and purpose of the
model were identified.

Nominally, each model was informed by both the nat-
ural and anthropogenic properties of the catchment.
These included water management zones (i.e., areas sub-
ject to differing policies), aquifer boundaries, the hydro-
logic subbasins in the study area, and the available data.
The spatial area represented by the surface water, ground-
water, and farmmodels is depicted in Figure 2, and a sum-
mary of the spatial and temporal scales internal to each
model is provided in Appendix A. Further details on the
modeling context and findings are available in Iwanaga et
al. (2018, 2020).

Because of the number of models and disciplinary ex-
perts involved and some geographic dispersion between
the team members, maintaining a high degree of cohesion
throughout the modeling process was challenging. In the
subsections below, a reflexive account is given of the con-
siderations of the SoS approach on the level of detail,
participation, interdisciplinarity and team cohesion, and
subsequent implications encountered in practice.

2.2.3.1. Scale of detail
Identifying and representing the systems of interest at
a level of detail commensurate with the modeling purpose
is one challenging aspect that leads to multiple, equally
plausible system representations. The farming system, for
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example, was represented as a collection of 12 spatially
lumped zones primarily determined by local planning
areas (known as the Goulburn–Murray Water Supply Pro-
tection Areas). Its model additionally operates on a 2-week
time step to match the typical irrigation time frame con-
sidered by farmers. In other words, anthropogenic consid-
erations (governance boundaries and water use behavior)
influenced the representation more so than biophysical
concerns (e.g., soil attributes).

As the quantities of interest were to be predicted pri-
marily at the catchment level, it may have been possible to
aggregate some representations to a coarser level without
compromising the modeled outcomes. Toward one
extreme, the catchment could be represented as a single
spatial zone in the farm model rather than the adopted 12
zones. On the other end, the ecological indicator model
provides a long-term indication of the average suitability
of streamflow for ecological purposes (e.g., averaged value
over decades). Expanding scale considerations to holisti-
cally capture the temporal dynamics, its influence on the
constituent systems, and how these may adapt and evolve
(e.g., adaptive management of stochastic environmental
flow) may influence modeled outcomes (Horne et al.,
2019; John et al., 2020). Further research is necessary to
determine whether increased or decreased detail is in fact
appropriate for the context in which the systems are re-
presented. A move toward a finer level of detail than that

chosen, however, would require more data at the farm and
field level (e.g., long-term groundwater pumping and irri-
gation usage) that were not available.

In an ideal setting with more time and resources, one
would undertake some analysis of the possible alternative
scale assumptions to explore their effects on model out-
puts. In this way, one could decide on the trade-offs
among different scale choices regarding improved model
performance versus resources required to implement
them. At the very least, for transparency, the scale choices
would be documented, and the ones selected for the mod-
eling justified with a narrative that captures the decision
context, the decision, and the known implications and
consequences of those decisions. There are many “good
practices” for documentation in both software and model
development. Software practices include the Architectural
Decision Records (Emery and Hilliard, 2008; Zdun et al.,
2014), which advocate storing such documentation along-
side code in version control. Likewise, the TRACE docu-
mentation framework suggests keeping “computational
notebooks” in version control as a complement to tradi-
tional “pen-and-paper” notebooks with similar aims of
documenting decisions made throughout the modeling
(Ayllón et al., 2021).

Processes and phenomena couched in ambiguous or
disciplinary-specific (or context-specific) terms may drive
misconceptualizations of the constituent models. For

Figure 2. Surface water area (Panel a, left-hand side with subcatchment identifiers annotated) and groundwater area
(Panel b, right-hand side) with farm management zones (semitransparent gray areas in both panels). Surface water
area extends further south compared to the other models, whereas the represented groundwater area extends further
east and west. Figure adapted from Iwanaga et al. (2018). DOI: https://doi.org/10.1525/elementa.2020.00182.f2
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example, surface and farm models both applied separate
representations of “effective rainfall.” Although the sur-
face water model provides a physically based estimation
of effective rainfall at a subcatchment level (see Croke and
Jakeman, 2004; Ivkovic et al., 2014), the farm model ap-
plies a soil moisture accounting method that is recom-
mended to farmers in the region for each of the 12
farming zones represented (Iwanaga et al., 2020). The
moisture accounting approach informs irrigation sche-
dules, helping farmers determine the timing and volume
of irrigation, but is not a physically based estimation, to
the surprise of some. Considerations around the scale of
interdisciplinary communication are explored in Section
2.2.3.3.

Often in SoS modeling, the appropriate level of detail is
not readily apparent, particularly during the earlier mod-
eling phases when model development tends to focus on
higher level considerations. Choices of scale are often
framed by one’s disciplinary focus, and individual prefer-
ences may result in decisions that lead down unintended
pathways (Lahtinen et al., 2017). Modeled scales, and their
most appropriate level of representation, are often not
readily apparent and could be construed to be somewhat
arbitrary, but not senseless, for example, when being con-
strained by “real-world” considerations. Insufficient con-
sideration of the interdisciplinary aspect and challenges
in cross-disciplinary communication may then have impli-
cations in the testing, evaluation, and application of the
model (i.e., different paths are taken, as in Lahtinen et al.,
2017), particularly in the (disaggregated) model develop-
ment phases (revisited in Sections 2.2.3.4, 2.2.3.5, and
2.2.3.6).

2.2.3.2. Scale of participation
A catchment-wide survey of farmers, a series of workshops
with local experts, and targeted engagement with ecolo-
gists and those representing recreational interests were
among the participatory processes used to collect expert
knowledge and perspectives. Furthermore, scenarios of
interest were identified and co-developed through stake-
holder engagement. In effect, system experts and stake-
holders act as representatives of the systems under
consideration including the issues and concerns that are
most pertinent with respect to the modeling. The partic-
ipatory process aided in constraining the overarching sce-
narios to those that were deemed both technically
plausible and socially acceptable regarding agricultural
water use (Ticehurst and Curtis, 2016, 2017).

Aside from the usual budgetary considerations (of
time, money, and personnel), timing was a crucial factor
in terms of the social (local stakeholder) engagement pro-
cess. Not all system experts and stakeholders could be
expected to attend face-to-face meetings due to timing
and scheduling conflicts and the limited resourcing avail-
able. Those involved ultimately had the available time,
inclination, and goodwill to participate in the time frame
selected and required by researchers. This is also true in
the context of writing this reflexive account as not all
involved in the original case study could contribute (as
noted in the Introduction).

A strong focus on the agricultural system and related
water management (albeit underpinned by surface and
groundwater modeling) is therefore evident in the model
conceptualization as most stakeholders were linked to the
agricultural and water sector. A consequence is that the
model does not consider certain sociocultural values such
as those held by local indigenous peoples. Potential adap-
tive management processes wherein water use policies
change in response to improving or deteriorating ecolog-
ical flow suitability were also not considered to be in
scope (see description of the ecology model in Section
2.2.3.1).

Although not an active or conscious decision, the con-
sequential filtering of participants in this manner may
have introduced a self-selection bias in the sample of local
stakeholders that took part in discussions. Commensurate
with the specified scope—one of investigating and discuss-
ing water management and policy changes under uncer-
tainty—future work building on this case study will likely
feature a greater emphasis on the social dynamics. Incor-
porating reflexivity as part of the modeling can aid in
managing the scale of participation and recognizing
when/where the bounds may not suit objectives. In the
grander scheme of things, however, enabling such work
requires that commensurate funding be available to
enable greater levels of participation (Iwanaga et al.,
2021b) and to capture lessons learnt through reflexivity
(Montana et al., 2020).

2.2.3.3. Scale of interdisciplinarity and communication
Interdisciplinary work at the heart of SoS modeling comes
with unique challenges not found in single-system con-
texts. Many of these are detailed by Iwanaga et al. (2021b),
but key to the discussion here is that in SoS, there are
several sectors and disciplines involved with associated
systems and models being concurrently developed and
ultimately integrated. Changes to one model, because of
new information or simply because of continual improve-
ments, may necessitate changes to another model. A con-
tinual challenge throughout the project lifecycle was
effectively scaling communication and participation to
an appropriate level to facilitate a deeper understanding
of the SES being modeled. Modelers self-organized into
subteams to accomplish goals but were, for the most part,
focused on their sectoral concerns. Separate and mis-
matched conceptualizations of the modeling arose
throughout the modeling cycle, in part due to this
partitioning.

Members of the team can take the role of a mediator,
resolving or otherwise addressing inconsistencies and mis-
matches. Methodological conflict can be addressed at the
technical level via model interfaces, which translate one
conceptualization to another. In the CIM, for example,
lumped 2-weekly farm water extractions were translated
into daily averages for the ground and surface water mod-
els. Mediators may also handle task-related and interper-
sonal conflict (De Dreu, 2008) but may only be effective in
cases where the role is assumed by someone with suffi-
cient standing within the team and/or a cooperative team
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culture exists (De Dreu, 2008; Gren and Lenberg, 2018;
Hidalgo, 2019).

Certainly, those managing self-organizing teams can
guide interdisciplinary communication by holding regular
meetings or team bonding activities (as suggested in Zare
et al., 2021). Prior research suggests goal interdepen-
dence—where the success of one is contingent on the
success of another—can improve team performance by
setting the stage for effective collaboration (Knight et
al., 2001; Tjosvold and Yu, 2004; Lee et al., 2015), partic-
ularly where flexibility and rapid response to complex and
emergent issues are important (cf. Hansen et al., 2020).
Effectiveness of such management strategies is likely to be
highly dependent on team context, however. Depending
on the larger cultural context, it may be preferable to
allow (or guide) team cultures to evolve organically with-
out direct intervention on the frequency and scale of team
interactions (e.g., by mandate from management).

In the case of the CIM, each system of interest had
different—but at times overlapping—concerns and issues
(with some examples provided in Section 2.2.3.1). Close
coordination between collaborators was needed to avoid
conceptual mismatches in the models and their coupling,
given the variety of scales involved and the separate, but
interdependent, development paths for each model. Main-
taining a high frequency of face-to-face meetings between
team members was problematic because of the geo-
graphic spread of participants and financial constraints
limiting travel, with the default mechanisms being emails
and phone calls between individuals and within sub-
groups. In retrospect, more regular virtual meetings with
the whole team may have helped in the longer run, par-
ticularly around technical scaling issues.

It is now seen by the team that the use of technologies
and practices available to ease the burden of maintaining
communication and documentation of decisions would be
valuable (Zare et al., 2021). Certainly, there was a prefer-
ence toward established, often disciplinary-specific, work-
flows rather than approaches that are perhaps more
suitable for the interdisciplinary SoS context wherein
team members are also geographically dispersed. For
example, most modelers involved in writing code did not
actively use version control, making difficult the review
and dissemination of code, changing code, and document-
ing the reasons behind those changes. Code was instead
often shared via email. Given the evolving needs and re-
quirements of both the modeling and interdisciplinary
context, it is expected that new skills and approaches
should be progressively tried and, where found applicable,
incorporated into the modeling workflow (Knapen et al.,
2013; Hidalgo, 2019).

Separate and mismatched conceptualizations and ex-
pectations (forewarned in Knapen et al., 2013; Kragt et al.,
2013; Verweij et al., 2010) of model components arose
through insufficient communication. The issues that con-
sequently arose were challenging, not to mention time
consuming, to identify and correct. To give examples, in
one case, numerical values were hardcoded into a model
with the expectation that they would be changed manu-
ally for every run; an approach that is inappropriate given

that the exploratory approach requires hundreds to thou-
sands of model runs. In another case, input fed in from
another model was found not to affect any calculations, as
the integrated context was not considered.

It is worth noting that commonly suggested solutions
to the above, such as adopting “advanced” communication
platforms or increasing the frequency of communication,
are tools and strategies that can help maintain existing
interdisciplinary foundations (to paraphrase Heffernan,
2011). Care should be taken as use of such communica-
tion technologies should not be conflated with, nor
a replacement for, interdisciplinarity itself. Recent
research suggests continual monitoring, regulation, and
a collaborative team culture are ideal, lest discrepancies
affect overall team efficacy and performance (Driskell
et al., 2020). Supporting lines of evidence show that a level
of empathy and receptiveness to the experiences and
knowledge outside of one’s own (“social intelligence” in
Woolley and Malone, 2011) is also needed to effectively
leverage the diverse abilities found within interdisciplin-
ary teams (Thomas, 2012; Thomas and McDonagh, 2013).
This suggests that it is the culture of empathetic open-
mindedness, inclusivity, and a motivation to achieve team
goals that likely drives communication and the cross-
pollination of interdisciplinary ideas, more so than the
method and scale of communication.

2.2.3.4. Computational scalability
The computational approach is a pertinent scale consid-
eration, especially when uncertainty primarily involves
running many scenarios. In this respect, the computa-
tional scalability of the CIM became a concern to manage,
mainly due to the combined runtime of the constituent
models and overhead associated with their interactions. A
major decision taken was to run the SoS model on a 5-km
square grid rather than the initially chosen 1-km grid.
Even then, a single run of the CIM could take 30 min or
more, with initial implementations prior to optimizations
exceeding an hour. Runtime was not an obvious issue
during the disaggregated development of constituent
models, even when partially integrated, especially early
in the development process when the full scale and num-
ber of interactions was neither apparent nor known.

One technical barrier to increased computational per-
formance was the use of files as an intermediary format to
interoperate between models. This decision was somewhat
imposed rather than selected due to the use of legacy
models. Using the MODFLOW implementation for the
groundwater model component as an example, computer
memory (i.e., RAM), was far more limited and expensive at
the time of MODFLOW’s development in the 1970s
(McDonald and Harbaugh, 2003). Consequently, interme-
diate results and parameter values between time steps (for
the purpose of the CIM) were required to be written out to
files rather than kept in memory. Although this process
was automated through the FloPy package (Bakker et al.,
2016), the comparatively high cost of file read/write activ-
ity was unavoidable and constrained the possible avenues
for optimizing runtime performance. The issue was side-
stepped by using a high-performance (at least at the time
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of writing) workstation with 32 cores, running thousands
of simulations over a period of days to obtain results. This,
however, is not ideal and may not be a viable solution for
many.

Use of Python itself became an issue as the number,
and complexity, of the models that were coupled
increased. Python cannot achieve the same level of com-
putational performance as lower-level languages (e.g., Ju-
lia, C, Fortran). The same is true for any high-level dynamic
and interpreted programming language. Under usual cir-
cumstances, this is not a big issue as Python is used to
leverage libraries and methods written in lower-level lan-
guages (see, e.g., NumPy; Harris et al., 2020), or otherwise
“slow” parts of a Python program can be abstracted away
into a lower-level language (usually Cython or C). Both
strategies were taken with the farm model to improve
computational performance. In the case of the CIM,
Python handled the interoperation of data between mod-
els and so computational performance could not be
improved without significant overhaul of the design and
structure of the interfacing code, which was not possible
in the available time.

As noted earlier (in Section 2.2.2.1), Python was
selected for its common use as a “glue” language in the
expectation that a variety of languages and approaches
would be adopted by the team. It is also well-regarded
as a platform for rapid prototyping. In future, an alterna-
tive language that is as flexible as Python but is more
efficient computationally could well be sought as
a replacement. High-performance integration necessitates
a high-performance language. The Julia language (Bezan-
son et al., 2017), a recent addition to the scientific pro-
gramming landscape, is one promising avenue in this
regard.

2.2.3.5. Testing and evaluation
One salient issue that arose in the development of the CIM
was the difficulty in assessing the behavior and perfor-
mance of the integrated model. Calibration of models all
together throughout their development was not possible
as each model component was at a separate stage in the
model cycle. It is acknowledged that models that are cali-
brated separately may exhibit unexpected behavior when
integrated. Model behavior, both in the integrated and
disintegrated context, was therefore evaluated against
available observations and through stakeholder
engagement.

Additional concerns revolved around uncertainties that
will propagate and compound. Conceptual (or hypothesis)
testing was one approach applied to address such con-
cerns. This testing approach involved the identification
of questions with a known range of acceptable answers
and the subsequent testing of these against the model.
The conceptual testing approach is adjustable to the avail-
able data and is especially useful in data poor contexts.
Framing the context surrounding expected model behav-
ior provides a high-level check of conditions, which can
indicate the model is not fit for purpose and that changes
are required. The greater the comprehensiveness of such

tests, the higher the confidence that the integrated model
is fit for purpose (Davidson-Pilon, 2016).

One form of conceptual testing applied was property-
based sensitivity analysis. The property-based approach
attempts to falsify the conceptual integrity of the inte-
grated model by the sensitivity of model parameters
within a restricted area of parameter space (Iwanaga et
al., 2021a). Unexpected sensitivity results (e.g., too high,
too low, or no sensitivity) then indicate an issue with the
model implementation or integration, such as the inad-
vertent absence of model coupling. Failure of a model to
conform to expected/known behavior can then falsify the
assumption that the model is functioning correctly or
alert to a change of context that invalidates previous
understanding of the model (Claessen and Hughes,
2000). Failure of a test then avoids the computational
expense of conducting a larger scale global analyses,
which, due to the presence of errors, would return mis-
leading and unreliable results.

2.2.3.6. Complexity and model uncertainty
A central challenge in the development of the CIM was
determining an appropriate level of complexity while also
considering its influence on (model) uncertainty. Com-
plexity of the CIM arose from the variety of workflows,
terminologies, expected spatial/temporal scales, and re-
quirements both to individual constituent models and
those pertaining to the SoS model and context. Modeler
experience (and thus preferences) and available data
informed several considerations throughout the modeling
process.

As an example, the ground and surface water models
were implemented through modifications of existing
models, a decision based on prior modeler experience.
These were MODFLOW-NWT with FloPy (Bakker et al.,
2016) and IHACRES_GW (Ivkovic et al., 2014), respectively.
Modified implementations of the groundwater model
were additionally applied for other studies that were
occurring concurrently (e.g., Partington et al., 2020). Avail-
able climate data were at a 5-km grid resolution, which
was then the minimum granularity possible, without
using interpolation, for the operation of the groundwater
model. These models provided inputs for the policy, farm,
and ecological indicator model with data upscaled or
downscaled as appropriate for their respective purposes
(see Appendix A).

The number of models involved and their structure,
parameters, resolution/granularity, and data (and sources
of data) were all sources of complexity. Increased complex-
ity through the inclusion of additional systems, their in-
teractions, and computational infrastructure generally
results in compounding uncertainty (Dunford et al.,
2015). This is the uncertainty that arises from the interac-
tions between constituent models with the possibility of
each interaction introducing, and propagating, some error
(Refsgaard et al., 2007; Dunford et al., 2015). The error
propagated may differ depending on what computational
platform is in use (Iwanaga et al., 2020).

Additional model complexity allows for further inves-
tigation into the possible sources of uncertainty to be
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considered. Reduction of model complexity and uncer-
tainty is often conflated with reducing its parameteriza-
tion (or dimensionality), which facilitates the apportioning
of parameter uncertainty to a smaller number of (consid-
ered) uncertainty sources. Reducing complexity via con-
straining the number of parameters does not, however,
reduce uncertainty in the sense that the effect of random
influences or incomplete knowledge is reduced (aleatory
or epistemic uncertainty, respectively, as defined in Beven,
2009). On the other hand, model parameterization can be
reduced where sensitivity and/or other analysis show that
quantities of predictive interest are not influenced by cer-
tain choices. These sources of uncertainty can be explicitly
documented following processes and considerations as
described in Refsgaard et al. (2006, 2007), van der Sluijs
(2007), and Reichert (2020).

The decision to adopt established disciplinary-specific
models (e.g., MODFLOW-NWT) did quicken model devel-
opment compared to starting from scratch but introduced
additional complexity and considerations. For one, the
MODFLOW-based model was to serve multiple purposes
(across multiple studies), and so infrastructure to support
the generic application and data processing was devel-
oped. Use of MODFLOW in this context is one example
of a constituent model that is amenable to the overarch-
ing modeling purpose, but not necessarily complementary
to it. Other constituent models of the CIM required indi-
cations of average depth to groundwater for both general
and specific locations, whereas MODFLOW operates on
a grid-cell (or mesh). Given MODFLOW’s computational
expense and additional complexity involved, it may have
been worthwhile to develop a bespoke model specific to
the Campaspe context of lesser complexity. Both ap-
proaches are arguably acceptable.

The question then is what level of complexity is war-
ranted for the purpose and context of the model, recog-
nizing constraints due to resources and legacy issues. In
the context of the CIM, different scenarios to be explored
required different model structures and formulations.
Constituent models that could generically represent sys-
tem behavior across the range of scenarios were consid-
ered a necessity. This contrasts with the development of
several models specialized for each scenario context, for
example, separate models for wet climate conditions,
enactment of conjunctive water use policies, and so on.
Considerations external to the SoS modeling exercise, as
well as prior modeler experience, were additional factors
that influenced the choice of constituent models, their
implementation, and the process of modeling. Choice of
preexisting models arguably allowed models to be devel-
oped more quickly, but at the cost of adding model
complexity.

A point of interest here is that such considerations
regarding the model complexity and uncertainty and their
effect on quantities of interest cannot be known in
advance, at least not without significant experience with
the specific set of constituent models that make up the
SoS model. In the context of model development, changes
to constituent models invariably happen, which may suf-
ficiently change the context of their application.

Prematurely attempting to reduce model complexity and
uncertainty before the full context is known (e.g., prior to
model integration) is therefore inadvisable (as alluded to
in Section 2.2.3.3).

3. Lessons learnt
We conclude our reflexive exercise on two SoS case studies
with a synthesis of lessons across five fundamental themes
elicited through reflexive self-analysis and discussions
between and across the teams involved and supported
by corroborating experiences drawn from existing litera-
ture. We, at least, would take these lessons forward and
incorporate into future SES modeling activities. Although
these lessons are also somewhat applicable to single sys-
tem modeling, we believe they become especially impor-
tant in the interdisciplinary SoS modeling context. It is
acknowledged again here that although efforts toward
discussions with team members were made, not all were
able to contribute to the reflexive accounts presented.
Certainly, availability and the necessary time commitment
placed a limit on the scale of participation (as in Section
2.2.3.2).

3.1. Foster constant collaborative learning and

reflection

The two case studies detailed in this article both featured
a wide variety of disciplinary experts working together.
One challenge is a risk that interdisciplinarity can be
eroded as researchers gravitate toward the systems that
they are familiar with. In the GPSCA case study, even
though team members may have initially viewed the prob-
lem at hand through different disciplinary lenses, team
members shared certain fundamental concepts. In the
Campaspe case study, some conceptual mismatches arose
that led to problematic issues in the integration of mod-
els, lengthening the development/modeling cycle. In our
experience, the most efficient way to move an interdisci-
plinary conversation forward is to look backward in search
of those shared concepts (Banerjee et al., 2019). Once we
have found common ground, we can move the conversa-
tion forward along diverse paths under the guidance of
experts who then can explain where they are leading us
and why via timely additions of new concepts to our com-
mon knowledge base. Common roots were found in the
concepts of system dynamics (e.g., Forrester, 1961, is a sem-
inal work in industrial dynamics and is well-known to
systems ecologists) and general systems theory. An open
attitude and commitment to continual learning, both
individually and as a group, is necessary for these guided
paths between disciplinary domains to appear (empa-
thetic horizons in Thomas and McDonagh, 2013) and
break down disciplinary barriers (MacLeod and Nagatsu,
2018). At the very least, shared concepts avoid potential
mismatches in modeler understanding.

Communication among interdisciplinary team mem-
bers is crucial toward the development of a cohesive sys-
tems representation, and its importance cannot be
understated. One strategy is to adopt documentation prac-
tices to ensure the existence of a collective, and cohesive,
body of knowledge (Cockburn and Highsmith, 2001; Kragt
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et al., 2013). Specific to scale choices, the level of shared
understanding and other major considerations could be
explicitly catalogued in a “core” table. This table would
detail the spatial and temporal scales (Koo et al., 2020),
knowledge sources (Kragt et al., 2013), expected compu-
tational requirements, major uncertainty sources (Re-
fsgaard et al., 2007; van der Sluijs, 2007; Reichert,
2020), the relevant system(s) affected, and the modeling
process (Hutton et al., 2016; Ayllón et al., 2021).

The ODD protocol (Grimm et al., 2006, 2010) was used
to capture these considerations in the GPSCA study, adop-
tion of which mandates that pertinent aspects of scale and
their representations are documented. The common team
goals and the minimum skills/knowledge needed to
achieve those goals (e.g., specific expertise in aspects of
software and model development) could advantageously
be made explicit as part of this process as well. Moreover,
such a table is recommended here to be continually up-
dated to consider new information and lessons learnt
throughout the modeling cycle.

Others have suggested increasing the number of meet-
ings on the progress of the modeling and to incorporate
reflexive evaluation of the team (Preston et al., 2015; Don-
gen et al., 2018; Delice et al., 2019; Gool et al., 2019).
Increased frequency and number of meetings (whether
face-to-face or virtual) in effect raises the minimum num-
ber of interactions between team members so that knowl-
edge sharing can occur. Contextual examples of how these
may be helpful with regard to teams are discussed else-
where (see Kragt et al., 2013; Cockerill et al., 2019; Zare et
al., 2021); however, support for reflexive activities must be
available at the organizational level (Salas et al., 2018).

What is perhaps more important than meetings, how-
ever, is a team (and organizational) culture that allows for
empathetic and inclusive communication to occur. Team
members may speak different languages or at least adopt
heavy disciplinary accents. Preferring one language or dia-
lect at the expense of a “shared language” (Thomas and
McDonagh, 2013) could lead to a disregard of relevant
knowledge no matter the number, length, format or
medium of meetings, or how expansive the documenta-
tion (as alluded in Section 2.2.3.3). An overreliance on
technological solutions to communication without
acknowledging the role of team and organizational cul-
ture may lead to more, rather than fewer, misunderstand-
ings (cf. Andres, 2012; Benishek and Lazzara, 2019).

In addition to the reflexive monitoring and evaluation
of team processes (as in Driskell et al., 2020; Zare et al.,
2021), we recommend that such processes additionally
account for the culture that underpins knowledge sharing
and communication. Ignoring the role of team and orga-
nizational culture risks naturalizing the intuitions of its
most privileged members (cf. James, 2014). An open atti-
tude and commitment to continual and collaborative
learning, both individually and as a group, is necessary for
disciplinary barriers to be broken down and perspectives
to be embraced (Woolley and Malone, 2011; Thomas and
McDonagh, 2013; MacLeod and Nagatsu, 2018). In
essence, teams would ideally culturally evolve throughout

the modeling cycle toward more effective models of (inter-
disciplinary) cooperation (cf. Wilson and Wilson, 2007).

3.2. Document the rationale and reasons for scale

choices

Debates about appropriate scales at which to represent
structures and processes in multidisciplinary models
should pervade discussions among modeling team mem-
bers, particularly during conceptualmodel formulation and
initial attempts to quantify linkages among model compo-
nents. Most commonly, however, we begin model formula-
tion with preconceived notions about the appropriate
scales with which to represent the structures and processes
in those parts of the system with which we are familiar,
framed by workflows with which we are accustomed to.
These preconceived notions typically are based on the way
we have found most useful to think about such structures
and processes in the past. Thus, the conceptualizations are
coherent from a disciplinary perspective, but the cohesion
breaks down when encountering other disciplines.

Our perceived usefulness of system representations is
biased by our disciplinary training and experience (Huu-
toniemi et al., 2010). Such preconceived notions may
blind us to alternate, yet still valid, representations or
otherwise cause their dismissal as being of little use or
simply incorrect. For example, the choice of a daily time
step in the GPSCA study was informed by a shared famil-
iarity with daily weather reports and the concept of
degree-days of development of plants and insects. A
2-day time step may have been considered, thus cutting
computing time in half, arguably without sacrificing use-
fulness of model output to end users. But a 2-day time
step never crossed our minds. With the Campaspe case
study, the primary focus on water-related agricultural con-
cerns is partly a result of the level of engagement with
agricultural experts (see Section 2.2.3.2), but also that the
agency requirements for assessing the instream and ripar-
ian ecological impacts were quite modest. Consequently,
the possibility of representing adaptive management pro-
cesses of ecological issues was not actively considered
(described in Section 2.2.3.1).

In building a shared understanding to develop a cohe-
sive and complete treatment of scale, it may be more
productive to agree to disagree on certain scaling issues
that are particularly problematic during conceptual model
formulation. Issues that are virtually impossible to resolve
conceptually were almost always, in the case of the GPSCA
study, clarified via quantification of the factors involved.
The issues were clarified in the sense that differences in
model output resulting from the use of different scales are
made precise. Another reason to move on is that scale
transitions that seem easy to accomplish when described
in narrative form may be surprisingly difficult to accom-
plish computationally and which may require modifica-
tions that obviate the initially identified scale problems.

The choices made regarding scale were therefore influ-
enced by the people involved and of course their perspec-
tives and judgments. A “perfect” model is not possible, so
we choose scales, which we believe best represent the
system given “real-world” constraints. These choices are
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a series of subjective decisions involving consideration of
model objectives and available information and resources
at the time. A different group of people may arrive at
a completely different, and perhaps equally plausible,
valuable, and useful, model. The considerations and
choices in the treatment of scale should be documented
and made transparent for this reason. Such documenta-
tion allows researchers external to the process (and their
future selves) to better understand the sociotechnical con-
text in which the modeling decisions were made, the rea-
soning behind the decisions, and any implications or
consequences from those decisions. Thus, documentation
of the process helps illuminate model limitations and
uncertainty (Refsgaard et al., 2006; van der Sluijs, 2007;
Reichert, 2020).

We offer a final comment regarding the paucity of
documentation available describing the debates preceding
final SoS scaling decisions. For example, the ODD proto-
col, which is widely used to document agent-based models
in ecology and which we used to document the GPSCA
model, begins with a statement of model purpose fol-
lowed by a second section that defines model entities
(agents), state variables (attributes of agents), and (tempo-
ral and spatial) scales. Although this second section re-
quires a justification of the final scale choices for each
model component, it does not require documentation of
the pros and cons of the alternative scales that were
debated over time. Thus, a rich source of information
defining the larger context of the modeling decisions,
which would be particularly useful when contemplating
reuse of the model, often is lost.

3.3. Acknowledge that causality is defined

subjectively

When we described process representation in our GPSCA
study (Section 2.1.2.2), we referred to the concept of a con-
tinuum of levels of perceived causality, of “subject-matter
interpretability,” extending in a theoretical sense from
purely phenomenological/correlative to entirely mecha-
nistic/explanatory. In practice, how different people per-
ceive the representation of any given process in an SoS
model will almost surely differ. In terms of model credi-
bility, the important point is that all stakeholders, and
here we include members of the modeling team as well
as end-users of the model, perceive that the model behav-
ior of most interest to them results from processes repre-
sented at an acceptable level of causality, at an acceptable
level of subject-matter interpretability. Of overriding
importance is that end users can explain, and hence
understand, model output in cause–effect terms meaning-
ful to them. But it also is important that members of the
modeling team perceive the representations of processes
in their areas of expertise as scientifically credible, given
the objectives of the integrated SoS model. The cause–
effect relationships responsible for output of the inte-
grated model may be explained acceptably to end users
in highly aggregated terms, whereas subject-matter spe-
cialists may require relatively detailed representations of
some modeled processes in order for them to acknowl-
edge those representations as causal.

Debates related to scale decisions in integrated SoS
modeling are inextricably related to perceptions of cau-
sality. Scale decisions include not only those associated
with defining temporal and spatial scales per se but also
decisions associated with identifying which components
and processes in the real system to include in the model
and deciding at what level of detail to represent them. In
our GPSCA case study, such debates arose regarding the
level of detail with which to represent processes related
to the aphid life cycle and the phenological development
of sorghum. As described in Section 2.1.2.2, the final
decision, which resulted from a lively debate among
modeling team members, was to represent these pro-
cesses as a function of environmental temperature mod-
ified by aphid density. Our meteorologist/aeroecologist
would have been satisfied with a “causal” representation
of aphid population dynamics that represented popula-
tion density as a function of number of days since initial
infestation and emigration as a function of density. Such
a representation was perceived as unacceptably phenom-
enological by our entomologist. Our entomologist ini-
tially proposed a more mechanistic representation of
the aphid life cycle, which included, among other things,
mortality due to natural enemies (predators and para-
sites). However, in view of the site specificity of such
relationships and the fact that the purpose of the inte-
grated SoS model was to simulate areawide spatiotem-
poral patterns of aphid infestations, our entomologist
agreed to a simpler “causal” representation of the aphid
life cycle.

As mentioned in Section 2.2.3.1, there were several
approaches to represent the spatial areas for the various
models in the Campaspe case study. Each were arguably
plausible, and objections could be raised depending on
modeler perspectives and understanding of the modeling
context. Here, we remind modelers that representing
greater detail may not be appropriate given the model
purpose and context. The “bigger picture” should be kept
in mind.

The lesson learnt is that it would serve modeling
teams well if their members explicitly acknowledged the
subjective nature of their perception of causality at the
very beginning of the modeling process. A discussion
focused on the concept of a continuum of levels of per-
ceived causality would be time well spent. The initial
response to such a discussion most likely would be
“everyone already knows that,” which probably is true
enough if viewed as an abstract concept. But based on
our experience, we are quite sure that if early discussions
among modeling team members were documented and
reexamined, it would be obvious that the subjective
nature of defining causality is seldom recognized in
practice.

3.4. Embrace change and reflect throughout the

iterative modeling cycle

The modeling process is commonly described as undergo-
ing a “cycle” of iterations of a set of (concurrent) phases
and steps. Although the number of steps and activities
conducted may differ depending on purpose and

Art. 9(1) page 18 of 28 Iwanaga et al: Treatment of scale in socio-environmental systems modeling



conceptualization of the cycle (Boehm, 1986; Jakeman et
al., 2006; Pianosi et al., 2016; Badham et al., 2019; Arnold
et al., 2020; Zare et al., 2021), each step is intended to be
revisited as often as needed to incorporate newly discov-
ered or available knowledge, or ideas generated on deep
reflection, as “[t]he first model is rarely the best model”
(Sterling et al., 2019). It may at times be necessary to
abandon an iteration and start over.

Arguably, recognizing and embracing the need for
change is fundamental to the flexibility that iterative ap-
proaches afford (Dingsøyr et al., 2012; Strode et al., 2012).
In the SoS context, the modeling process may have to be
restarted due to discovery or incorporation of new knowl-
edge for another constituent system, necessitating changes
to one’s own constituent model or even the modeling
process. A shift in scales may be a (pragmatic) necessity
to accommodate the integration of constituent models
and such a decision may be governed, or have implications
toward, data availability/requirement, computational
capacity, and model purpose.

Change is inevitable due to the complexity of the sys-
tems being studied and the speed at which new informa-
tion may come to light. Where team members are more
accustomed to single-system investigations, a cultural
shift in thinking may be required to enable flexible
response to the (continuous) adjustment of scale, in all
its forms. New information may necessitate skills to be
acquired or adapted to an unfamiliar modeling context
(Knapen et al., 2013; Voznesenskaya et al., 2019). As noted
in Section 3.1, being overly tied to a single disciplinary
perspective results in an inflexible system conceptualiza-
tion that is resistant to “new” knowledge or perspectives.
The adoption of new practices, technologies, and work-
flows more amenable to the new modeling context is
therefore restricted and hampers team productivity (Cock-
burn and Highsmith, 2001; Hoda et al., 2013). The lack of
version control of model code and data and the conse-
quent effect in the development of the CIM was given as
an example in Section 2.2.3.3. Change should be
embraced for the lessons learnt to be effectively carried
over between iterations and for knowledge to be cross-
pollinated between team members (Knight et al., 2001;
Lee et al., 2015).

3.5. Regularly test the integration

The reality of iterative development means that (1) con-
stituent models may be of varying complexity and devel-
oped against different schedules, (2) changes made in one
model may necessitate changes in another, (3) the neces-
sary computational requirements and available computa-
tional infrastructure may preclude the possibility of
calibrating all models at once, and (4) issues may only
become a highlighted concern in the integrated context
as the implications of the scale and volume of interactions
may not be apparent until all models are coupled.

A somewhat naive view is that any topically relevant
sectoral model can be coupled and applied to represent an
SoS. This may be true at a technical level but without
regard for its conceptual, and contextual, appropriateness,
the resulting model is likely to be unwieldy, overly

complex, and unsuited for a given purpose (e.g., Voinov
and Shugart, 2013). In addressing water resource manage-
ment problems, for example, Croke et al. (2014) argue that
hydrological model choice requires engagement with
appropriate concepts, model structures, scales of analyses,
performance evaluation, and communication. Again, such
issues may not be evident until the scale of the modeling
becomes sufficiently expansive. Thus, the relevance of any
constituent model to the integrated model’s purpose and
the propagation of uncertainty needs serious evaluation.

Specific to model coupling, future work could investi-
gate a typology of design elements, which make models
more amenable for their use in SoS modeling contexts and
classify system models along those lines. In the short-to-
medium term, strategies and plans to address or mitigate
the impact of a constituent model that turns out to be not
wholly suited to the SoS modeling context, such as when
the scales of the problem involved increase could be
explored. In the case of the CIM, computational perfor-
mance became a concern as the scale of the modeling
increased. One approach would have been to develop
a model specifically for the integrated context, as opposed
to the (continued) use of a legacy model. In the end, the
issue was sidestepped by leveraging high-performance
computing infrastructure. Ideally, such considerations
would be considered and planned for early in the model-
ing process.

Methodologically, conceptual-or-hypothesis testing is
one (but not the only) approach that may be applied to
address concerns around the structure of the SoS model
(Wilson et al., 2017; Iwanaga et al., 2020). Such testing
approaches involve the identification of questions with
a known range of acceptable answers that the SoS model
can produce. The greater the number of such tests that can
cover the range of possible realities being simulated by
the model, the more confident modelers can be that the
integrated model is functioning correctly, both technically
and conceptually. Property-based sensitivity analysis is one
approach (of many) leveraged in the development of the
CIM to alert modelers of technical and conceptual issues
in model integration (Iwanaga et al., 2021a). Continual
testing and integration throughout the modeling process
could then highlight context change (e.g., cases wherein
previous understandings are falsified) and facilitate under-
standing of model structure and behavior (Iwanaga et al.,
2021a).

In this manner, conceptual tests frame the context for
incorrect model behavior. Frequent integration and test-
ing, even at this highly aggregated level, is likely to high-
light conceptual mismatches between the knowledge of
disciplinary experts and model implementations. Testing
of the models and their integration throughout the
development cycle then plays an important role in ensur-
ing issues are identified earlier in development (Warren,
2014). Earlier correction of issues helps to avoid
“wasteful” model runs and quickens the pace through
the modeling cycle. It would be beneficial if all modelers
involved strive to enable repeated, and frequent, integra-
tion and testing.
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Appendix A

Table A1. Individual systems represented in the Campaspe integrated model and their spatial, temporal, and data
aspects. DOI: https://doi.org/10.1525/elementa.2020.00182.t2

Constituent System Spatial Temporal Metrics/Data

Climate 5 km grid (0.05�,
interpolated)
matching the
groundwater area

Daily time step. Available data
constrained the time frames
considered

Data represented differing levels of
aridity ranging from extreme dry
to “wet” over a 30-year time frame.
Data sourced via Climate Change
in Australia (CSIRO, 2020)

Groundwater,
implemented with
MODFLOW-NWT with
FloPy interface (Bakker
et al., 2016)

5 km grid, seven layers of
variable thickness
based on
hydrogeologic units

Higher spatial
resolutions were
impractical due to the
long runtime of
MODFLOW-NWT

Largest spatial extent,
extending further west
than other models.
Covers 4,896 km2.

Assumes irrigation
events are uniformly
applied across farm
zone areas

Daily time step

Assumes irrigation input from the
farm model is to be uniformly
disaggregated across 14 days

Estimates distance to water table,
which influences farm
groundwater pumping costs
(farmer decisions) and
groundwater allocations (policy)

Provides estimations of surface–
groundwater exchange along the
river

Surface water,
implemented with
IHACRES_GW (Ivkovic
et al., 2014)

Lumped, node-based
routing model. Nodes
represent
subcatchments. Covers
3,518 km2

Extends further south
compared to the
groundwater model to
estimate inflows to
the dam

Assumes irrigation
events are uniformly
applied across farm
zone areas

Daily time step

Assumes irrigation input from the
farm model is to be uniformly
disaggregated across 14 days

Calculates dam levels, influencing
water allocations for both
environmental and agricultural
users and perceived recreational
value

Stage height along the river is also
provided for policy and ecology
models

Farm model Lumped, zone-based.
Each zone represents
farming areas of
variable size. Covers
2,154 km2

2 week time step, indicated to be
the usual time frame in which
irrigation decisions are made (Xie
et al., 2019)

Total volume of rainfall over the
previous 14 days is used to
determine irrigation schedule

Crop yield, farm profit estimations,
water use (in ml)

Incorporated data from farmer
surveys

Policy model Regional/catchment-
wide

2 week time step

Temporally, the model operates on
a 14-day time step matching that
of the farm model. In reality,
such allocations are announced
every 6 weeks and so constitutes

Surface water allocations,
determined by dam levels.
Groundwater allocations
determined by groundwater level
at two bores (one in the south,
one in the north)

(continued)
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Wang, H-H, Sun, X, Lü, G, Li, X, Yue, T, Yuan, W,
Liu, X, Chen, M. 2020. Position paper: Sensitivity
analysis of spatially distributed environmental mod-
els- a pragmatic framework for the exploration of
uncertainty sources. Environmental Modelling & Soft-
ware. DOI: http://dx.doi.org/10.1016/j.envsoft.
2020.104857.

Koralewski, TE, Wang, H-H, Grant, WE, Brewer, MJ, El-
liott, NC,Westbrook, JK, Szczepaniec, A, Knutson,
A, Giles, KL, Michaud, JP. 2020a. Integrating models
of atmospheric dispersion and crop-pest dynamics:
Linking detection of local aphid infestations to fore-
casts of region-wide invasion of cereal crops. Annals of
the Entomological Society of America 113: 79–87. DOI:
http://dx.doi.org/10.1093/aesa/saz047.

Koralewski, TE, Wang, H-H, Grant, WE, LaForest, JH,
Brewer, MJ, Elliott, NC, Westbrook, JK. 2020b.
Toward near-real-time forecasts of airborne crop
pests: Aphid invasions of cereal grains in North
America. Computers and Electronics in Agriculture
179: 105861. DOI: http://dx.doi.org/10.1016/j.
compag.2020.105861.

Koralewski, TE,Westbrook, JK, Grant,WE,Wang, H-H.
2019. Coupling general physical environmental pro-
cess models with specific question-driven ecological
simulation models. Ecological Modelling 405: 102–
105. DOI: http://dx.doi.org/10.1016/j.ecolmodel.
2019.02.004.

Kragt, ME, Robson, BJ, Macleod, CJA. 2013. Modellers’
roles in structuring integrative research projects. Envi-
ronmental Modelling & Software 39: 322–330. DOI:
http://dx.doi.org/10.1016/j.envsoft.2012.06.015.

Krueger, T, Maynard, C, Carr, G, Bruns, A, Mueller, EN,
Lane, S. 2016. A transdisciplinary account of water
research. WIREs Water 3: 369–389. DOI: http://dx.
doi.org/10.1002/wat2.1132.

Lahtinen, TJ, Guillaume, JHA, Hmlinen, RP. 2017. Why
pay attention to paths in the practice of environ-
mental modelling? Environmental Modelling and

Software 92: 74–81. DOI: http://dx.doi.org/10.
1016/j.envsoft.2017.02.019.

Lee, C, Lin, Y, Huan, H, Huang, W, Teng, H. 2015. The
effects of task interdependence, team cooperation,
and team conflict on job performance. Social Behav-
ior and Personality: An International Journal 43:
529–536. DOI: http://dx.doi.org/10.2224/sbp.
2015.43.4.529.

Levins, R. 1966. The strategy of model building in popu-
lation biology. American Scientist 54: 421–430.

Little, JC, Hester, ET, Elsawah, S, Filz, GM, Sandu, A,
Carey, CC, Iwanaga, T, Jakeman, AJ. 2019. A
tiered, system-of-systems modeling framework for
resolving complex socio-environmental policy is-
sues. Environmental Modelling & Software 112:
82–94. DOI: http://dx.doi.org/10.1016/j.envsoft.
2018.11.011.

MacLeod, M, Nagatsu, M. 2018. What does interdiscipli-
narity look like in practice: Mapping interdisciplinar-
ity and its limits in the environmental sciences.
Studies in History and Philosophy of Science: Part A
67: 74–84. DOI: http://dx.doi.org/10.1016/j.shpsa.
2018.01.001.

Maier, HR, Guillaume, JHA, van Delden, H, Riddell,
GA, Haasnoot, M, Kwakkel, JH. 2016. An uncer-
tain future, deep uncertainty, scenarios, robustness
and adaptation: How do they fit together? Environ-
mental Modelling & Software 81: 154–164. DOI:
http://dx.doi.org/10.1016/j.envsoft.2016.03.014.

May, T, Perry, B. 2017. Reflexivity: The essential guide (1st
ed.). Thousand Oaks, CA: SAGE.

McDonald, MG, Harbaugh, AW. 2003. The history of
MODFLOW. Groundwater 41: 280–283. DOI:
https://doi.org/10.1111/j.1745-6584.2003.
tb02591.x.

Montana, J, Elliott, L, Ryan, M, Wyborn, C. 2020. The
need for improved reflexivity in conservation sci-
ence. Environmental Conservation 1–3. DOI: http://
dx.doi.org/10.1017/S0376892920000326.

Muller, E, Bednar, JA, Diesmann, M, Gewaltig, M-O,
Hines, M, Davison, AP. 2015. Python in neurosci-
ence. Frontiers in Neuroinformatics 9. DOI: http://
dx.doi.org/10.3389/fninf.2015.00011.

Murray–Darling Basin Authority. 2012. Sustainable Riv-
ers Audit 2: The ecological health of rivers in the
Murray–Darling Basin at the end of the millennium
drought (2008–2010). Summary. (No. 75/12). Can-
berra, ACT, Australia: MDBA.

Nancarrow, SA, Booth, A, Ariss, S, Smith, T, Enderby, P,
Roots, A. 2013. Ten principles of good interdisciplin-
ary team work. Human Resources for Health 11: 19.
DOI: http://dx.doi.org/10.1186/1478-4491-11-19.

National Oceanographic and Atmospheric Adminis-
tration. 2019. Air Resources Laboratory—EDAS 40
km Data Archive. Available at https://ready.arl.noaa.
gov/edas40.php. Accessed 21 December 2020.

North Central CMA. 2014. Campaspe river resource guide.
Huntly, UK: North Central Catchment Management
Authority.

Iwanaga et al: Treatment of scale in socio-environmental systems modeling Art. 9(1) page 25 of 28

http://dx.doi.org/10.1007/978-94-007-6636-5_26
http://dx.doi.org/10.1007/978-94-007-6636-5_26
http://dx.doi.org/10.1016/j.envsoft.2012.06.011
http://dx.doi.org/10.5465/3069459
http://dx.doi.org/10.1016/j.envsoft.2020.104857
http://dx.doi.org/10.1016/j.envsoft.2020.104857
http://dx.doi.org/
10.1093/aesa/saz047
http://dx.doi.org/10.1016/j.compag.2020.105861
http://dx.doi.org/10.1016/j.compag.2020.105861
http://dx.doi.org/10.1016/j.ecolmodel.2019.02.004
http://dx.doi.org/10.1016/j.ecolmodel.2019.02.004
http://dx.doi.org/10.1016/j.envsoft.2012.06.015
http://dx.doi.org/10.1002/wat2.1132
http://dx.doi.org/10.1002/wat2.1132
http://dx.doi.org/10.1016/j.envsoft.2017.02.019
http://dx.doi.org/10.1016/j.envsoft.2017.02.019
http://dx.doi.org/10.2224/sbp.2015.43.4.529
http://dx.doi.org/10.2224/sbp.2015.43.4.529
http://dx.doi.org/10.1016/j.envsoft.2018.11.011
http://dx.doi.org/10.1016/j.envsoft.2018.11.011
http://dx.doi.org/10.1016/j.shpsa.2018.01.001
http://dx.doi.org/10.1016/j.shpsa.2018.01.001
http://dx.doi.org/10.1016/j.envsoft.2016.03.014
http://dx.doi.org/10.1017/S0376892920000326
http://dx.doi.org/10.1017/S0376892920000326
http://dx.doi.org/10.3389/fninf.2015.00011
http://dx.doi.org/10.3389/fninf.2015.00011
http://dx.doi.org/10.1186/1478-4491-11-19
https://ready.arl.noaa.gov/edas40.php
https://ready.arl.noaa.gov/edas40.php


Parry,HR. 2013. Cereal aphidmovement: General principles
and simulation modelling. Movement Ecology 1: 14.
DOI: http://dx.doi.org/10.1186/2051-3933-1-14.

Partington, D, Knowling, MJ, Simmons, CT, Cook, PG,
Xie, Y, Iwanaga, T, Bouchez, C, 2020. Worth of
hydraulic and water chemistry observation data in
terms of the reliability of surface water-groundwater
exchange flux predictions under varied flow condi-
tions. Journal of Hydrology 590: 125441. DOI:
http://dx.doi.org/10.1016/j.jhydrol.2020.125441.

Pianosi, F, Beven, K, Freer, J, Hall, JW, Rougier, J, Ste-
phenson, DB,Wagener, T. 2016. Sensitivity analysis
of environmental models: A systematic review with
practical workflow. Environmental Modelling & Soft-
ware 79: 214–232. DOI: http://dx.doi.org/10.1016/
j.envsoft.2016.02.008.
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Chapter 8: Conclusion 

There are many challenges in integrated environmental modelling (IEM) and the effective 

and cohesive coupling of social, technical, and scientific knowledge remains a significant area of 

research. There are many perspectives, practices and the underlying lessons learnt from across 

the various fields involved in IEM development such that a considered incorporation of these is 

likely to be constructive and beneficial towards improving the modelling process and associated 

outcomes. The work presented in this thesis uses an example of such a multi-faceted approach 

that brings to bear perspectives from software development, systems engineering, and 

environmental modelling, shedding new light on the interdisciplinary processes that underlie 

IEM. The key contributions and findings are outlined below. 

 

1. Uncertainty and sensitivity analysis tooling must be easy to use, not just 

available 

Chapter 2 presents findings from an expansive hybrid bibliometric analysis of 11,625 papers. 

Publications on Uncertainty Analysis (UA) and Sensitivity Analysis (SA) in environmental 

modelling were analysed to identify common software tools as used in the environmental sciences 

for the purpose of UA/SA. An overview of common and emerging analysis approaches and 

terminologies were also synthesised.  

Available literature acknowledges and emphasizes the importance of applying uncertainty 

and sensitivity analyses. There are now many tools available in support of such activities. The 

uptake of tooling, however, does not appear commensurate with the number of papers published 

detailing UA/SA applications, despite most software being open-source and freely available. The 

issue of longevity and usability is also raised as many tools appear to be unmaintained, lack 

sufficient documentation, and may be difficult to quickly incorporate into the typical modelling 

workflow. We therefore conclude that tooling must be operationalised by improving its 

accessibility for modeller use, rather than simply available, to ease the burden on modellers in the 

consideration of uncertainty and model sensitivities. For example, little guidance is offered to 

users on the suitability of methods (which can depend on the modelling context) or the 

interpretation of UA/SA results. An open development process and improving the level of 

accessible documentation and availability of user-centric interfaces and workflows would 

increase the uptake, and therefore efficacy, of UA/SA methods. 

 

2. A detailed assessment of a socio-environmental system through an exploratory 

approach  

Chapter 3 and 4 detail the modelling process and pathways undertaken for a case study in 

the Lower Campaspe catchment, North-Central Victoria. An IEM is developed to represent the 
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systems of interest in the study area. The model represents six systems involving climatic 

influences, agricultural processes including use of water resources (i.e., farmer irrigation 

scheduling), recreational values, ecological suitability, as well as ground and surface water 

dynamics. The model explored opportunities and vulnerabilities using an exploratory approach 

that identified conditions that lead to beneficial outcomes relative to modelled baselines. These 

identified conditions are then regarded as “robust” pathways which enhance (or at least mitigate 

losses to) farm profitability, and recreational/ecological outcomes across a range of climatic and 

policy contexts. Adoption of conjunctive use (of ground and surface water) policies was found to 

improve the likelihood of robust outcomes. Perhaps unsurprisingly, farm level knowledge and 

management were also significant factors towards experiencing robust futures. 

 

3. Appropriate model analyses are tied to development and application context 

Integrated models that represent a system-of-systems investigation are often complex but 

ensuring or checking for sensibility with respect to their correct and expected function does not 

always require equally complex approaches. In Chapter 5, a Property-based Sensitivity Analysis 

(PbSA) approach is proposed to identify problematic (i.e., incorrect, or unexpected) integrated 

model behaviour as early in the development cycle as possible. Applying PbSA to complement 

traditional software testing approaches is useful as it is difficult, and not always productive, to 

create test cases for IEMs. The approach is demonstrated to help verify model behaviour in the 

model development context in which the constituent model(s) of an IEM may be undergoing 

frequent and rapid change, and the number of samples available may be restricted by the limited 

computational budget.  

Additional guidance through a comprehensive framework for conducting sensitivity analysis 

on Spatially Distributed Environmental Models (SDEMs) are included in the Addendum. SDEMs 

are commonly required for IEMs, especially for hydrological constituent models. The framework 

consists of four broad steps, involving the identification of uncertainty sources and their strengths, 

the selection of SA method(s) and quantities of interest(s) appropriate to the spatial context, 

propagation, and finally evaluation and post-processing of SA results including visualization and 

reliability tests. 

 

4. Modellers are human and so socio-technical processes must be considered in 

system-of-systems modelling 

Holistic assessment of the interconnected socio-environmental systems necessitates the 

holistic consideration of the modelling process. Those conducting the modelling are human and 

dictate the scale of the modelling conducted. Thus, the social processes underlying the modelling 

should additionally be considered to better manage socio-technical concerns and issues. Chapter 

6 explores and details the influence of the socio-technical domain on the treatment of scale and 
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uncertainty in system-of-systems modelling. Chapter 7 expands on this through reflexive accounts 

of two case studies to draw out lessons learnt on managing interdisciplinary teams in the context 

of SoS modelling. 

It is argued therein that considerations of the underlying socio-technical concerns should be 

explicitly incorporated for a more holistic approach to be realised. These include consistent and 

continual communication between those involved in the modelling, improved documentation 

practices to propagate understanding of the assumptions, decisions, and reflexive lessons and the 

reasons underlying those, and for discussions around scale and its influence on uncertainty to be 

explicit considerations in the modelling. 

 

In summary, perspectives from environmental modelling, systems engineering, and software 

development are embedded in the thesis to synthesize and incorporate the wider and valuable 

contributions that can be made to the multifarious aspects of integrated environmental modelling. 

These include approaches in the development, testing, and application of models, and 

consideration of the socio-technical issues that underlie the modelling process. As integrated 

modelling is, by necessity, an interdisciplinary process, the research presented in this thesis  helps 

clear a path towards more integrative and holistic approaches that better enable environmental 

systems modelling to achieve its purposes. 
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Addendum: Considerations for the 
sensitivity analysis of spatially distributed 

environmental models 

Sensitivity analysis is a common analysis conducted to assess model complexity, behaviour, 

and the potential sources of uncertainty regarding quantities of interest that are output from a 

model. This chapter details the considerations in the application of sensitivity analysis specific to 

spatially distributed environmental models, through a pragmatic step-by-step framework. The 

framework guides modelers through the sensitivity analysis process when working with spatially 

distributed environmental models (SDEMs) with an emphasis on addressing sources of 

uncertainty related to raster and vector spatial datasets. This addendum was ultimately selected 

by the Editor-in-Chief of Environmental Modelling and Software to be a Position Paper in that 

journal. It was reviewed by two anonymous reviewers before publication. 

The content of this addendum was originally included as Chapter 6 but has since been 

appended instead to conform with Section 5 of ANU procedure 003405 

(https://policies.anu.edu.au/ppl/document/ANUP_003405). 
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A B S T R A C T   

Sensitivity analysis (SA) has been used to evaluate the behavior and quality of environmental models by esti-
mating the contributions of potential uncertainty sources to quantities of interest (QoI) in the model output. 
Although there is an increasing literature on applying SA in environmental modeling, a pragmatic and specific 
framework for spatially distributed environmental models (SD-EMs) is lacking and remains a challenge. This 
article reviews the SA literature for the purposes of providing a step-by-step pragmatic framework to guide SA, 
with an emphasis on addressing potential uncertainty sources related to spatial datasets and the consequent 
impact on model predictive uncertainty in SD-EMs. The framework includes: identifying potential uncertainty 
sources; selecting appropriate SA methods and QoI in prediction according to SA purposes and SD-EM properties; 
propagating perturbations of the selected potential uncertainty sources by considering the spatial structure; and 
verifying the SA measures based on post-processing. The proposed framework was applied to a SWAT (Soil and 
Water Assessment Tool) application to demonstrate the sensitivities of the selected QoI to spatial inputs, 
including both raster and vector datasets - for example, DEM and meteorological information - and SWAT (sub) 
model parameters. The framework should benefit SA users not only in environmental modeling areas but in other 
modeling domains such as those embraced by geographical information system communities.   

1. Introduction 

Sensitivity analysis (SA) and uncertainty analysis (UA) are important 
tools for investigating model behavior, testing model hypotheses, and 
exploring the potential for simplifying models (Wagener and Pianosi, 
2019). Uncertainty is intrinsic to all modeling work that involves 

representing natural processes and/or human behavior. Sources of un-
certainty that need to be considered in such exercises are model input 
datasets, model structure, and model parameters. SA studies the influ-
ence of input factors (e.g., parameters, forcing, initial value of model 
states, model resolution, and model structure such as different param-
eterization schemes of a model or submodel) on model outputs. It is 
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considered a key practice in the assessment of environmental models 
(Chen et al., 2019; Gan et al., 2014; Jakeman et al., 2006; Matott et al., 
2009; Oakley and O’Hagan, 2004; Pianosi et al., 2016; Yue et al., 2020). 
In comparison, UA quantifies the uncertainty of model outputs from 
input datasets and model parameters, typically characterized by 
empirical probability distributions and/or confidence bounds for the 
model parameters and outputs. UA can be considered an extension of SA 
with the uncertainty distributions for the input factors being used as the 
perturbations. Therefore, SA can be used to indicate when uncertainty in 
input factors matters in terms of the impact on the uncertainty in the 
outputs. Care must however be taken in the interpretation of SA results 
as sensitivities can be dependent on parameter ranges selected, model 
structure assumed, length of data period examined and its climatic 
forcing (Shin et al., 2013). 

The use of SA and UA in environmental modeling has become of 
particular importance due to the highly complex nature of environ-
mental systems, and the attendant complexity of models typically 
invoked to represent them. This is especially the case for spatially 
distributed environmental models (referred to from hereon as SD-EMs), 
where there tends to be a considerable number of model parameters due 
to their spatially variant nature, and substantial uncertainty in the 
model and its predictions. Uncertainty and sensitivity related studies in 
environmental modeling are rising in popularity because of the growing 
awareness of the importance of models in supporting informed decision 
making (Douglas-Smith et al., 2020), coupled with the fact that current 
process-based environmental models are typically, and perhaps neces-
sarily, deterministic in their representation (Farmer and Vogel, 2016; 
Uusitalo et al., 2015). 

This paper focuses on Monte Carlo simulation-based SA of SD-EMs, 
which is a valuable tool per se and one that can also inform uncer-
tainty analyses. Monte Carlo simulation-based approaches are widely 
applied due to their ease of implementation, yet there is a lack of a 
comprehensive pragmatic framework for conducting such approaches 
for SD-EMs (Yang et al., 2018). An SD-EM is intrinsically tied to the 
spatial dimensions of producing and utilizing data that represent the 
spatially distributed nature of the modeling context. Grid-based digital 
elevation models (DEMs), site-specific point measurements, and 
remotely sensed images are examples of such data. However, SAs are 
rarely conducted for DEM and DEM-derived parameters even though the 
inherent scale and errors of a spatial dataset and/or of the whole envi-
ronmental model can have a significant impact on model outputs (Tran 
et al., 2018). A crucial issue to take into account regarding spatial 
datasets is the spatial structure of their uncertainty. Generally, spatial 
datasets are characterized by spatial dependence (i.e., spatial coher-
ence), and their uncertainties are also spatially autocorrelated (Oksanen 
and Sarjakoski, 2005a; Wechsler, 2007). Thus, ignoring such charac-
teristics can lead to erroneous estimation of sensitivity measurements. 
Moreover, because spatial datasets often determine the uncertainty in 
model resolution and structures through their boundaries, discretization 
and scale, exploring uncertainty related to spatial datasets can partly 
account for model uncertainty in SD-EMs. 

This article introduces a pragmatic framework for the application of 
SA to an SD-EM, using a scenario/simulation-based approach to inves-
tigate the significance of potential uncertainties in the model inputs, 
which can not only explore model and data assumptions transparently 
but also be an informative precursor to a more thorough UA. The ob-
jectives of the framework are to provide sufficient information and 
background in order to guide the selection of more appropriate choices 
at each step of the SA process: potential uncertainty source identifica-
tion; selection of SA method(s) and quantities of interest (QoI); pertur-
bation propagation; and SA evaluation and post-processing. The 
framework emphasizes the following aspects: it attempts to address 
potential uncertainty sources related to spatial datasets; and assists in 
propagating the potential uncertainty sources by considering their likely 
spatial structure. Therefore, the framework helps to explore the impact 
of potential uncertainty of spatial datasets in an SD-EM, and to compare 

their relative impacts with the usual factors in SA (e.g., model param-
eters). The framework is intended to benefit both non-experts and SA 
users in environmental modeling and geographical information system 
(GIS) communities. 

The remainder of this article is organized as follows. Section 2 
broadly introduces the pragmatic framework for applying SA to SD-EMs, 
covering potential uncertainty source identification, selection of SA 
method and QoI, perturbation propagation, and SA evaluation and post- 
processing. Then, from Sections 3 to 6, the detailed steps and their 
corresponding considerations are discussed. Section 7 provides a concise 
example of the SA framework. The article concludes in Section 8 with a 
discussion of future needs and opportunities. 

2. A pragmatic SA framework for SD-EMs 

The presented framework prescribes sequential steps in which 
important considerations are highlighted to guide modelers towards the 
selection of appropriate choices for the pragmatic application of SA to 
uncertainty exploration in SD-EMs. The overarching steps and the cor-
responding considerations are depicted in Fig. 1. The main purpose of 
the framework is to identify the contributions of potential uncertainty 
sources to the selected QoI. This section introduces the pragmatic 
framework to provide a broad guideline for SA users, while the following 
sections detail the considerations within each step. 

The first step is to identify potential sources of uncertainty (Section 
3). Numerous studies have investigated uncertainty sources in the 
context of environmental modeling, and classified them in their own 
schemes (Matott et al., 2009; Refsgaard et al., 2007). Understanding 
these general classification schemes and the uncertainty sources 
involved assists in identifying the sources of uncertainty related to a 
specific application. In particular, this article discusses potential un-
certainty sources not only in model parameters and model uncertainty, 
but also in spatial datasets which are used as direct input(s) and/or to 
derive parameters to describe the underlying spatially distributed 
structure of SD-EMs (e.g., DEM). 

The second step is the selection of SA methods and QoI (Section 4). 
This selection primarily depends on the purposes of SA (e.g., screening 
and ranking) and the characteristics of the SD-EM. The characteristics 
can include the model complexity, and/or computational cost. As this 
framework is intended for Monte Carlo simulation-based SA, applying 
SA methods that require a large number of model evaluations to deter-
mine SA measures might not be feasible for a computationally expensive 
model. This article broadly categorizes the most frequently-used SA 
methods for environmental modeling based on their purposes and 
characteristics, and synthesizes them to assist SA users and communities 
in selecting appropriate ones for a pragmatic SA application. Here, we 
provide a general description, and several previous studies provide 
complementary explanations for further SA methods (Pianosi et al., 
2016; Borgonovo and Plischke, 2016; Sarrazin et al., 2016). For select-
ing QoI, only scalar outputs are generally utilized as QoI in SA of envi-
ronmental models, which often requires aggregating spatially and/or 
temporally distributed outputs into a scalar function (Pianosi et al., 
2016). However, since potential uncertainty sources in SD-EMs have 
different impacts on spatially, and also temporally, distributed scalar 
outputs (Pappenberger et al., 2008; Wang et al., 2013), preserving a 
spatial distribution of scalar outputs might be useful to understand the 
underlying spatial processes within SD-EMs, even if that requires man-
aging vast computing power. 

The third step in the framework is the perturbation propagation of 
the identified potential uncertainty sources (Section 5). Generally, local 
and global SA methods require different types of perturbation propa-
gation methods. Thus, local SA utilizes the neighborhood values of the 
nominal value, and global SA generally requires the input variability 
space via a probability distribution (Borgonovo and Plischke, 2016). For 
all SA methods, perturbation propagation with appropriate distributions 
is crucial because the representativeness of uncertainty sources 
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primarily determines the SA results. Different types of uncertainties also 
need different types of perturbation propagations. For example, the 
propagation of perturbations in a model parameter that is represented as 
a scalar random variable could be performed using a probability dis-
tribution (e.g., normal distribution), while more complex perturbation 
propagation methods are necessary for characterizing the uncertainty of 
input datasets (e.g., spatial datasets) by simultaneously taking account 
of their characteristics (e.g., spatial autocorrelation) (Wechsler, 2007; 
Crosetto and Tarantola, 2001). Nonetheless, perturbation propagation 
of model uncertainty is still an ongoing research subject and remains a 
fruitful area of investigation (Matott et al., 2009; Uusitalo et al., 2015; 
O’Hagan, 2012). 

The final step of the framework is evaluating the results of the SA, 
which includes post-processing of analysis results (Section 6). In eval-
uating SA results, reliability and convergence aspects should be assessed 
as a verification step. SA measures or metrics vary with sample size, 
thereby requiring a convergence test to check if the metric(s) of choice is 
converging and its confidence bounds acceptable for the purpose (Yang, 
2011). In addition, different SA methods are based on different pre-
mises, may produce different metrics, and hence produce different 
outputs. Thus, SA with different methods can increase confidence in the 
reliability or interpretation of SA outputs. Finally, this step also includes 
credibility assessment for SA outputs. If unexpected SA outputs are ob-
tained, these outputs can lead to new indications of uncertainty in model 
behavior (Pappenberger et al., 2008), or indicate issues with the model 
implementation (Pianosi et al., 2016). Otherwise, these outputs can 
assist with revising the SA steps, such as identifying missing uncertainty 
sources and redefining the perturbation propagation approach. Because 
SA results are generally associated with large sets of potential uncer-
tainty sources, visualization methods of SA results are useful to identify 
critical uncertainty sources and to compare their importance. Thus, this 
step includes the descriptions of specific visualization methods with 
their corresponding SA methods, conventional scientific visualization 
techniques for SA outputs (Kelleher and Wagener, 2011), and 
geographical visualization and analysis for the representation of 
spatially distributed SA measures (Feick and Hall, 2004). 

3. Identification of potential uncertainty sources 

3.1. Classification of uncertainty sources 

This initial step involves the identification of potential uncertainty 
sources associated with the model’s input factors that influence the 
selected outputs of an environmental model, or functions of those out-
puts (i.e., QoI). Various types of uncertainty sources could influence the 
outputs of the models, and numerous classification schemes for uncer-
tainty sources have been introduced to categorize them (Matott et al., 
2009; Refsgaard et al., 2007; Beck, 1987; Linkov and Burmistrov, 2003). 
Because the classification schemes commonly share two fundamental 
uncertainty sources (i.e., input and model uncertainties), this article 
discusses the various uncertainty sources in these two broad categories. 

3.2. Input uncertainty 

Input uncertainty is associated with model parameters and input 
datasets. Among various sources of uncertainty, model parameter un-
certainty is the most commonly considered source (Setegn et al., 2010; 
Wu and Chen, 2015; Wu and Liu, 2012; Berzaghi et al., 2019; Porada 
et al., 2018) and can be controlled to some extent through calibration 
processes (Zhao et al., 2018). Therefore, uncertainty in model parame-
ters is often considered to be reducible, and it has been argued that 
model parameters can be carefully tailored to reduce that uncertainty 
related to model outputs and to improve model performance (Matott 
et al., 2009). However, if globally optimized parameters are obtained 
through a calibration process, they would also be affected by other 
sources of uncertainty, including input data uncertainty, model uncer-
tainty, and also model parameter uncertainty, and these might lead to 
“equifinality” (Zhao et al., 2018; Beven and Freer, 2001). 

Input datasets are usually assumed to be accurate, that is, effectively 
without uncertainty. However, this is incorrect as all data have inherent 
uncertainties (Chrisman, 1991). Uncertainties related to input datasets 
can be irreducible (Matott et al., 2009), and thus they are often ignored 
in uncertainty related studies. Moreover, uncertainty in spatial datasets 
involves spatial autocorrelation (Griffith, 2008; Koo et al., 2018c). In the 
SD-EM context, spatial datasets include maps and site-specific 

Fig. 1. The steps and considerations in the application of the SA framework.  
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measurements. For example, temperature and precipitation surfaces 
would have strong positive spatial autocorrelation, and soil and land 
use-land cover (LULC) datasets possess complex spatial autocorrelation 
(Legendre, 1993). Site-specific measurements (e.g., meteorological 
data) have spatial autocorrelation as well as temporal autocorrelation. 
Therefore, if an environmental modeling analysis does not address the 
independent inputs and relationships among them, an incomplete un-
derstanding of the uncertainty in the model will result, leading to a 
biased estimation of the confidence in the model outputs. 

The uncertainty in spatial datasets is generally caused by five 
fundamental components: lineage, positional accuracy, attribute accu-
racy, logical consistency and completeness (ANSI, 1998; Koo et al., 
2020). Briefly, lineage relates to the description of spatial data sources 
(e.g., dates and reference systems), and logical consistency describes the 
fidelity of spatial data structure (e.g., topology). Completeness refers to 
selection criteria of spatial entities, for example, geometric thresholds 
such as minimum width and area of spatial features. Positional and 
attribute accuracies literally refer to uncertainties respectively in posi-
tion (i.e., location) and attribute information of spatial datasets. Among 
these components, positional and attribute accuracies are closely related 
to uncertainties in SD-EMs, and they show different aspects depending 
on the type of spatial datasets. Spatial datasets can be broadly divided 
into raster and vector datasets. 

A typical example of a raster dataset is a DEM, where scale (i.e., 
resolution), random and systematic measurement uncertainties result-
ing from attribute accuracy are the major uncertainty sources (Hengl 
et al., 2010). The scale issue is relatively well discussed as a source of 
uncertainty in DEMs (Chaubey et al., 2005; Dixon and Earls, 2009; Lin 
et al., 2013c; Shen et al., 2013). Together with scale, measurement 
uncertainty is known to also have an impact on watershed delineation 
(Oksanen and Sarjakoski, 2005a; Wu et al., 2008), stream network 
extraction (Hengl et al., 2010), and derivation of other topographic 
parameters (Wechsler, 2007). As systematic measurement uncertainty 
generally shows a fixed pattern stemming from DEM generation pro-
cesses (e.g., blunders), if the cause of the uncertainty is known, it could 
be reduced (Wechsler, 2007). However, random measurement uncer-
tainty still remains after reducing systematic uncertainty. For example, 
the Shuttle Radar Topography Mission (SRTM) v.4.1 dataset has a ver-
tical accuracy of ±16 m at a 95% confidence level (Mukul et al., 2017). 
Other widely used raster datasets are LULC and soil datasets, which 
possess uncertainty related to positional uncertainty and scale issues 
(Koo et al., 2020). 

Vector datasets are typically used to define the boundary of a study 
area, and describe topographic and/or environmental features such as 
stream networks. In addition, site-specific measurements are handled as 
a type of vector dataset, generally point features that have attributes on 
specific locations, for example, measurements of precipitation, tem-
perature, wind speed, humidity and solar radiance. Even though some 
raster datasets (e.g., precipitation and temperature surfaces) are con-
verted from site-specific measurements, their uncertainty sources can 
mainly be explained by uncertainty in vector datasets. Vector datasets 
typically include two main uncertainty sources, which are positional and 
attribute uncertainties (Koo et al., 2018a). Positional uncertainty refers 
to the uncertainty of geographical features in vector datasets, which 
often results from a global positioning system (GPS), geocoding and 
digitizing errors. Attribute uncertainty describing non-spatial properties 
of geographical features in vector datasets are generally estimated from 
their sampling processes (Aouissi et al., 2013; Strauch et al., 2012; 
Tasdighi et al., 2018; Bárdossy and Das, 2008; Chaplot et al., 2005; Cho 
et al., 2009; Gong et al., 2012; Masih et al., 2011) and measurements 
(Shen et al., 2015; Li, 2014). In addition, attribute uncertainty often 
includes spatial autocorrelation. When attribute uncertainty contains 
temporally varying quantities, they also need to consider the informa-
tion lost in converting to discrete-time (Littlewood and Croke, 2013). 

3.3. Model uncertainty 

Model uncertainty results from the inability of a model to mimic the 
real-world (Yen et al., 2014). Model uncertainty might be subdivided 
into the effects of model structure, model resolution, and model inte-
gration uncertainties (Matott et al., 2009; Voinov and Shugart, 2013). 
First of all, model structure uncertainty is caused by a model structure 
that imperfectly represents underlying environmental processes in a 
model (Yen et al., 2014). Numerous alternative model structures (e.g., 
scientific hypotheses and equations) might be proffered in a model, 
which could adversely impact model outputs. A related consideration is 
the issue of the identifiability of the model structure (Guillaume et al., 
2019; Shin et al., 2015), which largely means the data available are 
insufficiently informative to identify unique values of some of its pa-
rameters. SA methods are often used to determine the 
insensitive/non-identifiable parameters so that focus for calibration 
and/or uncertainty analysis can then be turned to the most sensitive 
ones. Second, model resolution uncertainty is due to uncertainties in the 
spatio-temporal discretization, boundary specification, and scale 
dependence of a model (Matott et al., 2009). In an SD-EM, spatial dis-
cretization, boundary and scale are often determined by the available 
spatial datasets, and model resolution uncertainty can then be partially 
explained through exploring uncertainty of the spatial datasets (Koo 
et al., 2020; Trusel et al., 2015) (Fig. 1). 

Another aspect of model uncertainty arises from model integration 
processes (Chen et al., 2020). Currently, environmental models become 
more complex by integrating multiple models (Lin et al., 2013a, 2013b; 
Lu et al., 2019). The integration processes yield uncertainty from 
skewed space (e.g., difference in spatial resolution), mismatched mea-
surement scales, and confusion of linguistic representations (Voinov and 
Shugart, 2013). Particularly, in an SD-EM, when sub-models with 
different spatial and temporal scales are integrated without a solid 
design, the uncertainty of an integrated model could become large and 
undetectable (Tscheikner-Gratl et al., 2019). 

4. Selection of SA method(s) and quantities of interest 

This step firstly provides guidance on SA method selection based on 
two main criteria: the purposes of the SA and the characteristics of the 
SD-EM. This guidance includes only two fundamental SA purposes (i.e., 
ranking and screening), but SA can have additional purposes such as 
factor mapping that provides further descriptions for the input space 
related to QoI (Saltelli et al., 2008). SA methods for ranking generate the 
order of input factors based on their relevant influence on QoI, and 
screening methods identify input factors with significant or negligible 
influence on model output (Pianosi et al., 2016). SA methods for each 
purpose can be applied sequentially, such that model results from 
screening methods are leveraged to reduce the number of input factors 
and are followed by SA for the purpose of ranking, thus reducing the 
overall number of model evaluations (Saltelli et al., 2004; Sun et al., 
2012). Secondly, two major characteristics of an environmental model 
are necessary to consider in selecting appropriate SA methods: model 
complexity and interdependency between input factors (Saltelli, 2002). 
Here we briefly discuss widely used SA methods, including local SA, the 
Morris method, correlation and regression, and variance-based SA 
methods according to the two major criteria. Fig. 2 classifies these SA 
methods, where the positions of each SA method relate to SA purpose 
and model complexity and their outlines represent interdependency. In 
addition, the advantages of an emulator and its consideration for dealing 
with spatially distributed outputs are also briefly discussed. 

Local SA is the simplest SA method, and is often conducted through 
one-at-a-time (OAT) perturbation of input factors around their nominal 
values to determine the response of model outputs (Sun et al., 2012; 
Campolongo and Saltelli, 2000). A formal approach for local SA involves 
using partial derivatives (Helton, 1993). Partial derivatives can provide 
SA measures/metrics for both ranking and screening; however, they 
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should be rescaled and applied to several locations in factor space in 
order to reveal the global effects of input factors with different mea-
surement units (Borgonovo and Plischke, 2016; Campolongo et al., 
2011). 

Purely OAT analyses are, however, typically inappropriate for 
determining sensitivity estimates. Such analyses do not consider in-
teractions among input factors (Borgonovo and Plischke, 2016), and 
while OAT can investigate non-linearities if input factors are indepen-
dent (Newham et al., 2003), typical applications are unable to do so due 
to the use of a single perturbation (Sun et al., 2012; Saltelli and Annoni, 
2010). Importantly, because local SA evaluates sensitivity at a specific 
location of input factors, rather than over their plausible ranges as global 
SA does, it might provide a limited indication of model behavior (Sun 
et al., 2012; Sobol, 2001) although pure OAT analyses have the 
advantage of reduced computational time over a more substantive 
global analysis. An initial indication of model behavior can be gained 
with just N+1 model evaluations for N input factors (Pianosi et al., 
2016), or fewer if groups of input factors are perturbed together through 
group sampling (Sobol’, 2001). Improper model behavior caught at this 
stage indicates errors in the model implementation to be addressed 
before global analyses are applied. 

A simple global extension of local SA is the Morris method (Morris, 
1991), also known as the Elementary Effect Test (Saltelli et al., 2008). 
The Morris method generally requires much lower numbers of model 
evaluations than other global SA methods for the purpose of screening, 
and thus the Morris method is appropriate for computationally complex 
models and/or models with a large number of input factors (Campo-
longo et al., 2007; Herman et al., 2013). A drawback of the Morris 
method is that it gives a poor measure of the relative importance be-
tween factors, and can be considered as offering qualitative sensitivity 
measures only (Brockmann and Morgenroth, 2007). Besides the average 
elementary effects, it does provide the standard deviations of the 
elementary effects, which are beneficial for identifying interaction ef-
fects among input factors (Norton, 2015). 

Regional sensitivity analysis (Spear and Hornberger, 1980) typically 
divides input factors into two or more groups depending on a prescribed 
threshold of model output, and then studies the difference in their 
empirical cumulative distribution functions (CDF) for each input factor. 
The Kolmogorov-Smirnov (K–S) statistic quantifies the divergence be-
tween the CDF and serves as a common sensitivity measure. Thus, if the 
K–S statistic is high (i.e, the CDF of one group differs from the other), the 
input factor has a significant influence on model output (Pianosi and 

Wagener, 2015). K–S statistics are mainly utilized for ranking input 
factors. However, the K–S statistic is inappropriate for screening because 
it is only applicable to the same groups (Saltelli et al., 2008). The 
advantage of regional sensitivity analysis is that it is applicable for any 
type of splittable model outputs (e.g., Futter et al., 2007; Whitehead 
et al., 2015; Whitehead and Hornberger, 1984). However, if the 
grouping (i.e., splitting) criterion is not clear (i.e., a model does not have 
meaningful model output values to describe model behavior), regional 
sensitivity analysis would be inappropriate. 

Various correlation and regression methods are also extensively used 
to measure sensitivities. These methods basically obtain SA measures 
based on different statistics (i.e., correlation and regression coefficients) 
between input factors and QoI generated from a Monte Carlo simulation 
(Pianosi et al., 2016; Helton et al., 2006). Specifically, for correlation 
coefficient estimations, various types of correlation coefficients are 
selected mainly based on the linearity between input factors and model 
outputs. When they have a linear relationship, Pearson and partial 
correlation coefficients are appropriate methods (Saltelli and Marivoet, 
1990). If the relationship is non-linear, Spearman and partial rank cor-
relation coefficients can be used as alternatives (Pastres et al., 1999). 
Furthermore, if SA methods simultaneously are to take account of 
multiple relationships for multiple outputs, a canonical correlation 
analysis provides an additional option (Minunno et al., 2013). 

Regression methods obtain sensitivity measures by estimating 
regression coefficients, which are commonly standardized. Regression 
methods are often superior to correlation methods in deriving sensitivity 
measures, especially when a large number of input factors are consid-
ered since regression methods can obtain SA measures of all input fac-
tors at once. However, while linear regression is the simplest and most 
widely used SA method (Iman and Helton, 1988), it is not suitable if 
there is a non-linear or non-monotonic relationship in the model 
response, and a high level of interaction among factors also makes linear 
regression act poorly (Yang, 2011). When a non-linear relationship ex-
ists, rank regression (Storlie et al., 2009) and machine learning tech-
niques, such as decision trees (Singh et al., 2014), are appropriate. 
Regression and correlation methods are commonly utilized for both 
screening and ranking purposes. 

Variance-based methods produce sensitivities by decomposing the 
variance of a model output into the contributions from input factors. The 
contributions can be defined according to different indices, for example, 
first-order and total indices (Saltelli et al., 2008). The first-order index 
quantifies the contribution of a specific input factor to the variance of 
the selected QoI, while the total index measures the total contribution of 
an input factor to the variance of the QoI, including those due to its 
interactions with other input factors. The first-order index is usually 
used to rank input factors when interactions are not significant. With 
total indices, variance-based SA methods are able to address 
non-linearity of model responses to input factors. Factors with a total 
index close to zero can be considered negligible and screened out (Pia-
nosi et al., 2016). Often, these negligible factors are made constant, a 
practice referred to as “factor fixing”. 

Variance-based SA methods can be challenging for computationally 
intensive complex models because they take a relatively large number of 
factor samples and related model evaluations to obtain reasonably ac-
curate and stable indices (Gan et al., 2014). However, several ap-
proaches, such as the Sobol’ method (Sobol, 2001), Fourier Amplitude 
Sensitivity Test (FAST) (Cukier et al., 1973), and extended FAST (Saltelli 
et al., 1999), have been proposed to more efficiently estimate main and 
total effects (Paleari and Confalonieri, 2016). In practice, however, the 
computational requirement is still a burden for these SA methods. 
Moreover, common variance-based approaches operate on a number of 
assumptions, including that: the variance of model outputs resulting 
from the prior input distribution is indicative of input factor sensitiv-
ities; inputs are independent (Saltelli and Tarantola, 2002); and the 
distribution of the sampled model outputs, often estimated through 
kernel density estimation approaches, are unimodal. Misleading SA 

Fig. 2. The criteria for SA method selection. Appropriateness of SA method 
depends on model characteristics including linearity (solid box outline) or non- 
linearity (dashed box outline), computational cost and SA purpose (position of 
the boxes). 

H. Koo et al.                                                                                                                                                                                                                                     



Environmental Modelling and Software 134 (2020) 104857

6

results may be produced if model outputs do not conform to these as-
sumptions (Pianosi et al., 2016). 

For computationally intensive models, SA (e.g., variance-based 
methods) can be implemented using an emulator, which is a statistical 
approximation of the output response surface of the original environ-
mental model (O’Hagan, 2012). A simple approach for building an 
emulator is through use of Gaussian processes (Oakley and O’Hagan, 
2004), though other options exist, such as polynomial chaos expansions 
(Sudret, 2008), statistical emulators (Young and Ratto, 2011) and ma-
chine learning-based emulators (e.g., random forest and gradient 
boosting) (Storlie et al., 2009). However, an emulator might be inap-
propriate to evaluate a large number of input factors because it suffers 
from estimation inefficiency and inaccuracy due to the curse of dimen-
sionality (Storlie et al., 2009; Li et al., 2020). This can be resolved by 
screening out negligible input factors, or by applying an emulator that 
includes a procedure for input factor selection (Yang, 2011). 

The selection of QoI (sometimes embodied in an objective function 
or loss function) is also crucial to reflect the modeling purposes, as 
different modeling purposes lead to different sensitivity measures in the 
input factors. For example, rainfall intensity yields more sensitivity to 
stream flow peak than to baseflow. Based on modeling purpose, a large 
number of QoI have been used in hydrological models. The most 
frequently used include the Nash-Sutcliffe coefficient, root-mean- 
square-error (RMSE), and differences in the flow duration curve (e.g., 
between simulated and observed flows, and total nitrate). Although SA 
tends to select only single scalar QoI, SD-EMs often need to explore 
spatially distributed sensitivities of input factors on multiple- and multi- 
dimensional outputs (Gupta and Razavi, 2018; Pappenberger et al., 
2008), which can involve a colossal computational burden. Emulators 
may be developed to circumvent the issue of computational cost. A 
typical practice, however, is to build separate emulators for individual 
outputs (Ryan et al., 2018), which may impose an additional compu-
tational cost. Implementing other types of SA methods may be useful to 
mitigate this computational burden, including a separate generalized 
additive model (Mara and Tarantola, 2008), partial least squares (Sobie, 
2009), multi-fidelity polynomial chaos expansions (Palar et al., 2018), 
and global sensitivity matrix approaches (Razavi and Gupta, 2019). 
Moreover, decreasing the dimensionality of outputs by using a principal 
component analysis and grouping factors based on bootstrap-based 
clustering (Sheikholeslami et al., 2019) can provide another solution 
(Gómez-Dans et al., 2016). 

5. Perturbation propagation 

Monte Carlo simulation-based SA needs to propagate the perturba-
tions of input factors through the model to analyze the sensitivity of 
model outputs and their QoI to those input factors (Saltelli and Tar-
antola, 2002). Proper selection of the perturbations within plausible 
ranges and distributional assumptions is a crucial step in SA because the 

perturbation attempts to reflect the degree of uncertainty in input fac-
tors. This section introduces useful methods for perturbation propaga-
tion of the corresponding uncertainty sources, including input 
parameters, spatial and point datasets. 

5.1. Model parameters 

Model parameters in environmental models are typically represented 
as scalar variables, and often treated as random variables with prior 
probability distributions (Borgonovo and Plischke, 2016). Specifically, 
samples of individual model parameters are obtained from their corre-
sponding probability distributions, and then SA evaluates model re-
sponses based on the samples. The interactions between model 
parameters can be represented using a covariance matrix, for example, 
the Cholesky decomposition (Xiu and Karniadakis, 2003). Because 
defining appropriate probability distributions with plausible ranges are 
also crucial for evaluating model parameter sensitivities, taking all 
available information on individual model parameters is necessary for 
the generation of those probability distributions (e.g., expert opinion) 
(Crosetto and Tarantola, 2001). 

5.2. Raster datasets 

An SD-EM normally uses various types of spatial datasets, including 
spatially distributed input datasets and site-specific measurements. 
Because spatial datasets have various forms (e.g., vector and raster 
datasets), different types of perturbation propagation are required 
(Crosetto and Tarantola, 2001). Furthermore, the propagation for 
spatial datasets should consider the characteristics of those datasets, 
especially spatial autocorrelation (Temme et al., 2009). Table 1 dem-
onstrates applicable perturbation propagation methods for the various 
types of spatial datasets. 

Raster datasets are either generally subdivided into categorical (e.g., 
LULC and soil datasets) or quantitative (e.g., DEM, temperature and 
precipitation surfaces) rasters, requiring different perturbation propa-
gation methods (Heuvelink, 1998). In quantitative rasters, individual 
cell values can be treated as individual random variables with their own 
probability distributions, which means an observed quantitative raster is 
just one rendering of all possible realizations. However, this assumption 
ignores the spatial structure of uncertainty in quantitative rasters. 
Random fields are widely used to represent uncertainty in quantitative 
rasters. Random fields comprise a surface of random values that esti-
mates uncertainty magnitude, variance, and spatial variability, where 
each value represents potential uncertainty at a specific location of the 
grid cell (Wechsler, 2007). Furthermore, random fields are applicable 
for regularly discretized space-time voxels in 3D rasters (Pebesma et al., 
2007). Like other perturbation propagation methods, random fields 
require a definition of the appropriate potential uncertainty level (i.e., 
plausible ranges) and their spatial structure. If the information for the 

Table 1 
Perturbation propagation for spatial datasets and their applications.  

Spatial dataset type Examples Perturbation methods 

Raster Quantitative DEM, and temperature surface Spatial moving average (Wechsler and Kroll, 2006) 
Pixel swapping (Fisher, 1991a) 
Spatial autoregressive models (Hunter and Goodchild, 1996) 
Sequential Gaussian simulation (Aerts et al., 2003) 
Three parameter method (Ehlschlaeger et al., 1997) 

Categorical LULC, and soil datasets Using fuzzy classification information (Lucieer and Kraak, 2004) 
Using the confusion matrix (Fisher, 1991b) 
Applying models for vector datasets (Kiiveri, 1997; Shi, 1998) 

Vector Point Site-specific measurements Error ellipse (Dutton, 1992) 
Spatial autoregressive models (Hunter and Goodchild, 1996) 

Line Boundary of study area, and stream network Epsilon band (Crosetto and Tarantola, 2001) 
Stochastic process-based models (Shi and Liu, 2000) 
Entropy-based models (Gong and Li, 2011) 
Statistical simulation error models (Tong et al., 2013)  
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ranges and structures are not available, random fields are often esti-
mated using the accuracy statistics of a target raster dataset (e.g., root 
mean square error). If the information is obtained from a survey and 
other methods, this can be used for estimating parameters of a random 
field generation. 

The simplest method for random field generation is using a normal 
distribution with a mean of zero and standard deviation derived from 
the accuracy statistics of a quantitative raster dataset. However, po-
tential uncertainty in spatial datasets has spatial structure, including 
spatial autocorrelation (Wechsler, 2007; Oksanen and Sarjakoski, 
2005b), which should be considered in a random field generation. The 
following methods are the typical methods accounting for spatial 
autocorrelation in random field generation. The first method is the 
spatial moving average (Wechsler and Kroll, 2006), which applies a low 
pass filter to a random field generated from a simple probability distri-
bution (e.g., normal distribution) without considering spatial autocor-
relation. The size of a low pass filter determines the level of spatial 
autocorrelation, which often covers from 3 by 3 grids to the grid size that 
is computed from the range of a semi-variogram in a target quantitative 
raster. 

Pixel swapping (Fisher, 1991a; Goodchild and Openshaw, 1980) and 
a spatial autoregressive model (Hunter and Goodchild, 1996; Koo et al., 
2019; Anselin, 1995) are other methods for random field generation that 
considers spatial autocorrelation. They can be utilized for quantitative 
raster datasets and attribute uncertainty in vector datasets. Pixel 
swapping is developed based on the concept of simulated annealing, 
where two cells in random fields are continuously swapped until spatial 
autocorrelation in the random fields achieves its threshold level derived 
from spatial autocorrelation level in a target raster dataset. This method 
has the advantage that it is a simple process, but it is difficult to 
implement for a large spatial dataset due to the slowness of the pro-
cedure (Oksanen and Sarjakoski, 2005a). A spatial autoregressive model 
produces random fields based on the following equation: 

Y =(I − ρW)
− 1ε  

where I denotes an identity matrix, and ε is a vector that is generated 
generally from a probability distribution. By using an autoregressive 
parameter (ρ), this model effectively determines the level of spatial 
autocorrelation. W is a spatial weights matrix, which is also useful for 
specifying various types of neighborhood definitions (e.g., contiguity 
and k nearest neighbors). Because it is an n by n matrix and tends to be 
sparse, computing its inverse often requires a lot of resources for large 
datasets (Anselin, 2005). 

Sequential Gaussian simulation is a widely applicable method for 
random field generation (Koo et al., 2020; Aerts et al., 2003), which is 
developed based on a geostatistical approach with a normality 
assumption for potential uncertainty (Goovaerts, 1997). The basic steps 
for sequential Gaussian simulation are as follows: first, random paths are 
generated in a field, and each node in the path is sequentially visited; 
second, at each node, descriptive statistics for a local conditional 
probability function are estimated based on surrounding values using 
kriging; and finally, a random value is generated from the local condi-
tional probability function. If survey samples for uncertainty exist, the 
values at the sample nodes are maintained with the original sample 
value, which has been referred to as conditional Gaussian simulation 
(Aerts et al., 2003). A data transformation process will be required if a 
dataset does not follow a Gaussian distribution because sequential 
Gaussian simulation is only applicable to a dataset that follows a 
Gaussian distribution (Deutsch and Journel, 1998). 

Additionally, if prior knowledge for the spatial structure of uncer-
tainty in a quantitative raster dataset can be obtained from surveys or 
higher accuracy datasets, the three-parameter method (Ehlschlaeger 
et al., 1997) is useful to reflect this prior knowledge. Whereas only one 
parameter is available in pixel swapping and a spatial autoregressive 
model, this three-parameter method is superior for generating random 

fields with the mean and standard deviation under Gaussian distribu-
tion, and spatial autocorrelation (Wechsler, 2007). Other studies (Hengl 
et al., 2010; Fisher, 1998; Holmes et al., 2000) discuss further pertur-
bation propagation for quantitative raster datasets and have imple-
mented them in real-world applications. 

Perturbation propagation for categorical raster datasets has received 
less attention than those for quantitative raster datasets (Crosetto and 
Tarantola, 2001). Generally, the selection of the method for categorical 
raster datasets relies on the method of dataset generation. When a cat-
egorical raster dataset (e.g., for LULC and soil data) is generated using a 
fuzzy classification method of satellite images, individual pixels include 
uncertainty information of the classification result such as probability or 
membership vectors (Lucieer and Kraak, 2004). This type of uncertainty 
information can directly be applied to Monte Carlo simulation-based SA. 
When a conventional classification method is used for raster data gen-
eration, the confusion matrix (i.e., error matrix) is available for SA, 
which is a cross-tabulation of the classified raster against reference 
samples to estimate classification accuracy. The confusion matrix based 
perturbation propagation is fully discussed in (Heuvelink, 1998; Fisher, 
1991b). However, the confusion matrix might be limited in representing 
the spatial structure of uncertainty (Comber et al., 2012). In addition, 
perturbation propagation for vector datasets can also be applied for 
categorical raster datasets, mainly to represent their positional uncer-
tainty (Kiiveri, 1997; Shi, 1998). The details of perturbation propagation 
will be discussed with that for vector datasets in Section 5.3. 

5.3. Vector datasets 

Vector datasets, including the case of site-specific measurements, 
mainly have two major potential uncertainty sources - attribute and 
positional uncertainties (Koo et al., 2018a; ANSI, 1998). Attribute un-
certainty results from sampling and measurement errors. Thus, pertur-
bation propagation can be simply a probability distribution function 
derived from the descriptive statistics of potential attribute uncertainty. 
If the attributes of geographical features in vector datasets are spatially 
autocorrelated, pixel swapping (Goodchild and Openshaw, 1980) and a 
spatial autoregressive model (Anselin, 1995) are useful to describe the 
spatial structure of attribute uncertainty. For example, with a spatial 
autoregressive model, a random vector (i.e., ε) is generated from the 
descriptive statistics of attribute uncertainty, and spatial structures are 
described by a spatial weights matrix (i.e., W) of geographical features 
and predefined spatial autocorrelation level (i.e., ρ) as we described in 
the previous Section 5.2. 

Propagating perturbations for positional uncertainty in vector data-
sets has been one of the major focuses in spatial data quality research 
groups (Devillers et al., 2010). The geometric features of vector datasets 
are generally classified as point, line and polygon. However, in the 
context of modeling positional uncertainty, a polygon is considered as a 
closed line (Shi, 1998). According to the latter, perturbation propaga-
tion is discussed in two general feature types - point and line. 

Error ellipses constitute a common method for propagating pertur-
bations of point features (Dutton, 1992; Stanislawski et al., 1996; 
Goodchild, 1991), where x-y coordinates follow a two-dimensional 
extension of a probability distribution function on individual points. 
For positional uncertainty representation, a normal distribution can be 
simply used for the probability distribution (Goodchild, 1991; Wolf and 
Ghilani, 1997), but a log-normal distribution, a mixture of bivariate t 
distributions (Zimmerman et al., 2007), and a chi-square distribution 
(Griffith et al., 2007) have also been suggested (Karimi et al., 2004; Koo 
et al., 2018c). Positional uncertainties of point features are usually 
considered independent, though possibly spatially autocorrelated. If 
independent, error ellipses can be directly applicable to their selected 
probability distributions. However, if positional uncertainties of indi-
vidual point features are dependent and spatially autocorrelated, addi-
tional stochastic techniques (e.g., a spatial autoregressive model) are 
required to represent their dependence structure. In particular, the 
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source of point features (e.g., GPS, geocoding, and LiDAR) is the 
important criterion to select a proper probability distribution and in-
dependence between positional uncertainty (Zandbergen, 2008). For 
example, positional inaccuracy and its empirical distribution of GPS 
have been regularly reported by the Federal Aviation Administration, 
and its accuracy is generally reliable and independent regardless of 
study areas. However, the positional uncertainty of geocoded points 
varies and is dependent on the locations of geocoded points (Koo et al., 
2018c). 

Perturbation propagation for positional uncertainty of line features is 
more complex than that of point features because the former consists of 
a set of the propagations for individual point features (Shi, 1998; Shi 
et al., 2014). Similar to error ellipses for point features, the epsilon band 
is a typical method to represent positional uncertainty of line features 
(Crosetto and Tarantola, 2001; Shi, 1998), which defines an error band 
of a boundary using a constant distance for both sides of lines. However, 
the epsilon band does not represent spatial structures of positional un-
certainty between individual point features on a line feature. Specif-
ically, point features that are located relatively midway on a line 
segment have generally smaller positional uncertainty than that of 
endpoints (Shi, 1998), and positional uncertainty of individual point 
features are also often spatially autocorrelated (Tong et al., 2013). Thus, 
under the assumption that the positional uncertainties at both endpoints 
are independent, and the amount of positional uncertainty varies by 
their location, perturbation propagation is offered (Shi, 1998). 
Furthermore, a stochastic process-based model has been proposed for 
considering spatial autocorrelation between points (Shi and Liu, 2000). 
Recently, entropy-based models (Gong and Li, 2011) and the statistical 
simulation error model (Tong et al., 2013) have offered alternatives for 
perturbation propagation for positional uncertainty of line features. 

5.4. Model uncertainty 

Quantification of model uncertainty is challenging and is a subject of 
ongoing research (O’Hagan, 2012). Additionally, quantitative methods 
alone cannot address all aspects of model uncertainty as there are 
qualitative sources that cannot be quantified and arise from the sub-
jective judgment and biases of the modelers (and stakeholders) (Chen 
et al., 2007). Thus, model uncertainty can also be explained based on 
qualitative (e.g., expert assessment) rather than quantitative evaluation 
(Uusitalo et al., 2015). That said, a qualitative evaluation may be suf-
ficient for the model purpose when its evaluators are well-informed. For 
instance, several solver types are compared by adjusting convergence 
criteria to evaluate the impact of model solution precision (Ahlfeld and 
Hoque, 2008). Similarly, different model formulations, resolutions and 
solvers are explored for model uncertainty investigation (Farthing et al., 
2012). Evaluating the uncertainty caused by model integration is also 
difficult using quantitative methods due to a lack of proper perturbation 
propagation (Voinov and Shugart, 2013; Tscheikner-Gratl et al., 2019; 
Voinov and Cerco, 2010). 

The resolution of spatial datasets has been used as one source to 
explore model uncertainty (Trusel et al., 2015). An SD-EM generally 
uses predefined sources of spatial datasets, for example, SRTM for DEM, 
and the impact of spatial dataset resolution is often investigated by 
comparing several spatial datasets with different resolutions. Thus, the 
resolutions of DEM, LULC and soil datasets can show a significant impact 
on SD-EM outputs (Chaubey et al., 2005; Dixon and Earls, 2009; Lin 
et al., 2013c; Kumar and Merwade, 2009). Generally, finer resolutions of 
spatial datasets lead to more accurate model outputs (Shen et al., 2013) 
but longer model evaluation time, and furthermore, the uncertainties 
arising from the resolutions of spatial datasets can be compensated for 
when different types of spatial datasets are utilized (Shen et al., 2015). 

However, Monte Carlo simulation-based SA requires propagating 
perturbations for individual input factors with their plausible ranges and 
sometimes probability distribution assumptions. Adding a systematic or 
random model error at model runtime is suggested to assess 

perturbation propagation (Marin et al., 2003); however, the method 
could not differentiate the sources of uncertainties because the added 
errors include both input and model uncertainties. Adding systematic 
errors directly in the model structure might be an alternative to adding 
errors into model runtime. For example, general perturbation propaga-
tion is provided for state-parameter estimation based on recursive and 
batch estimation (Beck, 1987). Another frequently used strategy for 
model uncertainty exploration is adjusting parameters that relate to 
model structures (Koo et al., 2020; Yen et al., 2014; Wagener et al., 
2003). However, this strategy is not applicable when the model pa-
rameters are discrete and have limited options. Recently, Koo et al. 
(2020) explored model structure uncertainty using SA by adjusting the 
level of spatial discretization, which could provide another solution for 
taking model uncertainty into account in SA. 

6. SA evaluation and post-processing 

6.1. Assessing convergence and credibility 

The convergence of SA measures needs to be assessed because SA 
measures sometimes are not constant and vary with sample sizes, 
especially when they are obtained from smaller sample sizes than 
required sizes suggested in the literature (Sarrazin et al., 2016; Van-
rolleghem et al., 2015). Two methods are generally utilized to evaluate 
the convergence of SA measures, which are based on the central limit 
theorem (CLT) and the bootstrapping technique (Yang, 2011). Accord-
ing to the CLT, the sample mean of a distribution with mean (μ) and 
standard deviation (σ) approaches a normal distribution with mean μ 
and standard deviation σ/n with increasing sample size (n). The CLT 
based-method calculates SA measures R times using different sets of 
sub-samples, and compares its mean and standard deviation using 
gradually increasing sizes of sub-samples. The convergence of an SA 
measure could be regarded as achieved when the coefficient of variation 
(σ/μ) does not show a significant change. Bootstrapping uses 
sub-samples from the original samples, and then compares SA measures 
derived from the sub-samples to the original SA measures. The advan-
tage of the bootstrapping technique is that there is no requirement for 
additional simulation, but the convergence rate could be overestimated 
(i.e., underestimation of uncertainty) when the sub-samples are strongly 
dependent on the original samples. In addition, a convergence test could 
be performed by analyzing SA measures obtained from different 
numbers of Monte Carlo simulations (Vanrolleghem et al., 2015). 

The number of required samples for a convergence test differs ac-
cording to the purpose, type(s) of SA applied and the characteristics of 
the environmental model (Sarrazin et al., 2016). SA for screening pur-
poses generally requires a smaller sample size for a convergence test 
than that for ranking. Similarly, the required number of samples for 
convergence is typically the largest in variance-based SA, and signifi-
cantly smaller for the Morris method and local SA methods (Campo-
longo et al., 2007). In variance-based SA methods, SA measures for the 
main effect converge faster than those for the total effect (Sarrazin et al., 
2016; Nossent et al., 2011). The characteristics of the environmental 
models, and its related study area processes and data, also influence 
convergence rate so that there is no clear relationship between the 
number of input factors and the required sample size (Sarrazin et al., 
2016). 

Finally, the reliability and credibility of SA measures should be 
assessed. The reliability and credibility are obtained by verifying that 
the underlying assumptions and conditions of the SA are satisfied in a 
target environmental model (Pianosi et al., 2016). For example, linear 
regression assumes a linear relationship in model response, which might 
well be inappropriate for the model with a non-linear response. Addi-
tionally, the SA results obtained could be biased due to use of implau-
sible perturbation propagation and missing input factors. Another check 
is conducting the SA with different SA methods. The reliability of SA 
results could be regarded as being enhanced if there is a consensus 
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among different methods. If the SA results are contradictory, it en-
courages further investigations to discover various aspects of model 
behaviors that are captured from different SA methods (Pappenberger 
et al., 2008; Paleari and Confalonieri, 2016). 

6.2. Visualizing SA measures 

Effective visualization methods help to increase understanding and 
interpretation of SA measures and their relationships to input factors, 
being especially valuable when SA measures are associated with a large 
number of input factors. Specifically, visualizing SA results helps in 
achieving the general purposes of SA by finding and ordering the critical 
input factors. Visualization also supports the discovery of counterintu-
itive SA results, which could lead to unearthing new aspects of model 
behavior, or revising our SA processes, for example, adding missing 
uncertainty sources and re-propagating perturbation methods. When 
revising SA processes, the visualization helps to compare SA results 
under various conditions, such as different ranges and theoretical as-
sumptions of perturbation propagation. Furthermore, in SD-EMs, spatial 
and temporal patterns in SA measures could be revealed through visu-
alization methods (Pianosi et al., 2016). 

Simply, the relationship between input factors and their corre-
sponding outputs are typically visualized using scatter plots, colored 
scatter plots, and parallel coordinate plots. Specifically, scatter plots 
demonstrate the relationship between model output with one input 
(Fig. 3-A), while colored scatter plots typically show the relationship of 
model output with two input factors (Fig. 3-B). Thus, scatter plots and 
colored scatter plots are useful for screening and ranking input factors. 
Parallel coordinate plots show distributions of input factors and outputs 
(Fig. 3-C), which can highlight patterns using colors and/or dynamic 
linking and brushing (Ge et al., 2009; Koo et al., 2018b; Symanzik et al., 
2000). Violin plots are also useful to visualize the distributions of input 

factors and outputs (Hintze and Nelson, 1998) whose relationship could 
be emphasized using dynamic linking and brushings. Further examples 
of general scientific visualization methods for SA are suggested in Pia-
nosi et al. (2016) and Kelleher and Wagener (2011). 

Some SA methods are effectively represented using their own specific 
visualization methods. For instance, Morris method results are repre-
sented using scatter plots of the absolute means of elementary effects 
against their standard deviations for individual input factors (Fig. 3-D), 
where both the relative importance of each input factor and their in-
teractions are highlighted. Local SA, and also correlation and regression- 
based SA methods, utilize general scatter plots of input factors against 
outputs. Additionally, a regression coefficient plot can be applicable for 
regression-based SA results (Fig. 3-E). A regression coefficient plot is a 
scatter plot of an estimated coefficient with lines indicating standard 
errors, which effectively show the relative importance of individual 
input factors and compare changes of regression coefficients in SA re-
sults under different conditions. Visualization of variance-based SA 
methods is sometimes difficult because it requires a simultaneous rep-
resentation of multiple SA measures for main and total effects. A simple 
and general method for such visualization is using a stacked bar plot for 
individual input factors with main and total effects (Fig. 3-F). Recently, 
Circos (Kelleher et al., 2013) and radial convergence diagrams (Butler 
et al., 2014) were developed to effectively visualize the main and total 
effects of multiple SA measures. 

In an SD-EM, because all the uncertainty sources could make 
different contributions to the spatially varying outputs, geographical 
visualization of spatially variable SA measures and their spatial analysis 
can enhance understanding of spatial aspects in SA measures (Chen 
et al., 2010). When SA measures are represented in a discrete object 
approach (e.g., vector datasets), they can be simply displayed by using 
pie-chart data series in multivariate map compositions (Feick and Hall, 
2004) and effectively visualize the relative sensitivities of all associated 

Fig. 3. Visualization methods for SA (X1 to X5 denotes input factors and SA signals a certain SA measure). (A) Scatter plot, (B) colored scatter plot, (C) parallel 
coordinate plot, (D) Morris plot, (E) regression coefficient plot, and (F) stacked bar plot. 
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input factors at different locations (Fig. 4-A). Additionally, other 
multivariate mapping techniques, for example, bar chart, ray-glyphs, 
and snowflake (Fig. 4-B) (Slocum et al., 2009), can also be applicable 
for geographical visualization of SA measures. If SA measures are 
associated with a continuous field approach (e.g., raster datasets), using 
multiple choropleth maps (i.e., small multiple for multivariate) of sen-
sitivities for individual input factors is a useful approach (Chen et al., 
2010; Xu and Zhang, 2013) (Fig. 4-C). However, the classification 
schemes of multiple choropleth maps should be carefully selected to 
compare input factors on different choropleth maps (Slocum et al., 
2009). Furthermore, spatial analysis of SA measures, for example, 
applying univariate spatial autocorrelation measures and/or 
semi-variograms for individual input factors, or multivariate spatial 
autocorrelation measures (Anselin, 2019), may offer further elucida-
tions for the spatial distribution of SA measures. 

7. An example of the framework with SWAT 

This section illustrates the SA framework applied to a widely used 
SD-EM, the Soil and Water Assessment Tool (SWAT) (Neitsch et al., 
2011; Zhang et al., 2019), based on an extension of the SA applied in 
(Koo et al., 2020). Following the framework, the first step is uncertainty 
source identification. The application of SWAT can be divided into three 
sub-models: the watershed delineation model, the HRU (hydrological 
response units) generation model for preprocessing, and the SWAT 
model for the prediction of water quantity and quality. 

Most studies focus on the model parameters related to the execution 
of SWAT, as these are often considered the main sources of uncertainty 
(Yang et al., 2015). There are, however, other parameters associated 
with the preprocessing of SWAT submodels to be considered, which may 
have profound effects on the spatial discretization and resolution 
(watershed and HRUs) used in the model (Ray, 2018). These pre-
processing parameters should be treated as input factors in an SA, which 
then aids in identifying, for example, minimum percentages of LULC and 
soil classes in order to eliminate inappropriately small HRUs. Exploring 
uncertainty in these parameters partially addresses uncertainties in 
model structure and resolution. 

SWAT requires input raster datasets of DEMs, LULC, soil datasets, 
and vector datasets of meteorological information on monitoring sta-
tions, and optionally predefined stream networks. These datasets pro-
vide fundamental information for describing the characteristics of an 
underlying watershed (Shen et al., 2015). As discussed in Section 3.2, 
DEMs involve both resolution and random and systematic measurement 
uncertainties. LULC and soil datasets possess resolution and positional 

uncertainty. Meteorological information, being site-specific, can have 
positional uncertainty, as well as attribute uncertainty in its measure-
ment. Importantly, measurement uncertainty in both raster and vector 
datasets should take account of its spatial structure (i.e., spatial auto-
correlation). Although stream networks used in SWAT do not include 
attribute information and its related uncertainty, the scale and posi-
tional uncertainty of a stream network would have significant impacts 
on the scale and shape of a watershed, respectively, and should be 
considered in SA (Koo et al., 2020). 

The second step is selection of the SA method based on the purposes 
of the SA and the characteristics of the SWAT model. The purpose of SA 
can be different for different users, but generally SWAT applications 
include many uncertainty sources (e.g., hundreds of SWAT model pa-
rameters). Thus, reducing the number of input factors through screening 
methods is recommended prior to ranking. Related to the SWAT char-
acteristics, local SA, Pearson’s correlation, and linear regression-based 
SA methods are inadequate because input factors in SWAT are interde-
pendent and generally interact with one other. Variance-based SA 
methods are often utilized in SWAT applications (Zadeh et al., 2017). If 
holistic uncertainty sources in SWAT are to be evaluated through SA 
then variance-based SA methods may be unsuitable due to their rela-
tively high computational costs (Razavi and Gupta, 2015). Use of the 
Morris method and rank regression, or implementing an emulator 
instead of SWAT (Yang et al., 2015) would therefore be recommended. 

The third step is perturbation propagation for individual input fac-
tors. Plausible ranges and assumed probability distributions for SWAT 
model parameters can be found in the SWAT model calibration literature 
(Yang et al., 2018; Abbaspour, 2015). As the DEM consists of a huge 
number of grids, pixel swapping and a spatial autoregressive model 
might be undesirable due to their high computational costs. Thus, 
spatial moving average and sequential Gaussian simulation are sug-
gested approaches for propagate perturbations. For LULC and soil 
datasets, if their confusion matrices exist, using these matrices would 
provide credible values to propagate, although they cannot represent the 
spatial structure of uncertainty. If confusion matrices do not exist, 
simple epsilon bands or other methods for a line feature type could be 
applicable. 

Meteorological information on monitoring stations and predefined 
stream networks could utilize perturbation propagation for vector 
datasets. The perturbation of position in meteorological information can 
be propagated using error ellipses, and its attributes can be propagated 
using a spatial autoregressive model. Positional uncertainty of stream 
networks can be propagated through simple epsilon bands or other 
methods for a line feature type. If the precision of stream networks is 

Fig. 4. Geographical visualization of spatially variable SA measures (A) pie-charts on a map, (B) snowflake, and (C) multiple choropleth maps.  
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subjected to SA, a stream network can be generated directly from a DEM 
using a GIS operation, and its impact can be evaluated by adjusting a 
model parameter for the GIS operation to designate drainage to a stream 
network (Koo et al., 2020). 

The final step is SA evaluation and post-processing. In this example, 
the Morris method and rank regression were the SA methods applied to 
the SWAT model (in the second step). Thus, the SA result of the Morris 
method could be visualized via scatter plots for absolute means of 
elementary effects against their standard deviations, and rank regression 
could be represented using scatter plots and regression coefficient plots. 
If spatially varying SA results are of interest, for example, QoIs at the 
outlet of sub-watersheds, pie charts could be used to display the pro-
portional influence of input factors at different locations (See Fig. 4-A) 
(Feick and Hall, 2004). The convergence of the SA measures should 
additionally be assessed, as should any dependence of sensitivity results 
on the climatic forcing as it changes through the period on interest. 

8. Conclusions 

This article presents a pragmatic framework for the application of 
sensitivity analysis (SA) to a spatially distributed environmental model 
(SD-EM). The suggested framework for SA consists of four general steps: 
potential uncertainty source identification, selection of SA method and 
predictive quantities of interest, perturbation propagation, and SA 
evaluation and post-processing. This framework also provides useful 
background and general guidance on applying SA to other areas of 
environmental modeling and related GIS communities. More specif-
ically, the framework can be used to assist in identifying potential un-
certainty sources and their corresponding uncertainty classification 
scheme, choosing an appropriate SA method according to the SA pur-
pose(s) and model characteristics, propagating perturbations with 
plausible ranges and assumptions, and verifying SA measures using 
visualization methods, convergence and reliability tests. 

In particular, it provides guidance on the assessment and treatment 
of uncertainty sources related to spatial datasets, including positional 
and attribute uncertainty, and on widely utilized perturbation propa-
gation methods that take account of the spatial structure of potential 
uncertainty in those spatial datasets. The framework includes guidance 
on methods for analyzing SA results involving multiple outputs and their 
visualization, which could offer efficient ways to handle spatially 
distributed SA measures. The framework should, therefore, be helpful in 
incorporating the uncertainty of spatial components in SD-EMs into a 
general SA process, along with the usual model parameters and other 
input factors that SA commonly evaluates. Furthermore, we expect that 
model structure uncertainty related to the scales, boundaries, and dis-
cretization of spatial datasets could be addressed through this frame-
work, and provide concrete support for further uncertainty analysis. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The primary idea of this manuscript was discussed during two 
workshops in Nanjing (May 2019) and Canberra (December 2019), and 
the manuscript was drafted through several Zoom meetings. This work 
was supported by the Key Project of NSF of China (Grant 41930648), the 
NSF for Excellent Young Scholars of China (Grant 41622108), National 
Key Research and Development Program of China (Grant 
2017YFB0503500), the Australian Government Research Training Pro-
gram (AGRTP) Scholarship and a top-up scholarship from the ANU 
Hilda-John Endowment Fund, and the Priority Academic Program 
Development of Jiangsu Higher Education Institutions (Grant 

164320H116). 

References 

Abbaspour, K.C., 2015. SWAT Calibration and Uncertainty Programs—A User Manual. 
Swiss Federal Institute of Aquatic Science and Technology: Eawag, Switzerland.  

Aerts, J.C., Goodchild, M.F., Heuvelink, G.B., 2003. Accounting for spatial uncertainty in 
optimization with spatial decision support systems. Trans. GIS 7 (2), 211–230. 

Ahlfeld, D.P., Hoque, Y., 2008. Impact of simulation model solver performance on 
ground water management problems. Ground Water 46 (5), 716–726. 

Anselin, L., 1995. Local indicators of spatial association—LISA. Geogr. Anal. 27 (2), 
93–115. 

Anselin, L., 2005. Spatial Regression Analysis in R: A Workbook. University of Illinois, 
Urbana, IL.  

Anselin, L., 2019. A local indicator of multivariate spatial association: extending Geary’s 
C. Geogr. Anal. 51 (2), 133–150. 

Ansi (American National Standards Institute), 1998. Spatial Data Transfer Standard 
(SDTS) - Part 1. Logical Specifications. ANSI NCITS 320-1998. Washington, DC. 
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subjected to SA, a stream network can be generated directly from a DEM 
using a GIS operation, and its impact can be evaluated by adjusting a 
model parameter for the GIS operation to designate drainage to a stream 
network (Koo et al., 2020). 

The final step is SA evaluation and post-processing. In this example, 
the Morris method and rank regression were the SA methods applied to 
the SWAT model (in the second step). Thus, the SA result of the Morris 
method could be visualized via scatter plots for absolute means of 
elementary effects against their standard deviations, and rank regression 
could be represented using scatter plots and regression coefficient plots. 
If spatially varying SA results are of interest, for example, QoIs at the 
outlet of sub-watersheds, pie charts could be used to display the pro-
portional influence of input factors at different locations (See Fig. 4-A) 
(Feick and Hall, 2004). The convergence of the SA measures should 
additionally be assessed, as should any dependence of sensitivity results 
on the climatic forcing as it changes through the period on interest. 

8. Conclusions 

This article presents a pragmatic framework for the application of 
sensitivity analysis (SA) to a spatially distributed environmental model 
(SD-EM). The suggested framework for SA consists of four general steps: 
potential uncertainty source identification, selection of SA method and 
predictive quantities of interest, perturbation propagation, and SA 
evaluation and post-processing. This framework also provides useful 
background and general guidance on applying SA to other areas of 
environmental modeling and related GIS communities. More specif-
ically, the framework can be used to assist in identifying potential un-
certainty sources and their corresponding uncertainty classification 
scheme, choosing an appropriate SA method according to the SA pur-
pose(s) and model characteristics, propagating perturbations with 
plausible ranges and assumptions, and verifying SA measures using 
visualization methods, convergence and reliability tests. 

In particular, it provides guidance on the assessment and treatment 
of uncertainty sources related to spatial datasets, including positional 
and attribute uncertainty, and on widely utilized perturbation propa-
gation methods that take account of the spatial structure of potential 
uncertainty in those spatial datasets. The framework includes guidance 
on methods for analyzing SA results involving multiple outputs and their 
visualization, which could offer efficient ways to handle spatially 
distributed SA measures. The framework should, therefore, be helpful in 
incorporating the uncertainty of spatial components in SD-EMs into a 
general SA process, along with the usual model parameters and other 
input factors that SA commonly evaluates. Furthermore, we expect that 
model structure uncertainty related to the scales, boundaries, and dis-
cretization of spatial datasets could be addressed through this frame-
work, and provide concrete support for further uncertainty analysis. 
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input factors at different locations (Fig. 4-A). Additionally, other 
multivariate mapping techniques, for example, bar chart, ray-glyphs, 
and snowflake (Fig. 4-B) (Slocum et al., 2009), can also be applicable 
for geographical visualization of SA measures. If SA measures are 
associated with a continuous field approach (e.g., raster datasets), using 
multiple choropleth maps (i.e., small multiple for multivariate) of sen-
sitivities for individual input factors is a useful approach (Chen et al., 
2010; Xu and Zhang, 2013) (Fig. 4-C). However, the classification 
schemes of multiple choropleth maps should be carefully selected to 
compare input factors on different choropleth maps (Slocum et al., 
2009). Furthermore, spatial analysis of SA measures, for example, 
applying univariate spatial autocorrelation measures and/or 
semi-variograms for individual input factors, or multivariate spatial 
autocorrelation measures (Anselin, 2019), may offer further elucida-
tions for the spatial distribution of SA measures. 

7. An example of the framework with SWAT 

This section illustrates the SA framework applied to a widely used 
SD-EM, the Soil and Water Assessment Tool (SWAT) (Neitsch et al., 
2011; Zhang et al., 2019), based on an extension of the SA applied in 
(Koo et al., 2020). Following the framework, the first step is uncertainty 
source identification. The application of SWAT can be divided into three 
sub-models: the watershed delineation model, the HRU (hydrological 
response units) generation model for preprocessing, and the SWAT 
model for the prediction of water quantity and quality. 

Most studies focus on the model parameters related to the execution 
of SWAT, as these are often considered the main sources of uncertainty 
(Yang et al., 2015). There are, however, other parameters associated 
with the preprocessing of SWAT submodels to be considered, which may 
have profound effects on the spatial discretization and resolution 
(watershed and HRUs) used in the model (Ray, 2018). These pre-
processing parameters should be treated as input factors in an SA, which 
then aids in identifying, for example, minimum percentages of LULC and 
soil classes in order to eliminate inappropriately small HRUs. Exploring 
uncertainty in these parameters partially addresses uncertainties in 
model structure and resolution. 

SWAT requires input raster datasets of DEMs, LULC, soil datasets, 
and vector datasets of meteorological information on monitoring sta-
tions, and optionally predefined stream networks. These datasets pro-
vide fundamental information for describing the characteristics of an 
underlying watershed (Shen et al., 2015). As discussed in Section 3.2, 
DEMs involve both resolution and random and systematic measurement 
uncertainties. LULC and soil datasets possess resolution and positional 

uncertainty. Meteorological information, being site-specific, can have 
positional uncertainty, as well as attribute uncertainty in its measure-
ment. Importantly, measurement uncertainty in both raster and vector 
datasets should take account of its spatial structure (i.e., spatial auto-
correlation). Although stream networks used in SWAT do not include 
attribute information and its related uncertainty, the scale and posi-
tional uncertainty of a stream network would have significant impacts 
on the scale and shape of a watershed, respectively, and should be 
considered in SA (Koo et al., 2020). 

The second step is selection of the SA method based on the purposes 
of the SA and the characteristics of the SWAT model. The purpose of SA 
can be different for different users, but generally SWAT applications 
include many uncertainty sources (e.g., hundreds of SWAT model pa-
rameters). Thus, reducing the number of input factors through screening 
methods is recommended prior to ranking. Related to the SWAT char-
acteristics, local SA, Pearson’s correlation, and linear regression-based 
SA methods are inadequate because input factors in SWAT are interde-
pendent and generally interact with one other. Variance-based SA 
methods are often utilized in SWAT applications (Zadeh et al., 2017). If 
holistic uncertainty sources in SWAT are to be evaluated through SA 
then variance-based SA methods may be unsuitable due to their rela-
tively high computational costs (Razavi and Gupta, 2015). Use of the 
Morris method and rank regression, or implementing an emulator 
instead of SWAT (Yang et al., 2015) would therefore be recommended. 

The third step is perturbation propagation for individual input fac-
tors. Plausible ranges and assumed probability distributions for SWAT 
model parameters can be found in the SWAT model calibration literature 
(Yang et al., 2018; Abbaspour, 2015). As the DEM consists of a huge 
number of grids, pixel swapping and a spatial autoregressive model 
might be undesirable due to their high computational costs. Thus, 
spatial moving average and sequential Gaussian simulation are sug-
gested approaches for propagate perturbations. For LULC and soil 
datasets, if their confusion matrices exist, using these matrices would 
provide credible values to propagate, although they cannot represent the 
spatial structure of uncertainty. If confusion matrices do not exist, 
simple epsilon bands or other methods for a line feature type could be 
applicable. 

Meteorological information on monitoring stations and predefined 
stream networks could utilize perturbation propagation for vector 
datasets. The perturbation of position in meteorological information can 
be propagated using error ellipses, and its attributes can be propagated 
using a spatial autoregressive model. Positional uncertainty of stream 
networks can be propagated through simple epsilon bands or other 
methods for a line feature type. If the precision of stream networks is 

Fig. 4. Geographical visualization of spatially variable SA measures (A) pie-charts on a map, (B) snowflake, and (C) multiple choropleth maps.  
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among different methods. If the SA results are contradictory, it en-
courages further investigations to discover various aspects of model 
behaviors that are captured from different SA methods (Pappenberger 
et al., 2008; Paleari and Confalonieri, 2016). 

6.2. Visualizing SA measures 

Effective visualization methods help to increase understanding and 
interpretation of SA measures and their relationships to input factors, 
being especially valuable when SA measures are associated with a large 
number of input factors. Specifically, visualizing SA results helps in 
achieving the general purposes of SA by finding and ordering the critical 
input factors. Visualization also supports the discovery of counterintu-
itive SA results, which could lead to unearthing new aspects of model 
behavior, or revising our SA processes, for example, adding missing 
uncertainty sources and re-propagating perturbation methods. When 
revising SA processes, the visualization helps to compare SA results 
under various conditions, such as different ranges and theoretical as-
sumptions of perturbation propagation. Furthermore, in SD-EMs, spatial 
and temporal patterns in SA measures could be revealed through visu-
alization methods (Pianosi et al., 2016). 

Simply, the relationship between input factors and their corre-
sponding outputs are typically visualized using scatter plots, colored 
scatter plots, and parallel coordinate plots. Specifically, scatter plots 
demonstrate the relationship between model output with one input 
(Fig. 3-A), while colored scatter plots typically show the relationship of 
model output with two input factors (Fig. 3-B). Thus, scatter plots and 
colored scatter plots are useful for screening and ranking input factors. 
Parallel coordinate plots show distributions of input factors and outputs 
(Fig. 3-C), which can highlight patterns using colors and/or dynamic 
linking and brushing (Ge et al., 2009; Koo et al., 2018b; Symanzik et al., 
2000). Violin plots are also useful to visualize the distributions of input 

factors and outputs (Hintze and Nelson, 1998) whose relationship could 
be emphasized using dynamic linking and brushings. Further examples 
of general scientific visualization methods for SA are suggested in Pia-
nosi et al. (2016) and Kelleher and Wagener (2011). 

Some SA methods are effectively represented using their own specific 
visualization methods. For instance, Morris method results are repre-
sented using scatter plots of the absolute means of elementary effects 
against their standard deviations for individual input factors (Fig. 3-D), 
where both the relative importance of each input factor and their in-
teractions are highlighted. Local SA, and also correlation and regression- 
based SA methods, utilize general scatter plots of input factors against 
outputs. Additionally, a regression coefficient plot can be applicable for 
regression-based SA results (Fig. 3-E). A regression coefficient plot is a 
scatter plot of an estimated coefficient with lines indicating standard 
errors, which effectively show the relative importance of individual 
input factors and compare changes of regression coefficients in SA re-
sults under different conditions. Visualization of variance-based SA 
methods is sometimes difficult because it requires a simultaneous rep-
resentation of multiple SA measures for main and total effects. A simple 
and general method for such visualization is using a stacked bar plot for 
individual input factors with main and total effects (Fig. 3-F). Recently, 
Circos (Kelleher et al., 2013) and radial convergence diagrams (Butler 
et al., 2014) were developed to effectively visualize the main and total 
effects of multiple SA measures. 

In an SD-EM, because all the uncertainty sources could make 
different contributions to the spatially varying outputs, geographical 
visualization of spatially variable SA measures and their spatial analysis 
can enhance understanding of spatial aspects in SA measures (Chen 
et al., 2010). When SA measures are represented in a discrete object 
approach (e.g., vector datasets), they can be simply displayed by using 
pie-chart data series in multivariate map compositions (Feick and Hall, 
2004) and effectively visualize the relative sensitivities of all associated 

Fig. 3. Visualization methods for SA (X1 to X5 denotes input factors and SA signals a certain SA measure). (A) Scatter plot, (B) colored scatter plot, (C) parallel 
coordinate plot, (D) Morris plot, (E) regression coefficient plot, and (F) stacked bar plot. 
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source of point features (e.g., GPS, geocoding, and LiDAR) is the 
important criterion to select a proper probability distribution and in-
dependence between positional uncertainty (Zandbergen, 2008). For 
example, positional inaccuracy and its empirical distribution of GPS 
have been regularly reported by the Federal Aviation Administration, 
and its accuracy is generally reliable and independent regardless of 
study areas. However, the positional uncertainty of geocoded points 
varies and is dependent on the locations of geocoded points (Koo et al., 
2018c). 

Perturbation propagation for positional uncertainty of line features is 
more complex than that of point features because the former consists of 
a set of the propagations for individual point features (Shi, 1998; Shi 
et al., 2014). Similar to error ellipses for point features, the epsilon band 
is a typical method to represent positional uncertainty of line features 
(Crosetto and Tarantola, 2001; Shi, 1998), which defines an error band 
of a boundary using a constant distance for both sides of lines. However, 
the epsilon band does not represent spatial structures of positional un-
certainty between individual point features on a line feature. Specif-
ically, point features that are located relatively midway on a line 
segment have generally smaller positional uncertainty than that of 
endpoints (Shi, 1998), and positional uncertainty of individual point 
features are also often spatially autocorrelated (Tong et al., 2013). Thus, 
under the assumption that the positional uncertainties at both endpoints 
are independent, and the amount of positional uncertainty varies by 
their location, perturbation propagation is offered (Shi, 1998). 
Furthermore, a stochastic process-based model has been proposed for 
considering spatial autocorrelation between points (Shi and Liu, 2000). 
Recently, entropy-based models (Gong and Li, 2011) and the statistical 
simulation error model (Tong et al., 2013) have offered alternatives for 
perturbation propagation for positional uncertainty of line features. 

5.4. Model uncertainty 

Quantification of model uncertainty is challenging and is a subject of 
ongoing research (O’Hagan, 2012). Additionally, quantitative methods 
alone cannot address all aspects of model uncertainty as there are 
qualitative sources that cannot be quantified and arise from the sub-
jective judgment and biases of the modelers (and stakeholders) (Chen 
et al., 2007). Thus, model uncertainty can also be explained based on 
qualitative (e.g., expert assessment) rather than quantitative evaluation 
(Uusitalo et al., 2015). That said, a qualitative evaluation may be suf-
ficient for the model purpose when its evaluators are well-informed. For 
instance, several solver types are compared by adjusting convergence 
criteria to evaluate the impact of model solution precision (Ahlfeld and 
Hoque, 2008). Similarly, different model formulations, resolutions and 
solvers are explored for model uncertainty investigation (Farthing et al., 
2012). Evaluating the uncertainty caused by model integration is also 
difficult using quantitative methods due to a lack of proper perturbation 
propagation (Voinov and Shugart, 2013; Tscheikner-Gratl et al., 2019; 
Voinov and Cerco, 2010). 

The resolution of spatial datasets has been used as one source to 
explore model uncertainty (Trusel et al., 2015). An SD-EM generally 
uses predefined sources of spatial datasets, for example, SRTM for DEM, 
and the impact of spatial dataset resolution is often investigated by 
comparing several spatial datasets with different resolutions. Thus, the 
resolutions of DEM, LULC and soil datasets can show a significant impact 
on SD-EM outputs (Chaubey et al., 2005; Dixon and Earls, 2009; Lin 
et al., 2013c; Kumar and Merwade, 2009). Generally, finer resolutions of 
spatial datasets lead to more accurate model outputs (Shen et al., 2013) 
but longer model evaluation time, and furthermore, the uncertainties 
arising from the resolutions of spatial datasets can be compensated for 
when different types of spatial datasets are utilized (Shen et al., 2015). 

However, Monte Carlo simulation-based SA requires propagating 
perturbations for individual input factors with their plausible ranges and 
sometimes probability distribution assumptions. Adding a systematic or 
random model error at model runtime is suggested to assess 

perturbation propagation (Marin et al., 2003); however, the method 
could not differentiate the sources of uncertainties because the added 
errors include both input and model uncertainties. Adding systematic 
errors directly in the model structure might be an alternative to adding 
errors into model runtime. For example, general perturbation propaga-
tion is provided for state-parameter estimation based on recursive and 
batch estimation (Beck, 1987). Another frequently used strategy for 
model uncertainty exploration is adjusting parameters that relate to 
model structures (Koo et al., 2020; Yen et al., 2014; Wagener et al., 
2003). However, this strategy is not applicable when the model pa-
rameters are discrete and have limited options. Recently, Koo et al. 
(2020) explored model structure uncertainty using SA by adjusting the 
level of spatial discretization, which could provide another solution for 
taking model uncertainty into account in SA. 

6. SA evaluation and post-processing 

6.1. Assessing convergence and credibility 

The convergence of SA measures needs to be assessed because SA 
measures sometimes are not constant and vary with sample sizes, 
especially when they are obtained from smaller sample sizes than 
required sizes suggested in the literature (Sarrazin et al., 2016; Van-
rolleghem et al., 2015). Two methods are generally utilized to evaluate 
the convergence of SA measures, which are based on the central limit 
theorem (CLT) and the bootstrapping technique (Yang, 2011). Accord-
ing to the CLT, the sample mean of a distribution with mean (μ) and 
standard deviation (σ) approaches a normal distribution with mean μ 
and standard deviation σ/n with increasing sample size (n). The CLT 
based-method calculates SA measures R times using different sets of 
sub-samples, and compares its mean and standard deviation using 
gradually increasing sizes of sub-samples. The convergence of an SA 
measure could be regarded as achieved when the coefficient of variation 
(σ/μ) does not show a significant change. Bootstrapping uses 
sub-samples from the original samples, and then compares SA measures 
derived from the sub-samples to the original SA measures. The advan-
tage of the bootstrapping technique is that there is no requirement for 
additional simulation, but the convergence rate could be overestimated 
(i.e., underestimation of uncertainty) when the sub-samples are strongly 
dependent on the original samples. In addition, a convergence test could 
be performed by analyzing SA measures obtained from different 
numbers of Monte Carlo simulations (Vanrolleghem et al., 2015). 

The number of required samples for a convergence test differs ac-
cording to the purpose, type(s) of SA applied and the characteristics of 
the environmental model (Sarrazin et al., 2016). SA for screening pur-
poses generally requires a smaller sample size for a convergence test 
than that for ranking. Similarly, the required number of samples for 
convergence is typically the largest in variance-based SA, and signifi-
cantly smaller for the Morris method and local SA methods (Campo-
longo et al., 2007). In variance-based SA methods, SA measures for the 
main effect converge faster than those for the total effect (Sarrazin et al., 
2016; Nossent et al., 2011). The characteristics of the environmental 
models, and its related study area processes and data, also influence 
convergence rate so that there is no clear relationship between the 
number of input factors and the required sample size (Sarrazin et al., 
2016). 

Finally, the reliability and credibility of SA measures should be 
assessed. The reliability and credibility are obtained by verifying that 
the underlying assumptions and conditions of the SA are satisfied in a 
target environmental model (Pianosi et al., 2016). For example, linear 
regression assumes a linear relationship in model response, which might 
well be inappropriate for the model with a non-linear response. Addi-
tionally, the SA results obtained could be biased due to use of implau-
sible perturbation propagation and missing input factors. Another check 
is conducting the SA with different SA methods. The reliability of SA 
results could be regarded as being enhanced if there is a consensus 
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ranges and structures are not available, random fields are often esti-
mated using the accuracy statistics of a target raster dataset (e.g., root 
mean square error). If the information is obtained from a survey and 
other methods, this can be used for estimating parameters of a random 
field generation. 

The simplest method for random field generation is using a normal 
distribution with a mean of zero and standard deviation derived from 
the accuracy statistics of a quantitative raster dataset. However, po-
tential uncertainty in spatial datasets has spatial structure, including 
spatial autocorrelation (Wechsler, 2007; Oksanen and Sarjakoski, 
2005b), which should be considered in a random field generation. The 
following methods are the typical methods accounting for spatial 
autocorrelation in random field generation. The first method is the 
spatial moving average (Wechsler and Kroll, 2006), which applies a low 
pass filter to a random field generated from a simple probability distri-
bution (e.g., normal distribution) without considering spatial autocor-
relation. The size of a low pass filter determines the level of spatial 
autocorrelation, which often covers from 3 by 3 grids to the grid size that 
is computed from the range of a semi-variogram in a target quantitative 
raster. 

Pixel swapping (Fisher, 1991a; Goodchild and Openshaw, 1980) and 
a spatial autoregressive model (Hunter and Goodchild, 1996; Koo et al., 
2019; Anselin, 1995) are other methods for random field generation that 
considers spatial autocorrelation. They can be utilized for quantitative 
raster datasets and attribute uncertainty in vector datasets. Pixel 
swapping is developed based on the concept of simulated annealing, 
where two cells in random fields are continuously swapped until spatial 
autocorrelation in the random fields achieves its threshold level derived 
from spatial autocorrelation level in a target raster dataset. This method 
has the advantage that it is a simple process, but it is difficult to 
implement for a large spatial dataset due to the slowness of the pro-
cedure (Oksanen and Sarjakoski, 2005a). A spatial autoregressive model 
produces random fields based on the following equation: 

Y =(I − ρW)
− 1ε  

where I denotes an identity matrix, and ε is a vector that is generated 
generally from a probability distribution. By using an autoregressive 
parameter (ρ), this model effectively determines the level of spatial 
autocorrelation. W is a spatial weights matrix, which is also useful for 
specifying various types of neighborhood definitions (e.g., contiguity 
and k nearest neighbors). Because it is an n by n matrix and tends to be 
sparse, computing its inverse often requires a lot of resources for large 
datasets (Anselin, 2005). 

Sequential Gaussian simulation is a widely applicable method for 
random field generation (Koo et al., 2020; Aerts et al., 2003), which is 
developed based on a geostatistical approach with a normality 
assumption for potential uncertainty (Goovaerts, 1997). The basic steps 
for sequential Gaussian simulation are as follows: first, random paths are 
generated in a field, and each node in the path is sequentially visited; 
second, at each node, descriptive statistics for a local conditional 
probability function are estimated based on surrounding values using 
kriging; and finally, a random value is generated from the local condi-
tional probability function. If survey samples for uncertainty exist, the 
values at the sample nodes are maintained with the original sample 
value, which has been referred to as conditional Gaussian simulation 
(Aerts et al., 2003). A data transformation process will be required if a 
dataset does not follow a Gaussian distribution because sequential 
Gaussian simulation is only applicable to a dataset that follows a 
Gaussian distribution (Deutsch and Journel, 1998). 

Additionally, if prior knowledge for the spatial structure of uncer-
tainty in a quantitative raster dataset can be obtained from surveys or 
higher accuracy datasets, the three-parameter method (Ehlschlaeger 
et al., 1997) is useful to reflect this prior knowledge. Whereas only one 
parameter is available in pixel swapping and a spatial autoregressive 
model, this three-parameter method is superior for generating random 

fields with the mean and standard deviation under Gaussian distribu-
tion, and spatial autocorrelation (Wechsler, 2007). Other studies (Hengl 
et al., 2010; Fisher, 1998; Holmes et al., 2000) discuss further pertur-
bation propagation for quantitative raster datasets and have imple-
mented them in real-world applications. 

Perturbation propagation for categorical raster datasets has received 
less attention than those for quantitative raster datasets (Crosetto and 
Tarantola, 2001). Generally, the selection of the method for categorical 
raster datasets relies on the method of dataset generation. When a cat-
egorical raster dataset (e.g., for LULC and soil data) is generated using a 
fuzzy classification method of satellite images, individual pixels include 
uncertainty information of the classification result such as probability or 
membership vectors (Lucieer and Kraak, 2004). This type of uncertainty 
information can directly be applied to Monte Carlo simulation-based SA. 
When a conventional classification method is used for raster data gen-
eration, the confusion matrix (i.e., error matrix) is available for SA, 
which is a cross-tabulation of the classified raster against reference 
samples to estimate classification accuracy. The confusion matrix based 
perturbation propagation is fully discussed in (Heuvelink, 1998; Fisher, 
1991b). However, the confusion matrix might be limited in representing 
the spatial structure of uncertainty (Comber et al., 2012). In addition, 
perturbation propagation for vector datasets can also be applied for 
categorical raster datasets, mainly to represent their positional uncer-
tainty (Kiiveri, 1997; Shi, 1998). The details of perturbation propagation 
will be discussed with that for vector datasets in Section 5.3. 

5.3. Vector datasets 

Vector datasets, including the case of site-specific measurements, 
mainly have two major potential uncertainty sources - attribute and 
positional uncertainties (Koo et al., 2018a; ANSI, 1998). Attribute un-
certainty results from sampling and measurement errors. Thus, pertur-
bation propagation can be simply a probability distribution function 
derived from the descriptive statistics of potential attribute uncertainty. 
If the attributes of geographical features in vector datasets are spatially 
autocorrelated, pixel swapping (Goodchild and Openshaw, 1980) and a 
spatial autoregressive model (Anselin, 1995) are useful to describe the 
spatial structure of attribute uncertainty. For example, with a spatial 
autoregressive model, a random vector (i.e., ε) is generated from the 
descriptive statistics of attribute uncertainty, and spatial structures are 
described by a spatial weights matrix (i.e., W) of geographical features 
and predefined spatial autocorrelation level (i.e., ρ) as we described in 
the previous Section 5.2. 

Propagating perturbations for positional uncertainty in vector data-
sets has been one of the major focuses in spatial data quality research 
groups (Devillers et al., 2010). The geometric features of vector datasets 
are generally classified as point, line and polygon. However, in the 
context of modeling positional uncertainty, a polygon is considered as a 
closed line (Shi, 1998). According to the latter, perturbation propaga-
tion is discussed in two general feature types - point and line. 

Error ellipses constitute a common method for propagating pertur-
bations of point features (Dutton, 1992; Stanislawski et al., 1996; 
Goodchild, 1991), where x-y coordinates follow a two-dimensional 
extension of a probability distribution function on individual points. 
For positional uncertainty representation, a normal distribution can be 
simply used for the probability distribution (Goodchild, 1991; Wolf and 
Ghilani, 1997), but a log-normal distribution, a mixture of bivariate t 
distributions (Zimmerman et al., 2007), and a chi-square distribution 
(Griffith et al., 2007) have also been suggested (Karimi et al., 2004; Koo 
et al., 2018c). Positional uncertainties of point features are usually 
considered independent, though possibly spatially autocorrelated. If 
independent, error ellipses can be directly applicable to their selected 
probability distributions. However, if positional uncertainties of indi-
vidual point features are dependent and spatially autocorrelated, addi-
tional stochastic techniques (e.g., a spatial autoregressive model) are 
required to represent their dependence structure. In particular, the 
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results may be produced if model outputs do not conform to these as-
sumptions (Pianosi et al., 2016). 

For computationally intensive models, SA (e.g., variance-based 
methods) can be implemented using an emulator, which is a statistical 
approximation of the output response surface of the original environ-
mental model (O’Hagan, 2012). A simple approach for building an 
emulator is through use of Gaussian processes (Oakley and O’Hagan, 
2004), though other options exist, such as polynomial chaos expansions 
(Sudret, 2008), statistical emulators (Young and Ratto, 2011) and ma-
chine learning-based emulators (e.g., random forest and gradient 
boosting) (Storlie et al., 2009). However, an emulator might be inap-
propriate to evaluate a large number of input factors because it suffers 
from estimation inefficiency and inaccuracy due to the curse of dimen-
sionality (Storlie et al., 2009; Li et al., 2020). This can be resolved by 
screening out negligible input factors, or by applying an emulator that 
includes a procedure for input factor selection (Yang, 2011). 

The selection of QoI (sometimes embodied in an objective function 
or loss function) is also crucial to reflect the modeling purposes, as 
different modeling purposes lead to different sensitivity measures in the 
input factors. For example, rainfall intensity yields more sensitivity to 
stream flow peak than to baseflow. Based on modeling purpose, a large 
number of QoI have been used in hydrological models. The most 
frequently used include the Nash-Sutcliffe coefficient, root-mean- 
square-error (RMSE), and differences in the flow duration curve (e.g., 
between simulated and observed flows, and total nitrate). Although SA 
tends to select only single scalar QoI, SD-EMs often need to explore 
spatially distributed sensitivities of input factors on multiple- and multi- 
dimensional outputs (Gupta and Razavi, 2018; Pappenberger et al., 
2008), which can involve a colossal computational burden. Emulators 
may be developed to circumvent the issue of computational cost. A 
typical practice, however, is to build separate emulators for individual 
outputs (Ryan et al., 2018), which may impose an additional compu-
tational cost. Implementing other types of SA methods may be useful to 
mitigate this computational burden, including a separate generalized 
additive model (Mara and Tarantola, 2008), partial least squares (Sobie, 
2009), multi-fidelity polynomial chaos expansions (Palar et al., 2018), 
and global sensitivity matrix approaches (Razavi and Gupta, 2019). 
Moreover, decreasing the dimensionality of outputs by using a principal 
component analysis and grouping factors based on bootstrap-based 
clustering (Sheikholeslami et al., 2019) can provide another solution 
(Gómez-Dans et al., 2016). 

5. Perturbation propagation 

Monte Carlo simulation-based SA needs to propagate the perturba-
tions of input factors through the model to analyze the sensitivity of 
model outputs and their QoI to those input factors (Saltelli and Tar-
antola, 2002). Proper selection of the perturbations within plausible 
ranges and distributional assumptions is a crucial step in SA because the 

perturbation attempts to reflect the degree of uncertainty in input fac-
tors. This section introduces useful methods for perturbation propaga-
tion of the corresponding uncertainty sources, including input 
parameters, spatial and point datasets. 

5.1. Model parameters 

Model parameters in environmental models are typically represented 
as scalar variables, and often treated as random variables with prior 
probability distributions (Borgonovo and Plischke, 2016). Specifically, 
samples of individual model parameters are obtained from their corre-
sponding probability distributions, and then SA evaluates model re-
sponses based on the samples. The interactions between model 
parameters can be represented using a covariance matrix, for example, 
the Cholesky decomposition (Xiu and Karniadakis, 2003). Because 
defining appropriate probability distributions with plausible ranges are 
also crucial for evaluating model parameter sensitivities, taking all 
available information on individual model parameters is necessary for 
the generation of those probability distributions (e.g., expert opinion) 
(Crosetto and Tarantola, 2001). 

5.2. Raster datasets 

An SD-EM normally uses various types of spatial datasets, including 
spatially distributed input datasets and site-specific measurements. 
Because spatial datasets have various forms (e.g., vector and raster 
datasets), different types of perturbation propagation are required 
(Crosetto and Tarantola, 2001). Furthermore, the propagation for 
spatial datasets should consider the characteristics of those datasets, 
especially spatial autocorrelation (Temme et al., 2009). Table 1 dem-
onstrates applicable perturbation propagation methods for the various 
types of spatial datasets. 

Raster datasets are either generally subdivided into categorical (e.g., 
LULC and soil datasets) or quantitative (e.g., DEM, temperature and 
precipitation surfaces) rasters, requiring different perturbation propa-
gation methods (Heuvelink, 1998). In quantitative rasters, individual 
cell values can be treated as individual random variables with their own 
probability distributions, which means an observed quantitative raster is 
just one rendering of all possible realizations. However, this assumption 
ignores the spatial structure of uncertainty in quantitative rasters. 
Random fields are widely used to represent uncertainty in quantitative 
rasters. Random fields comprise a surface of random values that esti-
mates uncertainty magnitude, variance, and spatial variability, where 
each value represents potential uncertainty at a specific location of the 
grid cell (Wechsler, 2007). Furthermore, random fields are applicable 
for regularly discretized space-time voxels in 3D rasters (Pebesma et al., 
2007). Like other perturbation propagation methods, random fields 
require a definition of the appropriate potential uncertainty level (i.e., 
plausible ranges) and their spatial structure. If the information for the 

Table 1 
Perturbation propagation for spatial datasets and their applications.  

Spatial dataset type Examples Perturbation methods 

Raster Quantitative DEM, and temperature surface Spatial moving average (Wechsler and Kroll, 2006) 
Pixel swapping (Fisher, 1991a) 
Spatial autoregressive models (Hunter and Goodchild, 1996) 
Sequential Gaussian simulation (Aerts et al., 2003) 
Three parameter method (Ehlschlaeger et al., 1997) 

Categorical LULC, and soil datasets Using fuzzy classification information (Lucieer and Kraak, 2004) 
Using the confusion matrix (Fisher, 1991b) 
Applying models for vector datasets (Kiiveri, 1997; Shi, 1998) 

Vector Point Site-specific measurements Error ellipse (Dutton, 1992) 
Spatial autoregressive models (Hunter and Goodchild, 1996) 

Line Boundary of study area, and stream network Epsilon band (Crosetto and Tarantola, 2001) 
Stochastic process-based models (Shi and Liu, 2000) 
Entropy-based models (Gong and Li, 2011) 
Statistical simulation error models (Tong et al., 2013)  
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should be rescaled and applied to several locations in factor space in 
order to reveal the global effects of input factors with different mea-
surement units (Borgonovo and Plischke, 2016; Campolongo et al., 
2011). 

Purely OAT analyses are, however, typically inappropriate for 
determining sensitivity estimates. Such analyses do not consider in-
teractions among input factors (Borgonovo and Plischke, 2016), and 
while OAT can investigate non-linearities if input factors are indepen-
dent (Newham et al., 2003), typical applications are unable to do so due 
to the use of a single perturbation (Sun et al., 2012; Saltelli and Annoni, 
2010). Importantly, because local SA evaluates sensitivity at a specific 
location of input factors, rather than over their plausible ranges as global 
SA does, it might provide a limited indication of model behavior (Sun 
et al., 2012; Sobol, 2001) although pure OAT analyses have the 
advantage of reduced computational time over a more substantive 
global analysis. An initial indication of model behavior can be gained 
with just N+1 model evaluations for N input factors (Pianosi et al., 
2016), or fewer if groups of input factors are perturbed together through 
group sampling (Sobol’, 2001). Improper model behavior caught at this 
stage indicates errors in the model implementation to be addressed 
before global analyses are applied. 

A simple global extension of local SA is the Morris method (Morris, 
1991), also known as the Elementary Effect Test (Saltelli et al., 2008). 
The Morris method generally requires much lower numbers of model 
evaluations than other global SA methods for the purpose of screening, 
and thus the Morris method is appropriate for computationally complex 
models and/or models with a large number of input factors (Campo-
longo et al., 2007; Herman et al., 2013). A drawback of the Morris 
method is that it gives a poor measure of the relative importance be-
tween factors, and can be considered as offering qualitative sensitivity 
measures only (Brockmann and Morgenroth, 2007). Besides the average 
elementary effects, it does provide the standard deviations of the 
elementary effects, which are beneficial for identifying interaction ef-
fects among input factors (Norton, 2015). 

Regional sensitivity analysis (Spear and Hornberger, 1980) typically 
divides input factors into two or more groups depending on a prescribed 
threshold of model output, and then studies the difference in their 
empirical cumulative distribution functions (CDF) for each input factor. 
The Kolmogorov-Smirnov (K–S) statistic quantifies the divergence be-
tween the CDF and serves as a common sensitivity measure. Thus, if the 
K–S statistic is high (i.e, the CDF of one group differs from the other), the 
input factor has a significant influence on model output (Pianosi and 

Wagener, 2015). K–S statistics are mainly utilized for ranking input 
factors. However, the K–S statistic is inappropriate for screening because 
it is only applicable to the same groups (Saltelli et al., 2008). The 
advantage of regional sensitivity analysis is that it is applicable for any 
type of splittable model outputs (e.g., Futter et al., 2007; Whitehead 
et al., 2015; Whitehead and Hornberger, 1984). However, if the 
grouping (i.e., splitting) criterion is not clear (i.e., a model does not have 
meaningful model output values to describe model behavior), regional 
sensitivity analysis would be inappropriate. 

Various correlation and regression methods are also extensively used 
to measure sensitivities. These methods basically obtain SA measures 
based on different statistics (i.e., correlation and regression coefficients) 
between input factors and QoI generated from a Monte Carlo simulation 
(Pianosi et al., 2016; Helton et al., 2006). Specifically, for correlation 
coefficient estimations, various types of correlation coefficients are 
selected mainly based on the linearity between input factors and model 
outputs. When they have a linear relationship, Pearson and partial 
correlation coefficients are appropriate methods (Saltelli and Marivoet, 
1990). If the relationship is non-linear, Spearman and partial rank cor-
relation coefficients can be used as alternatives (Pastres et al., 1999). 
Furthermore, if SA methods simultaneously are to take account of 
multiple relationships for multiple outputs, a canonical correlation 
analysis provides an additional option (Minunno et al., 2013). 

Regression methods obtain sensitivity measures by estimating 
regression coefficients, which are commonly standardized. Regression 
methods are often superior to correlation methods in deriving sensitivity 
measures, especially when a large number of input factors are consid-
ered since regression methods can obtain SA measures of all input fac-
tors at once. However, while linear regression is the simplest and most 
widely used SA method (Iman and Helton, 1988), it is not suitable if 
there is a non-linear or non-monotonic relationship in the model 
response, and a high level of interaction among factors also makes linear 
regression act poorly (Yang, 2011). When a non-linear relationship ex-
ists, rank regression (Storlie et al., 2009) and machine learning tech-
niques, such as decision trees (Singh et al., 2014), are appropriate. 
Regression and correlation methods are commonly utilized for both 
screening and ranking purposes. 

Variance-based methods produce sensitivities by decomposing the 
variance of a model output into the contributions from input factors. The 
contributions can be defined according to different indices, for example, 
first-order and total indices (Saltelli et al., 2008). The first-order index 
quantifies the contribution of a specific input factor to the variance of 
the selected QoI, while the total index measures the total contribution of 
an input factor to the variance of the QoI, including those due to its 
interactions with other input factors. The first-order index is usually 
used to rank input factors when interactions are not significant. With 
total indices, variance-based SA methods are able to address 
non-linearity of model responses to input factors. Factors with a total 
index close to zero can be considered negligible and screened out (Pia-
nosi et al., 2016). Often, these negligible factors are made constant, a 
practice referred to as “factor fixing”. 

Variance-based SA methods can be challenging for computationally 
intensive complex models because they take a relatively large number of 
factor samples and related model evaluations to obtain reasonably ac-
curate and stable indices (Gan et al., 2014). However, several ap-
proaches, such as the Sobol’ method (Sobol, 2001), Fourier Amplitude 
Sensitivity Test (FAST) (Cukier et al., 1973), and extended FAST (Saltelli 
et al., 1999), have been proposed to more efficiently estimate main and 
total effects (Paleari and Confalonieri, 2016). In practice, however, the 
computational requirement is still a burden for these SA methods. 
Moreover, common variance-based approaches operate on a number of 
assumptions, including that: the variance of model outputs resulting 
from the prior input distribution is indicative of input factor sensitiv-
ities; inputs are independent (Saltelli and Tarantola, 2002); and the 
distribution of the sampled model outputs, often estimated through 
kernel density estimation approaches, are unimodal. Misleading SA 

Fig. 2. The criteria for SA method selection. Appropriateness of SA method 
depends on model characteristics including linearity (solid box outline) or non- 
linearity (dashed box outline), computational cost and SA purpose (position of 
the boxes). 
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measurements. For example, temperature and precipitation surfaces 
would have strong positive spatial autocorrelation, and soil and land 
use-land cover (LULC) datasets possess complex spatial autocorrelation 
(Legendre, 1993). Site-specific measurements (e.g., meteorological 
data) have spatial autocorrelation as well as temporal autocorrelation. 
Therefore, if an environmental modeling analysis does not address the 
independent inputs and relationships among them, an incomplete un-
derstanding of the uncertainty in the model will result, leading to a 
biased estimation of the confidence in the model outputs. 

The uncertainty in spatial datasets is generally caused by five 
fundamental components: lineage, positional accuracy, attribute accu-
racy, logical consistency and completeness (ANSI, 1998; Koo et al., 
2020). Briefly, lineage relates to the description of spatial data sources 
(e.g., dates and reference systems), and logical consistency describes the 
fidelity of spatial data structure (e.g., topology). Completeness refers to 
selection criteria of spatial entities, for example, geometric thresholds 
such as minimum width and area of spatial features. Positional and 
attribute accuracies literally refer to uncertainties respectively in posi-
tion (i.e., location) and attribute information of spatial datasets. Among 
these components, positional and attribute accuracies are closely related 
to uncertainties in SD-EMs, and they show different aspects depending 
on the type of spatial datasets. Spatial datasets can be broadly divided 
into raster and vector datasets. 

A typical example of a raster dataset is a DEM, where scale (i.e., 
resolution), random and systematic measurement uncertainties result-
ing from attribute accuracy are the major uncertainty sources (Hengl 
et al., 2010). The scale issue is relatively well discussed as a source of 
uncertainty in DEMs (Chaubey et al., 2005; Dixon and Earls, 2009; Lin 
et al., 2013c; Shen et al., 2013). Together with scale, measurement 
uncertainty is known to also have an impact on watershed delineation 
(Oksanen and Sarjakoski, 2005a; Wu et al., 2008), stream network 
extraction (Hengl et al., 2010), and derivation of other topographic 
parameters (Wechsler, 2007). As systematic measurement uncertainty 
generally shows a fixed pattern stemming from DEM generation pro-
cesses (e.g., blunders), if the cause of the uncertainty is known, it could 
be reduced (Wechsler, 2007). However, random measurement uncer-
tainty still remains after reducing systematic uncertainty. For example, 
the Shuttle Radar Topography Mission (SRTM) v.4.1 dataset has a ver-
tical accuracy of ±16 m at a 95% confidence level (Mukul et al., 2017). 
Other widely used raster datasets are LULC and soil datasets, which 
possess uncertainty related to positional uncertainty and scale issues 
(Koo et al., 2020). 

Vector datasets are typically used to define the boundary of a study 
area, and describe topographic and/or environmental features such as 
stream networks. In addition, site-specific measurements are handled as 
a type of vector dataset, generally point features that have attributes on 
specific locations, for example, measurements of precipitation, tem-
perature, wind speed, humidity and solar radiance. Even though some 
raster datasets (e.g., precipitation and temperature surfaces) are con-
verted from site-specific measurements, their uncertainty sources can 
mainly be explained by uncertainty in vector datasets. Vector datasets 
typically include two main uncertainty sources, which are positional and 
attribute uncertainties (Koo et al., 2018a). Positional uncertainty refers 
to the uncertainty of geographical features in vector datasets, which 
often results from a global positioning system (GPS), geocoding and 
digitizing errors. Attribute uncertainty describing non-spatial properties 
of geographical features in vector datasets are generally estimated from 
their sampling processes (Aouissi et al., 2013; Strauch et al., 2012; 
Tasdighi et al., 2018; Bárdossy and Das, 2008; Chaplot et al., 2005; Cho 
et al., 2009; Gong et al., 2012; Masih et al., 2011) and measurements 
(Shen et al., 2015; Li, 2014). In addition, attribute uncertainty often 
includes spatial autocorrelation. When attribute uncertainty contains 
temporally varying quantities, they also need to consider the informa-
tion lost in converting to discrete-time (Littlewood and Croke, 2013). 

3.3. Model uncertainty 

Model uncertainty results from the inability of a model to mimic the 
real-world (Yen et al., 2014). Model uncertainty might be subdivided 
into the effects of model structure, model resolution, and model inte-
gration uncertainties (Matott et al., 2009; Voinov and Shugart, 2013). 
First of all, model structure uncertainty is caused by a model structure 
that imperfectly represents underlying environmental processes in a 
model (Yen et al., 2014). Numerous alternative model structures (e.g., 
scientific hypotheses and equations) might be proffered in a model, 
which could adversely impact model outputs. A related consideration is 
the issue of the identifiability of the model structure (Guillaume et al., 
2019; Shin et al., 2015), which largely means the data available are 
insufficiently informative to identify unique values of some of its pa-
rameters. SA methods are often used to determine the 
insensitive/non-identifiable parameters so that focus for calibration 
and/or uncertainty analysis can then be turned to the most sensitive 
ones. Second, model resolution uncertainty is due to uncertainties in the 
spatio-temporal discretization, boundary specification, and scale 
dependence of a model (Matott et al., 2009). In an SD-EM, spatial dis-
cretization, boundary and scale are often determined by the available 
spatial datasets, and model resolution uncertainty can then be partially 
explained through exploring uncertainty of the spatial datasets (Koo 
et al., 2020; Trusel et al., 2015) (Fig. 1). 

Another aspect of model uncertainty arises from model integration 
processes (Chen et al., 2020). Currently, environmental models become 
more complex by integrating multiple models (Lin et al., 2013a, 2013b; 
Lu et al., 2019). The integration processes yield uncertainty from 
skewed space (e.g., difference in spatial resolution), mismatched mea-
surement scales, and confusion of linguistic representations (Voinov and 
Shugart, 2013). Particularly, in an SD-EM, when sub-models with 
different spatial and temporal scales are integrated without a solid 
design, the uncertainty of an integrated model could become large and 
undetectable (Tscheikner-Gratl et al., 2019). 

4. Selection of SA method(s) and quantities of interest 

This step firstly provides guidance on SA method selection based on 
two main criteria: the purposes of the SA and the characteristics of the 
SD-EM. This guidance includes only two fundamental SA purposes (i.e., 
ranking and screening), but SA can have additional purposes such as 
factor mapping that provides further descriptions for the input space 
related to QoI (Saltelli et al., 2008). SA methods for ranking generate the 
order of input factors based on their relevant influence on QoI, and 
screening methods identify input factors with significant or negligible 
influence on model output (Pianosi et al., 2016). SA methods for each 
purpose can be applied sequentially, such that model results from 
screening methods are leveraged to reduce the number of input factors 
and are followed by SA for the purpose of ranking, thus reducing the 
overall number of model evaluations (Saltelli et al., 2004; Sun et al., 
2012). Secondly, two major characteristics of an environmental model 
are necessary to consider in selecting appropriate SA methods: model 
complexity and interdependency between input factors (Saltelli, 2002). 
Here we briefly discuss widely used SA methods, including local SA, the 
Morris method, correlation and regression, and variance-based SA 
methods according to the two major criteria. Fig. 2 classifies these SA 
methods, where the positions of each SA method relate to SA purpose 
and model complexity and their outlines represent interdependency. In 
addition, the advantages of an emulator and its consideration for dealing 
with spatially distributed outputs are also briefly discussed. 

Local SA is the simplest SA method, and is often conducted through 
one-at-a-time (OAT) perturbation of input factors around their nominal 
values to determine the response of model outputs (Sun et al., 2012; 
Campolongo and Saltelli, 2000). A formal approach for local SA involves 
using partial derivatives (Helton, 1993). Partial derivatives can provide 
SA measures/metrics for both ranking and screening; however, they 
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primarily determines the SA results. Different types of uncertainties also 
need different types of perturbation propagations. For example, the 
propagation of perturbations in a model parameter that is represented as 
a scalar random variable could be performed using a probability dis-
tribution (e.g., normal distribution), while more complex perturbation 
propagation methods are necessary for characterizing the uncertainty of 
input datasets (e.g., spatial datasets) by simultaneously taking account 
of their characteristics (e.g., spatial autocorrelation) (Wechsler, 2007; 
Crosetto and Tarantola, 2001). Nonetheless, perturbation propagation 
of model uncertainty is still an ongoing research subject and remains a 
fruitful area of investigation (Matott et al., 2009; Uusitalo et al., 2015; 
O’Hagan, 2012). 

The final step of the framework is evaluating the results of the SA, 
which includes post-processing of analysis results (Section 6). In eval-
uating SA results, reliability and convergence aspects should be assessed 
as a verification step. SA measures or metrics vary with sample size, 
thereby requiring a convergence test to check if the metric(s) of choice is 
converging and its confidence bounds acceptable for the purpose (Yang, 
2011). In addition, different SA methods are based on different pre-
mises, may produce different metrics, and hence produce different 
outputs. Thus, SA with different methods can increase confidence in the 
reliability or interpretation of SA outputs. Finally, this step also includes 
credibility assessment for SA outputs. If unexpected SA outputs are ob-
tained, these outputs can lead to new indications of uncertainty in model 
behavior (Pappenberger et al., 2008), or indicate issues with the model 
implementation (Pianosi et al., 2016). Otherwise, these outputs can 
assist with revising the SA steps, such as identifying missing uncertainty 
sources and redefining the perturbation propagation approach. Because 
SA results are generally associated with large sets of potential uncer-
tainty sources, visualization methods of SA results are useful to identify 
critical uncertainty sources and to compare their importance. Thus, this 
step includes the descriptions of specific visualization methods with 
their corresponding SA methods, conventional scientific visualization 
techniques for SA outputs (Kelleher and Wagener, 2011), and 
geographical visualization and analysis for the representation of 
spatially distributed SA measures (Feick and Hall, 2004). 

3. Identification of potential uncertainty sources 

3.1. Classification of uncertainty sources 

This initial step involves the identification of potential uncertainty 
sources associated with the model’s input factors that influence the 
selected outputs of an environmental model, or functions of those out-
puts (i.e., QoI). Various types of uncertainty sources could influence the 
outputs of the models, and numerous classification schemes for uncer-
tainty sources have been introduced to categorize them (Matott et al., 
2009; Refsgaard et al., 2007; Beck, 1987; Linkov and Burmistrov, 2003). 
Because the classification schemes commonly share two fundamental 
uncertainty sources (i.e., input and model uncertainties), this article 
discusses the various uncertainty sources in these two broad categories. 

3.2. Input uncertainty 

Input uncertainty is associated with model parameters and input 
datasets. Among various sources of uncertainty, model parameter un-
certainty is the most commonly considered source (Setegn et al., 2010; 
Wu and Chen, 2015; Wu and Liu, 2012; Berzaghi et al., 2019; Porada 
et al., 2018) and can be controlled to some extent through calibration 
processes (Zhao et al., 2018). Therefore, uncertainty in model parame-
ters is often considered to be reducible, and it has been argued that 
model parameters can be carefully tailored to reduce that uncertainty 
related to model outputs and to improve model performance (Matott 
et al., 2009). However, if globally optimized parameters are obtained 
through a calibration process, they would also be affected by other 
sources of uncertainty, including input data uncertainty, model uncer-
tainty, and also model parameter uncertainty, and these might lead to 
“equifinality” (Zhao et al., 2018; Beven and Freer, 2001). 

Input datasets are usually assumed to be accurate, that is, effectively 
without uncertainty. However, this is incorrect as all data have inherent 
uncertainties (Chrisman, 1991). Uncertainties related to input datasets 
can be irreducible (Matott et al., 2009), and thus they are often ignored 
in uncertainty related studies. Moreover, uncertainty in spatial datasets 
involves spatial autocorrelation (Griffith, 2008; Koo et al., 2018c). In the 
SD-EM context, spatial datasets include maps and site-specific 

Fig. 1. The steps and considerations in the application of the SA framework.  
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considered a key practice in the assessment of environmental models 
(Chen et al., 2019; Gan et al., 2014; Jakeman et al., 2006; Matott et al., 
2009; Oakley and O’Hagan, 2004; Pianosi et al., 2016; Yue et al., 2020). 
In comparison, UA quantifies the uncertainty of model outputs from 
input datasets and model parameters, typically characterized by 
empirical probability distributions and/or confidence bounds for the 
model parameters and outputs. UA can be considered an extension of SA 
with the uncertainty distributions for the input factors being used as the 
perturbations. Therefore, SA can be used to indicate when uncertainty in 
input factors matters in terms of the impact on the uncertainty in the 
outputs. Care must however be taken in the interpretation of SA results 
as sensitivities can be dependent on parameter ranges selected, model 
structure assumed, length of data period examined and its climatic 
forcing (Shin et al., 2013). 

The use of SA and UA in environmental modeling has become of 
particular importance due to the highly complex nature of environ-
mental systems, and the attendant complexity of models typically 
invoked to represent them. This is especially the case for spatially 
distributed environmental models (referred to from hereon as SD-EMs), 
where there tends to be a considerable number of model parameters due 
to their spatially variant nature, and substantial uncertainty in the 
model and its predictions. Uncertainty and sensitivity related studies in 
environmental modeling are rising in popularity because of the growing 
awareness of the importance of models in supporting informed decision 
making (Douglas-Smith et al., 2020), coupled with the fact that current 
process-based environmental models are typically, and perhaps neces-
sarily, deterministic in their representation (Farmer and Vogel, 2016; 
Uusitalo et al., 2015). 

This paper focuses on Monte Carlo simulation-based SA of SD-EMs, 
which is a valuable tool per se and one that can also inform uncer-
tainty analyses. Monte Carlo simulation-based approaches are widely 
applied due to their ease of implementation, yet there is a lack of a 
comprehensive pragmatic framework for conducting such approaches 
for SD-EMs (Yang et al., 2018). An SD-EM is intrinsically tied to the 
spatial dimensions of producing and utilizing data that represent the 
spatially distributed nature of the modeling context. Grid-based digital 
elevation models (DEMs), site-specific point measurements, and 
remotely sensed images are examples of such data. However, SAs are 
rarely conducted for DEM and DEM-derived parameters even though the 
inherent scale and errors of a spatial dataset and/or of the whole envi-
ronmental model can have a significant impact on model outputs (Tran 
et al., 2018). A crucial issue to take into account regarding spatial 
datasets is the spatial structure of their uncertainty. Generally, spatial 
datasets are characterized by spatial dependence (i.e., spatial coher-
ence), and their uncertainties are also spatially autocorrelated (Oksanen 
and Sarjakoski, 2005a; Wechsler, 2007). Thus, ignoring such charac-
teristics can lead to erroneous estimation of sensitivity measurements. 
Moreover, because spatial datasets often determine the uncertainty in 
model resolution and structures through their boundaries, discretization 
and scale, exploring uncertainty related to spatial datasets can partly 
account for model uncertainty in SD-EMs. 

This article introduces a pragmatic framework for the application of 
SA to an SD-EM, using a scenario/simulation-based approach to inves-
tigate the significance of potential uncertainties in the model inputs, 
which can not only explore model and data assumptions transparently 
but also be an informative precursor to a more thorough UA. The ob-
jectives of the framework are to provide sufficient information and 
background in order to guide the selection of more appropriate choices 
at each step of the SA process: potential uncertainty source identifica-
tion; selection of SA method(s) and quantities of interest (QoI); pertur-
bation propagation; and SA evaluation and post-processing. The 
framework emphasizes the following aspects: it attempts to address 
potential uncertainty sources related to spatial datasets; and assists in 
propagating the potential uncertainty sources by considering their likely 
spatial structure. Therefore, the framework helps to explore the impact 
of potential uncertainty of spatial datasets in an SD-EM, and to compare 

their relative impacts with the usual factors in SA (e.g., model param-
eters). The framework is intended to benefit both non-experts and SA 
users in environmental modeling and geographical information system 
(GIS) communities. 

The remainder of this article is organized as follows. Section 2 
broadly introduces the pragmatic framework for applying SA to SD-EMs, 
covering potential uncertainty source identification, selection of SA 
method and QoI, perturbation propagation, and SA evaluation and post- 
processing. Then, from Sections 3 to 6, the detailed steps and their 
corresponding considerations are discussed. Section 7 provides a concise 
example of the SA framework. The article concludes in Section 8 with a 
discussion of future needs and opportunities. 

2. A pragmatic SA framework for SD-EMs 

The presented framework prescribes sequential steps in which 
important considerations are highlighted to guide modelers towards the 
selection of appropriate choices for the pragmatic application of SA to 
uncertainty exploration in SD-EMs. The overarching steps and the cor-
responding considerations are depicted in Fig. 1. The main purpose of 
the framework is to identify the contributions of potential uncertainty 
sources to the selected QoI. This section introduces the pragmatic 
framework to provide a broad guideline for SA users, while the following 
sections detail the considerations within each step. 

The first step is to identify potential sources of uncertainty (Section 
3). Numerous studies have investigated uncertainty sources in the 
context of environmental modeling, and classified them in their own 
schemes (Matott et al., 2009; Refsgaard et al., 2007). Understanding 
these general classification schemes and the uncertainty sources 
involved assists in identifying the sources of uncertainty related to a 
specific application. In particular, this article discusses potential un-
certainty sources not only in model parameters and model uncertainty, 
but also in spatial datasets which are used as direct input(s) and/or to 
derive parameters to describe the underlying spatially distributed 
structure of SD-EMs (e.g., DEM). 

The second step is the selection of SA methods and QoI (Section 4). 
This selection primarily depends on the purposes of SA (e.g., screening 
and ranking) and the characteristics of the SD-EM. The characteristics 
can include the model complexity, and/or computational cost. As this 
framework is intended for Monte Carlo simulation-based SA, applying 
SA methods that require a large number of model evaluations to deter-
mine SA measures might not be feasible for a computationally expensive 
model. This article broadly categorizes the most frequently-used SA 
methods for environmental modeling based on their purposes and 
characteristics, and synthesizes them to assist SA users and communities 
in selecting appropriate ones for a pragmatic SA application. Here, we 
provide a general description, and several previous studies provide 
complementary explanations for further SA methods (Pianosi et al., 
2016; Borgonovo and Plischke, 2016; Sarrazin et al., 2016). For select-
ing QoI, only scalar outputs are generally utilized as QoI in SA of envi-
ronmental models, which often requires aggregating spatially and/or 
temporally distributed outputs into a scalar function (Pianosi et al., 
2016). However, since potential uncertainty sources in SD-EMs have 
different impacts on spatially, and also temporally, distributed scalar 
outputs (Pappenberger et al., 2008; Wang et al., 2013), preserving a 
spatial distribution of scalar outputs might be useful to understand the 
underlying spatial processes within SD-EMs, even if that requires man-
aging vast computing power. 

The third step in the framework is the perturbation propagation of 
the identified potential uncertainty sources (Section 5). Generally, local 
and global SA methods require different types of perturbation propa-
gation methods. Thus, local SA utilizes the neighborhood values of the 
nominal value, and global SA generally requires the input variability 
space via a probability distribution (Borgonovo and Plischke, 2016). For 
all SA methods, perturbation propagation with appropriate distributions 
is crucial because the representativeness of uncertainty sources 
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A B S T R A C T   

Sensitivity analysis (SA) has been used to evaluate the behavior and quality of environmental models by esti-
mating the contributions of potential uncertainty sources to quantities of interest (QoI) in the model output. 
Although there is an increasing literature on applying SA in environmental modeling, a pragmatic and specific 
framework for spatially distributed environmental models (SD-EMs) is lacking and remains a challenge. This 
article reviews the SA literature for the purposes of providing a step-by-step pragmatic framework to guide SA, 
with an emphasis on addressing potential uncertainty sources related to spatial datasets and the consequent 
impact on model predictive uncertainty in SD-EMs. The framework includes: identifying potential uncertainty 
sources; selecting appropriate SA methods and QoI in prediction according to SA purposes and SD-EM properties; 
propagating perturbations of the selected potential uncertainty sources by considering the spatial structure; and 
verifying the SA measures based on post-processing. The proposed framework was applied to a SWAT (Soil and 
Water Assessment Tool) application to demonstrate the sensitivities of the selected QoI to spatial inputs, 
including both raster and vector datasets - for example, DEM and meteorological information - and SWAT (sub) 
model parameters. The framework should benefit SA users not only in environmental modeling areas but in other 
modeling domains such as those embraced by geographical information system communities.   

1. Introduction 

Sensitivity analysis (SA) and uncertainty analysis (UA) are important 
tools for investigating model behavior, testing model hypotheses, and 
exploring the potential for simplifying models (Wagener and Pianosi, 
2019). Uncertainty is intrinsic to all modeling work that involves 

representing natural processes and/or human behavior. Sources of un-
certainty that need to be considered in such exercises are model input 
datasets, model structure, and model parameters. SA studies the influ-
ence of input factors (e.g., parameters, forcing, initial value of model 
states, model resolution, and model structure such as different param-
eterization schemes of a model or submodel) on model outputs. It is 
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PRACTICE BRIDGE

Toward a complete interdisciplinary treatment of
scale: Reflexive lessons from socioenvironmental
systems modeling

Takuya Iwanaga1,*, Hsiao-Hsuan Wang2, Tomasz E. Koralewski2, William E. Grant2,
Anthony J. Jakeman1, and John C. Little3

The pathways taken throughout any model-based process are undoubtedly influenced by the modeling team
involved and the decision choices they make. For interconnected socioenvironmental systems (SES), such
teams are increasingly interdisciplinary to enable a more expansive and holistic treatment that captures
the purpose, the relevant disciplines and sectors, and other contextual settings. In practice, such
interdisciplinarity increases the scope of what is considered, thereby increasing choices around model
complexity and their effects on uncertainty. Nonetheless, the consideration of scale issues is one critical
lens through which to view and question decision choices in the modeling cycle. But separation between team
members, both geographically and by discipline, can make the scales involved more arduous to conceptualize,
discuss, and treat. In this article, the practices, decisions, and workflow that influence the consideration of
scale in SESs modeling are explored through reflexive accounts of two case studies.Through this process and
an appreciation of past literature, we draw out several lessons under the following themes: (1) the fostering
of collaborative learning and reflection, (2) documenting and justifying the rationale for modeling scale
choices, some of which can be equally plausible (a perfect model is not possible), (3) acknowledging that
causality is defined subjectively, (4) embracing change and reflection throughout the iterative modeling
cycle, and (5) regularly testing the model integration to draw out issues that would otherwise be
unnoticeable.

Keywords: Reflexive analysis, Integrated assessment and modeling, System-of-Systems, Socioenvironmental
modeling, Interdisciplinary teams, Uncertainty

1. Introduction
Consideration of scale is a common activity in all system-
of-systems (SoS) modeling approaches involving the
integration of multiple models when representing any
complex socioenvironmental system (SES) of interest.
Unfortunately, such consideration is all too often con-
ducted tacitly, or at best minimally, and recently has been
considered a grand challenge in SES modeling (Elsawah et
al., 2020). Scale underlies many modeling concerns
including how to address model complexity, conceptual
mismatches, and uncertainty. In short, explicit consider-
ation of scale issues provides a valuable, and indeed

critical, lens to view the decisions made in any SES mod-
eling activity.

This article follows an earlier publication (Iwanaga et
al., 2021b) in which the current practices, issues, and
challenges with respect to scale were explored through
a sociotechnical lens. Scale can thus be characterized as
an expansive term relating not just to the properties of the
system under investigation but also the interplay between
the social and technical dimensions. These influence what
is considered, what is not, and what is eventually included
in the modeling. A crucial aspect is the influence of the
people involved and the subsequent technical processes
and decisions that produce a model for a given purpose.
These underlying influences, including scale decisions
taken, often remain implicit and are not explicitly dis-
cussed. But for reasons of saliency, legitimacy, and trans-
parency, they are best appreciated and considered by team
members in as complete a sense as possible, albeit taking
resources and time available into account.

Interdisciplinarity is now recognized as a crucial neces-
sity in understanding and dealing with the complexity of
socioenvironmental interactions (Hall et al., 2012; Saltelli
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Sivapalan, M., Savenije, H.H.G., Blöschl, G., 2012. Socio-hydrology: a new science of 
people and water. Hydrol. Process. 26, 1270–1276. https://doi.org/10.1002/ 
hyp.8426. 

Sletholt, M.T., Hannay, J.E., Pfahl, D., Langtangen, H.P., 2012. What do we know about 
scientific software development’s agile practices? https://doi.org/10.1109/MCSE.20 
11.113, 24-36.  

Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., Xu, C., 2015. Global sensitivity analysis in 
hydrological modeling: review of concepts, methods, theoretical framework, and 
applications. J. Hydrol. 523, 739–757. https://doi.org/10.1016/j. 
jhydrol.2015.02.013. 

Spitzberg, B.H., Cupach, W.R., 1989. Handbook of Interpersonal Competence Research. 
Springer-Verlag. 

Steinhardt, U., Volk, M., 2001. Scales and spatio-temporal dimensions in landscape 
research. In: Krönert, R., Steinhardt, U., Volk, M. (Eds.), Landscape Balance and 
Landscape Assessment. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 137–162. 
https://doi.org/10.1007/978-3-662-04532-9_6. 

Sterling, E.J., Zellner, M., Jenni, K.E., Leong, K., Glynn, P.D., BenDor, T.K., Bommel, P., 
Hubacek, K., Jetter, A.J., Jordan, R., Olabisi, L.S., Paolisso, M., Gray, S., 2019. Try, 
try again: lessons learned from success and failure in participatory modeling. Elem 
Sci Anth 7, 9. https://doi.org/10.1525/elementa.347. 

Tate, L.E., 2013. Growth-management implementation in metropolitan vancouver: 
lessons from actor-network theory. Environ. Plann. Plann. Des. 40, 783–800. https:// 
doi.org/10.1068/b37170. 

Tebaldi, C., Knutti, R., 2007. The use of the multi-model ensemble in probabilistic 
climate projections. Philos Trans A Math Phys Eng Sci 365, 2053–2075. https://doi. 
org/10.1098/rsta.2007.2076. 

Thomas, J., McDonagh, D., 2013. Shared language:Towards more effective 
communication. Australas. Med. J. 6, 46–54. https://doi.org/10.4066/ 
AMJ.2013.1596. 

Thompson, J.L., 2009. Building collective communication competence in 
interdisciplinary research teams. J. Appl. Commun. Res. 37, 278–297. https://doi. 
org/10.1080/00909880903025911. 

Tjosvold, D., Hui, C., Ding, D.Z., Hu, J., 2003. Conflict values and team relationships: 
conflict’s contribution to team effectiveness and citizenship in China. J. Organ. 
Behav. 24, 69–88. https://doi.org/10.1002/job.180. 

Tranquillo, J., 2019. An Introduction to Complex Systems: Making Sense of a Changing 
World. Springer Nature. 

Tscheikner-Gratl, F., Bellos, V., Schellart, A., Moreno-Rodenas, A., Muthusamy, M., 
Langeveld, J., Clemens, F., Benedetti, L., Rico-Ramirez, M.A., de Carvalho, R.F., 
Breuer, L., Shucksmith, J., Heuvelink, G.B.M., Tait, S., 2019. Recent insights on 
uncertainties present in integrated catchment water quality modelling. Water Res. 
150, 368–379. https://doi.org/10.1016/j.watres.2018.11.079. 

Uusitalo, L., Lehikoinen, A., Helle, I., Myrberg, K., 2015. An overview of methods to 
evaluate uncertainty of deterministic models in decision support. Environ. Model. 
Software 63, 24–31. https://doi.org/10.1016/j.envsoft.2014.09.017. 

Vale, T., Crnkovic, I., De Almeida, E.S., Silveira Neto, P.A.D.M., Cavalcanti, Y.C., 
Meira, S.R.D.L., 2016. Twenty-eight years of component-based software engineering. 
J. Syst. Software 111, 128–148. https://doi.org/10.1016/j.jss.2015.09.019. 

van Delden, H., van Vliet, J., Rutledge, D.T., Kirkby, M.J., 2011. Comparison of scale and 
scaling issues in integrated land-use models for policy support. Agriculture, 
Ecosystems & Environment, Scaling methods in integrated assessment of agricultural 
systems 142, 18–28. https://doi.org/10.1016/j.agee.2011.03.005. 

van der Sluijs, J.P., 2007. Uncertainty and precaution in environmental management: 
insights from the UPEM conference. Environmental Modelling & Software, The 
Implications of Complexity for Integrated Resources 22, 590–598. https://doi.org/ 
10.1016/j.envsoft.2005.12.020. 

van der Vaart, E., Johnston, A.S.A., Sibly, R.M., 2016. Predicting how many animals will 
be where: how to build, calibrate and evaluate individual-based models. Ecol. 
Model. 326, 113–123. https://doi.org/10.1016/j.ecolmodel.2015.08.012. 

van Ittersum, M.K., Ewert, F., Heckelei, T., Wery, J., Alkan Olsson, J., Andersen, E., 
Bezlepkina, I., Brouwer, F., Donatelli, M., Flichman, G., Olsson, L., Rizzoli, A.E., van 
der Wal, T., Wien, J.E., Wolf, J., 2008. Integrated assessment of agricultural systems 
– a component-based framework for the European Union (SEAMLESS). Agric. Syst. 
96, 150–165. https://doi.org/10.1016/j.agsy.2007.07.009. 

Vanlier, J., Tiemann, C.A., Hilbers, P.A., van Riel, N.A., 2014. Optimal experiment design 
for model selection in biochemical networks. BMC Syst. Biol. 8, 20. https://doi.org/ 
10.1186/1752-0509-8-20. 

Verweij, P.J.F.M., Knapen, M.J.R., de Winter, W.P., Wien, J.J.F., te Roller, J.A., 
Sieber, S., Jansen, J.M.L., 2010. An IT perspective on integrated environmental 
modelling: the SIAT case. Ecological Modelling, Model-based Systems to Support 
Impact Assessment - Methods, Tools and Applications 221, 2167–2176. https://doi. 
org/10.1016/j.ecolmodel.2010.01.006. 

Voinov, A., Bousquet, F., 2010. Modelling with stakeholders. Environmental Modelling & 
Software, Thematic Issue - Modelling with Stakeholders 25, 1268–1281. https://doi. 
org/10.1016/j.envsoft.2010.03.007. 

Voinov, A., Shugart, H.H., 2013. “Integronsters”, integral and integrated modeling. 
Environ. Model. Software 39, 149–158. https://doi.org/10.1016/j. 
envsoft.2012.05.014. 

Voinov, A., Kolagani, N., McCall, M.K., Glynn, P.D., Kragt, M.E., Ostermann, F.O., 
Pierce, S.A., Ramu, P., 2016. Modelling with stakeholders – next generation. 
Environ. Model. Software 77, 196–220. https://doi.org/10.1016/j. 
envsoft.2015.11.016. 

Voinov, A., Jenni, K., Gray, S., Kolagani, N., Glynn, P.D., Bommel, P., Prell, C., 
Zellner, M., Paolisso, M., Jordan, R., Sterling, E., Schmitt Olabisi, L., Giabbanelli, P. 
J., Sun, Z., Le Page, C., Elsawah, S., BenDor, T.K., Hubacek, K., Laursen, B.K., 
Jetter, A., Basco-Carrera, L., Singer, A., Young, L., Brunacini, J., Smajgl, A., 2018. 
Tools and methods in participatory modeling: selecting the right tool for the job. 
Environ. Model. Software 109, 232–255. https://doi.org/10.1016/j. 
envsoft.2018.08.028. 

Wagener, T., McIntyre, N., Lees, M.J., Wheater, H.S., Gupta, H.V., 2003. Towards 
reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability 
analysis. Hydrol. Process. 17, 455–476. https://doi.org/10.1002/hyp.1135. 

Wagener, T., Pianosi, F., 2019. What has Global Sensitivity Analysis ever done for us? A 
systematic review to support scientific advancement and to inform policy-making in 
earth system modelling. Earth Sci . Rev. 194, 1–18. https://doi.org/10.1016/j.ea 
rscirev.2019.04.006. 
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2017. Development of a software tool for rapid, reproducible, and stakeholder- 
friendly dynamic coupling of system dynamics and physically-based models. 
Environ. Model. Software 96, 410–420. https://doi.org/10.1016/J. 
ENVSOFT.2017.06.053. 

Martin, D.M., Powell, S.J., Webb, J.A., Nichols, S.J., Poff, N.L., 2017. An objective 
method to prioritize socio-environmental water management tradeoffs using multi- 
criteria decision analysis. River Res. Appl. 33, 586–596. https://doi.org/10.1002/ 
rra.3103. 

Matott, L.S., Babendreier, J.E., Purucker, S.T., 2009. Evaluating uncertainty in integrated 
environmental models: a review of concepts and tools. Water Resour. Res. 45 
https://doi.org/10.1029/2008WR007301. 

Meadows, D.H., 2008. Thinking in Systems: A Primer. Chelsea Green Publishing. 
Meirmans, S., Butlin, R.K., Charmantier, A., Engelstädter, J., Groot, A.T., King, K.C., 
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Raick, C., Soetaert, K., Grégoire, M., 2006. Model complexity and performance: how far 
can we simplify? Prog. Oceanogr. 70, 27–57. https://doi.org/10.1016/j. 
pocean.2006.03.001. 

Railsback, S.F., Grimm, V., 2019. Agent-based and individual-based modeling: a practical 
introduction, 2nd edition. ed. Princeton University Press, Princeton, NJ.  

Ramaswami, A., Milford, J.B., Small, M.J., 2005. Integrated Environmental Modeling: 
Pollutant Transport, Fate, and Risk in the Environment. John Wiley & Sons Inc., 
Hoboken, NJ.  

Razavi, S., Gupta, H.V., 2015. What do we mean by sensitivity analysis? The need for 
comprehensive characterization of “global” sensitivity in Earth and Environmental 
systems models. Water Resour. Res. 51, 3070–3092. https://doi.org/10.1002/ 
2014WR016527. 

Razavi, S., Tolson, B.A., 2013. An efficient framework for hydrologic model calibration 
on long data periods. Water Resour. Res. 49, 8418–8431. https://doi.org/10.1002/ 
2012WR013442. 

Razavi, S., Tolson, B.A., Matott, L.S., Thomson, N.R., MacLean, A., Seglenieks, F.R., 
2010. Reducing the computational cost of automatic calibration through model 
preemption. Water Resour. Res. 46 https://doi.org/10.1029/2009WR008957. 

Razavi, S., Tolson, B.A., Burn, D.H., 2012. Review of surrogate modeling in water 
resources. Water Resour. Res. 48 https://doi.org/10.1029/2011WR011527. 

Razavi, S., Sheikholeslami, R., Gupta, H.V., Haghnegahdar, A., 2019. VARS-TOOL: a 
toolbox for comprehensive, efficient, and robust sensitivity and uncertainty analysis. 
Environ. Model. Software 112, 95–107. https://doi.org/10.1016/j. 
envsoft.2018.10.005. 

Razavi, S., Gober, P., Maier, H.R., Brouwer, R., Wheater, H., 2020. Anthropocene 
flooding: challenges for science and society. Hydrol. Process. 34, 1996–2000. 
https://doi.org/10.1002/hyp.13723. 

T. Iwanaga et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 135 (2021) 104885

16

Grimm, V., 2005. Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons 
from Ecology. Science 310, 987–991. https://doi.org/10.1126/science.1116681. 

Grimm, V., Augusiak, J., Focks, A., Frank, B.M., Gabsi, F., Johnston, A.S.A., Liu, C., 
Martin, B.T., Meli, M., Radchuk, V., Thorbek, P., Railsback, S.F., 2014. Towards 
better modelling and decision support: documenting model development, testing, 
and analysis using TRACE. Ecological Modelling, Population Models for Ecological 
Risk Assessment of Chemicals 280, 129–139. https://doi.org/10.1016/j. 
ecolmodel.2014.01.018. 

Grimm, V., Railsback, S.F., Vincenot, C.E., Berger, U., Gallagher, C., DeAngelis, D.L., 
Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A.S.A., Milles, A., Nabe- 
Nielsen, J., Polhill, J.G., Radchuk, V., Rohwäder, M.-S., Stillman, R.A., Thiele, J.C., 
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Appendix 1 

Example of hypothetical model inputs for a hydrological routing model provided in a nested data structure (left column) compared to a more 
traditional “flat” format (right column). Nested structures are arguably better suited for representing collections of data structures and their re-
lationships (e.g. a network or graph structure) and, pragmatically, are typically more amenable to the inclusion of comments and multiple values 
associated with specific parameters, reducing cognitive overhead. While perhaps more readable, a disadvantage of nested representations is the 
additional complexity that may be perceived.
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The next generation of systems modelers would ideally embody a 
culture that is cognizant of the socio-technical issues, considerations, 
and their influences throughout the modeling process (e.g. Little et al., 
2019). Such a systemic cultural shift can only be developed in the longer 
term, however, and so in the meantime clearer communication requires 
adequate resourcing for documenting decisions made, and code and 
data used, including their maintenance. Practices for the co-production 
of knowledge to fulfill the needs and requirements of the modeling is 
necessary for advances to be made (Norström et al., 2020). 

There is often a preference for face-to-face meetings to facilitate the 
necessary level of communication but that may not always be possible. 
Geographic distance, scheduling conflicts, travel restrictions and other 
factors may preclude such activities. Communication technologies play 
a critical role in mitigating some aspects of the issue. For example, travel 
and social distancing restrictions during the COVID-19 pandemic has 
prohibited many teams from meeting in person, forcing reliance on 
technologies such as video conferencing. Regardless of the mode of 
communication, a team and organizational culture of consistent and 
continual communication is one necessity repeatedly highlighted to 
resolve a variety of scale issues and the conflict that may arise between 
actors throughout the modeling process. Incorporating knowledge 
beyond the bounds of one’s own disciplinary training is crucial to the 
holistic attention to and incorporation of scales and to avoid the siloing 
of information and knowledge, and to break down cognitive constraints. 

4.3. Improve documentation processes 

The importance of documentation is another aspect that was 
repeatedly raised throughout this paper. Documentation of the modeling 
process communicates, and makes accessible, the decisions, actions, the 
context of those decisions and actions, and reflection on those choices to 
those who may or may not have been active participants in their making. 
Insufficient documentation affects many aspects from the pace of model 
development throughout the modeling cycle, quality of model integra-
tion especially across disciplinary boundaries, and the perceived quality 
of the modeling conducted. A lack of documentation accessibility 
additionally affects the (re)use and maintenance of the SoS model (or its 
constituents) and so could lead to duplication of effort across those 
involved in modeling SESs. 

One approach to ensure that documentation is made a priority is to 
adopt a documentation-driven development and design approach 
(Heeager, 2012). Such approaches are exemplified by the ODD Protocol 
(Grimm et al., 2020, 2014, 2010). In this paradigm, documentation is 
developed first, serving as a vehicle for discussion, ideally prior to any 
model development (Heeager, 2012). Ambiguities in the documentation 
(and thus the modeling) may be addressed earlier in the process as a 
result, and documentation could be iteratively revised, commensurate 
with any changes to modeling scale. Furthermore, maintaining Records 
of Engagement and Decision-making (RoED, Cockerill et al., 2019) to 
document the process and pathway decisions were made in a 
context-appropriate manner may be crucial to ensuring conceptual and 
technical validity throughout the modeling cycle. Sufficient, rather than 
exhaustive, documentation to describe model context would be 
preferred (Ambler, 2002; Cockerill et al., 2019). 

4.4. Explicit consideration of scale and uncertainty 

There is an increasing expectation that SoS models can more 
completely represent processes within an SES, however, it is impossible 
to model everything for all purposes. Further explicit consideration of 
the inter-relationships between scales, choices made in representing 
scale, and their influence on uncertainty is paramount in the SoS 

context. Identifying, managing and reconciling the disparate treatment 
of scale is a key step towards a holistic approach, as opposed to the 
concurrent, but separate, processes currently applied (Cheong et al., 
2012; Elsawah et al., 2020). 

As noted several times throughout this paper, the socio-technical 
context has an inordinate influence on uncertainty. In addition to the 
communication and documentation considerations outlined above, an 
avenue for a more holistic assessment of uncertainty includes the use of 
robustness analysis (Grimm and Berger, 2016). In such analysis, a model 
with multiple systems is systematically deconstructed through forceful 
changes to the model parameters, structure, and process representations 
within each system to assess uncertainty. Use of these approaches with 
pattern-oriented modeling processes, which filter unsuitable represen-
tations across scales, may also be helpful in this regard (Grimm and 
Railsback, 2012; Gupta et al., 2008). 

Additionally, qualitative and quantitative uncertainties could be 
jointly assessed through the representation of multiple plausible futures 
that stem from different sets of assumptions through exploratory ap-
proaches (Maier et al., 2016; Roberts et al., 2018; Rounsevell and 
Metzger, 2010). A related approach is a multi-model approach wherein 
an ensemble of equally plausible models are applied to identify the in-
fluence of structural and qualitative uncertainty (Matott et al., 2009; 
Tebaldi and Knutti, 2007; Uusitalo et al., 2015). Using an ensemble of 
estimates (such as the average or median of model outputs) may have 
the benefit of providing more robust and accurate forecasts (Willcock 
et al., 2020). Applying these on different computational platforms may 
additionally assist in identifying technical uncertainties (Iwanaga et al., 
2020). 

It was noted throughout this paper that the scale of the modeling 
itself should be commensurate with the available resources and purpose. 
A holistic SoS model may not be entirely possible given resource con-
straints, however relationships between systems can still be acknowl-
edged and represented (albeit simplistically). Doing so allows some 
assessment of the uncertainties at least, and constitutes a step towards 
holistic SoS modeling so long as the underlying assumptions are 
explicitly documented (e.g. Kloprogge et al., 2011). 
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expectations between creators and users (Sterling et al., 2019). The 
suitability of the success criteria is dependent on the context of the 
project, including not only the model purpose, but also the character-
istics of the problem, such as its complexity and the resources that were 
available (Hamilton et al., 2019). 

Process evaluation in SoS focuses on two facets: achievement of goals 
and longevity of the models. In terms of goal achievement, process 
evaluation considers whether the goals of the SoS model were supported 
by its constituent models and, where applicable, whether constituent 
models achieved their own goals. Although satisfying the goals of the 
constituent models may seem an indirect path to satisfying the goals of 
the SoS model, this interpretation is misleading. An SoS approach to 
modeling, instead of simply a multi-modeling approach, leverages the 
autonomy and independence of the constituent models. Constituent 
models still need to be capable of yielding their own outcomes, 
regardless of how those models are used in the context of the SoS model 
(Salado, 2015). 

Evaluation of the longevity of the SoS model, referring to the ability 
to leverage or reuse the SoS model over time, requires the development 
and assessment of a targeted plan for its sustainment that includes: (1) 
monitoring the evolution of the constituent models; (2) identifying al-
ternatives for models that may cease their validity, availability or 
accessibility during the lifetime of the SoS model; (3) establishing a 
strategy for the continued evolution of the SoS model, including the 
development of potential transformation frameworks and implementa-
tions; and (4) identifying opportunities to facilitate the sustainment of 
constituent systems aligned with the sustainment of the SoS model. 

Process evaluation for SoS models may consider adopting a reflexive 
process in which questions are asked of those involved in the modeling, 
such as ‘did the modeling process help to improve understanding of the 
system/problem?’ or ‘did the modeling process help facilitate commu-
nication between stakeholders?’ (Hamilton et al., 2019). The line of 
questioning can then leverage input from the various perspectives 
available, including those of experts and stakeholders for the different 
constituent systems of an SoS. Bias in the model, such as whether their 
respective positions were adequately represented, may then be assessed. 
Alternative conceptions and processes of the system and their scales 
could also be assessed at this stage (Voinov et al., 2016). 

4. The paths forward 

4.1. A grander vision and commensurate funding 

Addressing all the scale-related issues outlined in the paper requires 
a level of cooperation and concerted integrative effort that is by and 
large not possible given the usual short-term funding of the sciences (e.g. 
Saltelli, 2018). Recent publications have also brought attention to de-
ficiencies in the current science resourcing structure, characterized in 
part by competition over limited funding and an emphasis on (number 
and citation counts of) publications. Existing funding mechanisms may 
well be detrimental to the quality of science produced (Binswanger, 
2014; Sandström and Besselaar, 2018). 

Limited resourcing is one reason for the multiple, albeit siloed, ef-
forts with a focus on single case studies (Pulver et al., 2018; Hoekstra 
et al., 2014), and the necessity of excluding salient aspects of the 
modeling (such as adequate participatory processes; Eker et al., 2018) or 
making less than ideal choices about the model or data (e.g. using 
existing coarser scale data rather than collecting new data at a finer 
scale). Commentary by researchers highlight the importance of inter-
disciplinary work (Kretser et al., 2019; Meirmans et al., 2019), which is 
typically not funded to the same extent as monodisciplinary efforts 

(Kwon et al., 2017; Bromham et al., 2016). Regardless of the importance 
of such holistic assessments these real-world constraints essentially 
make holistic SoS modeling and analyses unrealistic. 

On the other hand, examples of large concerted efforts can be found, 
such as in astronomy and physics which have produced groundbreaking 
work with the Event Horizon Telescope (e.g. first photograph of a 
blackhole, Akiyama, 2019) and the Large Hadron Collider (e.g. discov-
ery of the Higgs boson, Aad et al., 2012). These resource intensive 
projects are important and could substantially influence future societal 
development. At the same time, lesser importance is placed by funding 
organizations on interdisciplinary socio-environmental works which 
arguably have a more immediate impact and benefit to society. 

A grander vision for SoS research, in line with large-scale collabo-
rations in other fields, is vital to achieve a truly holistic consideration of 
SoS modeling for resolving socio-environmental issues. Realizing this 
vision itself requires fundamental shifts in how such interdisciplinary 
work, and associated expertise, are viewed and funded (Elsawah et al., 
2020). Greater funding focused on education and training of interdis-
ciplinary system practitioners is fundamental for greater cohesion and 
consensus in the socio-environmental sciences (Little et al., 2019). While 
alternative funding models have been suggested for the sciences (see for 
example Meirmans et al., 2019; Higginson and Munafò, 2016), the 
current state of affairs is unlikely to change in the near future. Thus, any 
benefits from a systemic change, if they occur at all, will be experienced 
only in the long-term. 

Although disciplinary experts may collaborate, pool resources, 
engage with stakeholders and gain experience in interdisciplinary work 
in the process of investigating a socio-environmental issue, this is not an 
effective way forward. In the medium-term, existing case studies could 
be leveraged to perform a comparative meta-analysis to determine the 
level of influence system connections have, and the scales at which such 
connections matter (Pulver et al., 2018). Such meta-analyses could 
extend to the practices used to manage the socio-technical influences in 
the modeling process. Shifts towards leveraging collections of studies for 
meta-analyses are emerging in fields such as psychology to allow for 
what is known as “statistical objectivity” towards reported findings in 
the literature (Freese and Peterson, 2018). Although the focus there is in 
resolving issues of replicability, the same approach can be additionally 
leveraged to characterize scale commonalities. 

We conclude here by re-emphasizing three key considerations which 
can reinforce current SoS modeling efforts in a move towards the larger 
consensus needed for this grander vision. 

4.2. Strengthen interdisciplinary communication 

Here lies the crux of the challenge in developing a tiered SoS model. 
It is not only necessary for the science and engineering to mesh together 
appropriately, but it is fundamental that the modeling process also 
consider and embed the socio-technical considerations. While we as 
modelers struggle with the former, the latter is too often ignored. As 
there are a variety of participants, and therefore disciplinary perspec-
tives involved, a key set of considerations are in the social dimensions 
that provide the interface between modeling efforts. 

Integrating multiple perspectives requires an integrative approach 
which is ultimately necessary to navigate towards a beneficial system 
change (why else do we model?). Choices made in the treatment of scale 
are unavoidable and may result in conflicting decisions with separate 
implications. Just to name one, members of teams may have a path pre- 
selected without full consideration of the implications on the system 
representations, leading to further issues when such decisions are not 
communicated. 
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Metamodels approximate the input-output behavior of the original 
model (Castelletti et al., 2012; Christelis and Hughes, 2018; Pietzsch 
et al., 2020) and therefore provide simplified representation(s) of more 
complex models (Asher et al., 2015; Razavi et al., 2012). Metamodels 
leverage the emergent simplicity of complex systems and although there 
are a variety of methods available to accomplish this, generally meta-
models require the complex models (i.e. the original constituent models) 
to be available beforehand. Metamodels, being approximations of an 
original model’s response surface, are most relevant to the conditions 
existing in the datasets upon which they are tuned, so care needs to be 
taken if using them under conditions that transcend those extant in the 
data. System forcing data beyond that experienced, such as climate 
change or groundwater extractions, are of particular concern in this 
regard. If possible, simply allocating more computational resources (e.g. 
supercomputers) may be the most pragmatic and resource efficient 
alternative, especially considering the time taken to investigate and 
implement the options listed above. It is acknowledged, however, that 
more computational capacity may not be available. 

3.3.1. Analysis and visualization 
In the management context, where SoS models are typically applied, 

there is a need to adequately describe the level of uncertainties in the 
SoS model and its predictions. Individual stakeholders may react 
differently to uncertainties and levels of uncertainty (Cockerill et al., 
2019). Presenting scenario results relative to the modeled baseline 
neatly reduces the inherent biases that come with relying on stakeholder 
preferences to inform desirable thresholds, as would usually occur in 
multi-criteria, or multi-objective, analysis approaches (Maier et al., 
2016; Martin et al., 2017; Reichert and Borsuk, 2005). With such an 
approach, the acceptability of a (possible) maximum or minimum 
relative change becomes the focus of stakeholder discussion. 

Software tooling for supporting analyses of model results (including 
sensitivity and uncertainty analyses) typically necessitates interaction 
between the analysis software and the model(s), which may require the 
development of additional interfaces (i.e. code or supporting software). 
Due to the number of models involved, the associated parameters, and 
the possibly dynamic model structure (Wirtz and Nowak, 2017), main-
taining these interfaces in the SoS context may quickly become un-
wieldy. Additionally, it may be desirable to replace entire models to 
analyze the influence of model structure and the scales they represent 
(Ewert et al., 2011), thus potentially rendering existing interfaces 
obsolete. Recent efforts circumvent this issue by supporting the 
near-seamless transition between the nested hierarchical representation 
common in SoS design to the conceptually simpler “flat” structure ex-
pected in typical analyses (e.g. Schouten and Deits, 2020). An example 
of nested and flattened representations of a node network is provided in 
Appendix 1. 

A common requirement shared with tooling for conducting analyses 
(e.g. for sensitivity and uncertainty analysis, and exploratory modeling) 
is the provision and definition of parameter values. These may consist of 
a “default” value, a range within which values may vary, whether these 
values are categorical, scalar, or regarded as constants (examples may be 
found in Adams et al., 2014; Kwakkel, 2017; Pianosi et al., 2015; Razavi 
et al., 2019). Categorical values may indicate substitution with other 
data types or a collection of data types (e.g. rasters, climate sequences, 
etc.). Such information may be the minimum necessary to conduct such 
analyses, to reproduce and replicate results, and to support later auto-
mation of these activities. Parameter values in effect represent di-
mensions of scale and the inappropriate selection of their values and 
ranges may result in misleading results (Shin et al., 2013; Wagener and 
Pianosi, 2019). 

3.4. Perpetuation phase 

As in Badham et al. (2019), perpetuation is about the intended in-
fluence the modeling is to have into the future. The focus here is on the 

scale of documentation and process evaluation in SoS modeling which is 
informed by the level of consensus among stakeholders and modelers as 
to its purpose. In the research context, for example, there is a newfound 
expectation that the model be developed and provided in a manner that 
supports reproducibility and replicability. Reproducibility is the ability 
to recreate results, whereas replicability captures the ability of the 
model to generate new but consistent data in other applications (Patil 
et al., 2016). 

Where SoS models are used by external stakeholders, some amount 
of technical support is likely expected. Without this, use of the model 
and thus its impact is likely to be minimal. Computational models are 
software in that they are made of code, and so continued use comes with 
a baseline cost to cover maintenance, improvements, and updating of 
documentation. Such capacity is crucial in contexts where long-term 
management and decision support is an acknowledged requirement. In 
such cases the design, implementation and documentation of the model 
should plan for these long-term activities from the beginning. In the SoS 
context this implies retaining the interdisciplinary knowledge within a 
team or organization (e.g. Cockerill et al., 2019; Kragt et al., 2013). 

3.4.1. Documentation 
Whereas earlier sections spoke to the content of documentation, this 

section focuses on the role of documentation in an interdisciplinary 
setting such as SoS modeling. Documentation is a conduit through which 
information and knowledge are propagated and provides the necessary 
context for model evaluation (Cockerill et al., 2019). Without sufficient 
documentation, it is difficult to understand the context that led to any 
specific issue, including mismatches between constituent models. Lack 
of context then affects the perceived validity of the model conceptuali-
zation, restricts model use, rendering the model inappropriate or invalid 
for its purpose. 

The act of documenting itself allows for reflexive and transparent 
communication and for new insights to be gained. Undocumented as-
sumptions regarding scale and their influence may compromise other 
constituent models, thus holistic awareness of the SoS issues can be 
obstructed by a lack of documentation. Long-term maintenance and use 
of the model may also be impeded (Ahalt et al., 2014). No individual 
holds the knowledge and awareness of the modeling details in their 
entirety, let alone the effects of interactions between models. It is 
therefore important to recognize that writing and maintaining docu-
mentation should be a team effort, and a culture to support this should 
be fostered. 

In practice there are few incentives for documenting models to such 
an extent. A key problem in SoS model documentation is that details of 
the constituent models important for the SoS team may be considered 
unnecessary for the teams developing the constituent models. Once 
again, this stems from potential disconnects between the purpose of the 
SoS model and the individual (or original) objectives of each constituent 
model. In the sciences the focus is often on the publication of papers at 
the expense of ensuring model reuse or reproducibility and replicability 
(Easterbrook, 2014; Joppa et al., 2013; Peng, 2011; Schnell, 2018). 
There is an increasing push to change the culture surrounding the 
publication process, however, to better recognize, credit and incentivize 
model code publication. For example, a number of organizations have 
begun supporting “Open Code Badges” to highlight reproducible work 
(https://www.comses.net/resources/open-code-badge/). 

3.4.2. Process evaluation 
The extent to which the modeling has achieved its overarching 

purpose is evaluated in this step (Badham et al., 2019). This evaluation 
extends beyond the technical performance of the SoS model (Bennett 
et al., 2013) to consider outcomes of modeling as a social process. 
Success of a model depends on the beliefs and expectations of the 
intended users and in their satisfaction with the model and its results 
(Hamilton et al., 2019). It may also depend on the biases and beliefs of 
the model creators (Glynn et al., 2017) and in an alignment of 
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testing and evaluation involves attempting to refute aspects of SoS 
model structure and functional relationships within the model based on 
their lack of correspondence with the represented system and the model 
outputs. Stakeholders could be leveraged to evaluate the conceptual 
alignment and appropriateness of the SoS representation at the selected 
scales. 

Evaluation of the behavioral relationships at the integrated level is 
similar to scientific hypothesis testing (Wilson et al., 2017) or “con-
ceptual testing” (Iwanaga et al., 2020) wherein functional relationships 
within the SoS model are examined. Such tests may be especially useful 
in cases where the internal workings of a model are inaccessible or 
otherwise unknown but expected behavior of the constituent model in 
the integrated context can be characterized (Iwanaga et al., 2020). These 
approaches can be used to identify impossible or implausible aspects of 
the SoS model output. If any aspect of model structure or any functional 
relationship within the model can be shown to be an inadequate rep-
resentation of the corresponding aspects of the real system, then that 
particular portion of the model is refuted (Li et al., 2016). Examination 
of model behavior over a range of inputs will also help to expose addi-
tional inadequacies in the model (Bennett et al., 2013). 

The interesting aspect in this regard is that successful testing and 
evaluation of the constituent models does not guarantee correctness of 
the SoS model and vice versa. Testing and evaluation may happen at 
different scale levels, and acceptable model behavior depends on the 
model purpose and consequent measures or indicators of interest. Model 
behavior of constituent models could be examined quantitatively 
through assessment of the intermediate data in the models to ensure 
their behavior is consistent with a priori expectations. 

It is necessary to test the software used to interoperate data across the 
different hierarchical levels using relevant testing approaches. These 
include checking the mapping of input-outputs between models, con-
version of units, use of metadata to perform semantic operations, and 
translation of spatial temporal dimensions (Ayllón et al., 2018; Belete 
et al., 2017; Voinov and Shugart, 2013). Testing processes found in 
software engineering may additionally aid in conducting such checks 
(see for example, Laukkanen et al., 2017; Verweij et al., 2010; Yoo and 
Harman, 2012). 

It may also be possible that some data gaps or uncertainties from 
constituent models have a lesser or negligible effect on the SoS model 
depending on how the constituent model is leveraged at the SoS level. 
Furthermore, constituent models may present overlapping and/or con-
flicting data or assumptions that will only be revealed when testing and 
evaluating their integration. A common example is double counting un-
certainty due to embedded assumptions in the model or failure to detect 
correlated variables with a common cause. 

The next step focuses more specifically on the correspondence be-
tween model projections and observed data. Strictly speaking, data used 
in model testing and evaluation must be independent of data used to 
develop the model (Raick et al., 2006). A variety of visual, statistical, 
and machine learning methods are widely used to evaluate SoS models. 
The choice of method, however, should be based on the fundamental 
questions of what scenarios and observations to use in the evaluation. 
Evaluation of models under the range of conditions similar to those of 
interest can aid in identifying limitations of the model (Ramaswami 
et al., 2005). 

Sensitivity analysis is now regarded as standard practice in modeling 
(Norton, 2015; Pianosi et al., 2016; Razavi and Gupta, 2015). The 
sensitivity of SoS model behavior to changes to its constituents and their 
interactions is the target of the assessment (Moriasi et al., 2007). An 
issue stemming from the likely overparameterization of constituent 
models is equifinality and the lack of identifiability. Equifinality refers 
to the phenomenon of different implementations or combinations of 
model structure, parameter values, and their interactions producing 
equally acceptable results (Wagener et al., 2003; Beven, 2006). Identi-
fiability then refers to the ability to attribute the influence on model 
outputs to unique model parameters or structure (Muñoz et al., 2014; 

Guillaume et al., 2019). Therefore, the greater the number of parame-
ters, the less identifiable the model becomes. 

Sensitivities are assessed as part of identifiability analysis, typically 
by ranking parameters based on their influence on outputs which can aid 
in determining what parameters require focused efforts to reduce un-
certainty or improve identifiability (e.g. Factor Prioritization; Nossent 
and Bauwens, 2012). Information from sensitivity and identifiability 
analysis can then aid in simplifying the model (as discussed in the pre-
vious section). Similar to what was noted in Section 3.2.3, naively 
applying sensitivity and identifiability analysis without consideration of 
the SoS context may adversely affect modeling outcomes. 

Assessment of sensitivities would ideally rely on global, rather than 
local analyses for reasons that have been expounded in prior literature 
(see for example Pianosi et al., 2016; Saltelli and Annoni, 2010). Use of 
global sensitivity analyses in model assessment has seen increasing use, 
despite the lack of uptake or reported use of available software tools to 
conduct such analyses (Douglas-Smith et al., 2020). Still, the importance 
of such analyses tends to be under-appreciated (Saltelli et al., 2019). 

One practical reason for the lack of global sensitivity analyses is that 
they are typically computationally expensive to perform and the SoS 
models themselves typically exhibit long runtimes. Dependencies and 
correlations between parameters across constituent models and their 
respective scales pose another challenge (Koo et al., 2020). Metamod-
eling (expanded on in the next section) along with recently developed 
sampling and analysis methods may be more amenable to the SoS 
context. Examples of such methods that warrant further investigation 
include moment-independent methods (such as PAWN; Pianosi and 
Wagener, 2015) which can be applied independent of the sampling 
scheme used, and variogram-based approaches (e.g. STAR-VARS; Razavi 
and Gupta, 2015) which can reportedly account for temporal and spatial 
correlations. Adaptive sampling of the parameter space, through 
sparse-grids for example, in combination with these analysis techniques, 
may also aid in reducing the computational costs associated with 
sensitivity and uncertainty analyses (Buzzard and Xiu, 2011; Xiong 
et al., 2010). 

3.3. Application phase 

A critical aspect in the application of SoS models is that constituent 
models evolve independently. Development of each constituent model, 
by necessity, is led by disciplinary experts and undergoes separate, 
asynchronous, development cycles. As each model may come from 
different paradigms and sources of knowledge, the implementation may 
be adjusted over time or even replaced in response to newly acquired 
knowledge. Advancing towards trial model applications using the ex-
pected type and volume of data as early, quickly and often as possible 
allows modelers to encounter issues in the model application earlier in 
the process (Warren, 2014). Experience gained with each iteration 
subsequently serves to rectify and protect against future application 
challenges. Application of the model then requires monitoring and 
scrutinizing to ensure the underlying models (including their metadata, 
represented knowledge and application context) remain current and 
appropriate. 

When models are integrated, the runtime may prevent practical 
application for its primary purpose, such as social learning through 
interactive use with stakeholders, or for global sensitivity analyses. One 
option to overcome this problem is to simplify the constituent models for 
the specific purpose. Doing so requires a high degree of knowledge of the 
constituent models, however, and may not be practical in cases where 
legacy models are used. Spatially explicit models can especially be a 
problem in regard to runtime, and a solution for reduction in compu-
tational burden may be achieved through aggregating grid cells into 
similar zones (e.g. groundwater model aggregated into hydraulic con-
ductivity zones; Elsawah et al., 2017). 

In cases of high runtime, replacing the most computationally 
expensive constituent models with metamodels may be a viable option. 
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quantitative and qualitative aspects of uncertainty, which may be 
further classified based on their source or primary influence. Prior 
literature, for example, speaks of model structure, technical, parameter, 
scenario, contextual and predictive uncertainty (for further description, 
see Beven, 2009; Pianosi et al., 2016; Walker et al., 2003). 

Quantitative approaches aim to measure the effect of uncertainty in a 
specific parameter, input or assumption on an output and allow the 
numerical characterization of the output distribution and therefore 
model behavior (Saltelli et al., 2019; Zimmermann, 2000). Qualitative 
uncertainty, however, cannot be characterized with a value and arises 
from sources such as the biases and subjective beliefs of human actors 
(Chen et al., 2007). Qualitative uncertainty can also arise from the 
modelers’ subjective judgment, linguistic imprecision and disagreement 
across actors involved (Linkov and Burmistrov, 2003; Refsgaard et al., 
2007). 

One reason for increased model uncertainty in SoS modeling is the 
complexity that is largely a result of the increased scope of modeling, 
which comes with a larger number of models and people (and their 
perspectives) involved. The increase in the number of actors typically 
results in an increase in the overall number of parameters and their 
possible interactions (Oreskes, 2003), the number of possible decision 
pathways in the modeling process (Lahtinen et al., 2017), and the level 
of stakeholder influence at each decision fork (Ostrom, 2007). 

Increasing model complexity allows for a higher-fidelity model, but 
can also increase the perceived uncertainty in a traditional sense; known 
as the complexity paradox (Oreskes, 2003). Characterizing “true” un-
certainty in an SoS model, however, is impossible as it requires a model 
that represents everything perfectly including unknown unknowns 
(Hunt, 2017). Uncertainty may then compound with each interaction 
across constituent models in the SoS framework, propagating some 
amount of error (Dunford et al., 2015). Thus, it becomes progressively 
difficult to gain insights as to what effect and influence the combinations 
of these have (structural and parameter identifiability as in Bellman and 
Åström, 1970; Guillaume et al., 2019). High levels of model uncertainty 
need not be a barrier to effective decision support, however, and is 
ameliorated by providing estimates or assessments of such uncertainties 
(Reichert and Borsuk, 2005), both quantitative and qualitative. Different 
strategies and further considerations for uncertainty assessment are 
needed in SoS modeling compared to single-system modeling. 

One commonly suggested approach to restricting model complexity 
(and possibly runtime) is to screen for insensitive parameters (Pianosi 
et al., 2016). Such parameters are said to have negligible influence on 
model output and so may be “fixed”, i.e., made static in subsequent 
analyses, or otherwise removed from the model. Another is to “tie” 
related parameters so that they may be represented by a single 
“hyperparameter” (Raick et al., 2006). Reducing the number of pa-
rameters, however, does not necessarily equate to a reduction in un-
certainty. Rather, it may simply mean consideration of an uncertainty 
source is determined to be unimportant for a given context or purpose 
(Pianosi et al., 2016), and doing so may trade off model fidelity under 
new unseen conditions. 

Use of a constituent model within an SoS model as opposed to its 
individual operation, or its modification or simplification through 
parameter screening and tying constitutes a change in context. There-
fore, parameters initially found to be influential might become inactive 
and non-influential (and vice versa), or the relationships that led to 
parameters being tied may change. The change of context also changes 
the relevance of the assumptions and objectives, and what constitutes an 
appropriate uncertainty analysis (Song et al., 2015). Uncertainty anal-
ysis conducted in one context is not valid across all scales. Thus, pre-
mature model simplification may ultimately affect the appropriateness 
of the SoS model for its overarching purpose. A comprehensive sensi-
tivity analysis under current and possibly alternative conditions can 
provide valuable insights into a key question: “when and how does un-
certainty matter?“, as discussed in Razavi et al. (2019). An alternate view 
is that, given the likelihood of limited computational resources, efforts 

to characterize and communicate uncertainties to stakeholders may be 
more beneficial than an exhaustive sensitivity analysis (Reichert, 2020; 
Anderson et al., 2015). 

An additional consideration is that a constituent model may be a 
legacy or third-party model that cannot be modified (e.g., due to lack of 
access to the underlying code). This would introduce some hidden or 
uncharacterized uncertainty into the SoS modeling. In this case, meta-
modeling (expanded on in the next subsection) might provide some help 
in simplifying the model. 

Explicit documentation of the criteria used for each constituent 
model can ensure relevance of its application and reduce contextual 
uncertainty (see Walker et al., 2003) across all the scales involved. 
Accordingly, in the recent update of the ODD protocol (Grimm et al., 
2020), a standard format for describing models, the element “Purpose” 
has been changed to “Purpose and patterns”, with patterns being the 
multiple criteria for ensuring a model’s structural realism, as defined in 
the “pattern-oriented” modeling strategy (Grimm, 2005; Grimm and 
Railsback, 2012). The effect and relative importance of model structure 
uncertainty may be assessed through expert and stakeholder knowledge 
of alternate models (van der Sluijs, 2007) and Bayesian approaches 
could be applied to characterize the known unknowns (Clark, 2005). 
Uncertainty matrices have also been suggested as a tool to qualitatively 
identify and document the source, type and nature of uncertainty and 
assess its relative priority in a table-like format (see Refsgaard et al., 
2007; Koo et al., 2020). 

Increased consideration of technical uncertainty (adopting the term 
from Walker et al., 2003) is another area which warrants further 
consideration in the SoS modeling context. Choice of what infrastructure 
and technologies to use is likely to stem from the prior experiences of the 
team(s) involved. Constituent models may be run on different infra-
structure than was originally intended, especially as issues around 
computational reproducibility are addressed (Barba, 2019; Hutton et al., 
2016). Identical code run under different computational environments 
may produce different results (see for example Bhandari Neupane et al., 
2019). Such infrastructure may differ in physical or virtual architecture 
(e.g., laptop, supercomputer, or operating systems) or method of gen-
erating/interpreting code (e.g., different languages, compilers, package 
versions). Various combinations of these may be used and may also 
differ in the development and application phases. For these reasons the 
influences of different and interoperating infrastructure are important 
considerations (Iwanaga et al., 2020). 

Correlation between parameters is another issue that is often ignored 
in the characterization and attribution of uncertainty (Do and Razavi, 
2020). Correlation refers to statistical dependency between parameters. 
It is different from interaction effects which refer to the presence of 
non-additive operations among two or more factors embedded in 
constitutive equations of the model. In SoS modeling the issue is further 
escalated as possible correlations between the factors of different models 
needs to be accounted for. Ignoring correlations can falsify any esti-
mation of uncertainty (Do and Razavi, 2020). 

3.2.5. Testing and evaluation 
Testing and evaluation can assist in the assessment of the ramifica-

tions of scale choice. In this step reasonableness of model structure and 
interpretability of relationships within models are assessed along with 
the traditional analysis of model behavior. Not all outputs produced by 
the constituent models may be relevant for the SoS model purpose and 
the validity of their outputs are affected due to the integrated nature of 
SoS modeling. For any evaluation to be effective, the specific model 
outputs of interest that are relevant for the model purpose must be well 
understood. Outputs may be at a particular spatio-temporal scale, for 
instance a long-term average of a model output over a large spatial 
domain or an extreme event at a specific point location. Issues may also 
stem from the conceptual suitability of constituent models as uncer-
tainty may be propagated throughout and may compound as more 
models are integrated (Dunford et al., 2015). Thus, the first step in 
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et al., 2020) and efforts to record their quantities (e.g. centimetre, 
grams, etc.) and relevant operators in a specific metadata format have 
also been undertaken (e.g., the Standard Names, in Hobley et al., 2017). 
Having the inputs and outputs described and documented in such a way 
aids in reducing potential mismatches in later (re)use and could be used 
to enable later automated model coupling. Frameworks do not yet fully 
automate conversions or identify incompatible or inconsistent usage (e. 
g. litres per second to degrees Celsius) although this is likely to change in 
the near future. 

Both the selected framework and constituent models may change 
over the course of the modeling cycle along with the scales represented. 
Such changes may affect its appropriateness with respect to the model 
purpose. For example, adoption of a particular framework or model may 
increase the computational requirements or necessitate changes to 
constituent models to allow interoperation. Inadequate consideration of 
the concerns and requirements of the modeling as a whole may occur in 
cases where cognitive constraints are still in place. The modeling process 
may be smoothed if requirements of the later phases are kept in mind 
during the design, construction (or selection) of models, and the re-
sources allocated – including the availability of expertise – to each of 
these activities. 

3.2.3. Model calibration 
Calibration is the process of tuning parameters or altering the func-

tional forms of equations or relations to achieve desired model behavior 
(Bennett et al., 2013). In SoS modeling, issues such as non-identifiability 
and equifinality (Beven and Freer, 2001; Guillaume et al., 2019), curse 
of dimensionality (Bellman, 2015), computational burden (Razavi et al., 
2010), and data representativeness (Beven and Westerberg, 2011; Singh 
and Bárdossy, 2012) may all be amplified. 

Calibration implies the existence of appropriate and sufficient data to 
calibrate models against. Availability of data relevant for the modeling 
purpose is a requirement no matter how perfect the model may be. 
Conversely, a lack of data does not imply subsequent modeling is not 
useful. A model with high uncertainty may still characterize uncertainty 
in a way that is meaningful to decision makers, for example indicating 
the comparative tradeoffs between available management options 
(Reichert and Borsuk, 2005). Assessment of uncertainty can be helpful in 
determining the relative “worth” of data to be collected to better char-
acterize uncertainty and inform future modeling or research 
(López-Fidalgo and Tommasi, 2018; Partington et al., 2020). Such 
optimal experiment design approaches may also be leveraged to maxi-
mize the use of available data (Bandara et al., 2009; López–Fidalgo and 
Tommasi, 2018; Vanlier et al., 2014). 

Arguably, model calibration within the SoS paradigm can take three 
general approaches: (1) calibration of each constituent model indepen-
dently before integration, (2) calibration of all models together after 
integration, or (3) a combination thereof. The first approach is the 
simplest and most straightforward as each constituent model would be 
calibrated within its own domain (Phillips et al., 2001). While prag-
matic, it ignores the effect of representing different scales across the 
represented SoS and system-system interactions, which in turn affects 
model behavior and performance of the individual constituent model. If 
a model is considered “calibrated” when both an acceptable level of fit 
and reasonable parameter values are found (as in Anderson et al., 2015), 
calibration in the disintegrated context does not necessarily transfer to 
the integrated context. In other words, what is “reasonable” in one 
context may not be so in another, and the selected parameter values may 
not be robust to the change in context that integration brings due to the 
different scales, interactions and data space involved. 

The second approach is seemingly the most comprehensive approach 
to model calibration, as every possible interaction between models could 
be present in the process of model calibration (Huang et al., 2013). 
Interdisciplinary knowledge is leveraged to ensure calibrated values are 
both reasonable for the expanded operationalization. This then enriches 
the data space for individual constituent models and improves their 

performance (Jones et al., 2017). The approach, however, has the 
following major barriers:  

• The search space for model calibration will be excessively large (Ling 
et al., 2012). In addition, new (possibly erroneous) interaction effects 
might emerge between the parameters of one model with those of 
another model, especially with different scales of information, which 
makes the response surface extremely complex for model calibration. 
The calibration process might then become computationally 
cumbersome and/or infeasible.  

• The available data with different scales may not be enough to 
properly constrain the model in the process of calibration (Ingwersen 
et al., 2018), as it is not identifiable from the data (Guillaume et al., 
2019). There is a risk of overfitting as well, as the available data 
might be insufficient to produce a generalized model that covers the 
integrated domain.  

• Expert knowledge for each model may have scale constraints and 
may not be easily transferable to the full SoS domain (Howard and 
Derek, 2016). 

In the third approach, models are integrated one-at-a-time, incre-
mentally adding complexity so that the influence of each constituent 
model can be directly attributed and subsequent issues can be addressed. 
This approach may include modifying the conceptualization as neces-
sary and sequentially calibrating the resulting integrated configurations 
(Duchin, 2016; Duchin and Levine, 2019). While this approach may be 
as pragmatic as the first, and perhaps as comprehensive as the second, 
the disadvantage is the time and computational cost to perform 
sequential coupling and calibration. Such an approach would seem more 
practical in cases where there is little disciplinary friction and a rela-
tively small number of models to be integrated. 

In all approaches above, the role of expert knowledge in determining 
the acceptability of the calibration cannot be understated. In manage-
ment contexts, for example, change in policy (e.g. the governing rule-
sets) may impart shifts in system behavior that may be hard to discern by 
examining quantitative data alone, and even more difficult to represent. 
Machine learning approaches may assist in identifying and representing 
non-stationary system behavior (e.g. Rui Wu et al., 2019; Razavi and 
Tolson, 2013) but still require intensive data for training and validation 
by experts where possible (Razavi and Tolson, 2013), and scale issues 
still exist between different single-system models or different levels of 
model integration. Such information in one system may have implica-
tions for how other constituent models are calibrated, and so interdis-
ciplinary communication, awareness and consideration of the 
intertwining issues is necessary to safeguard against mismatches. 

A calibration method which seems not to have been used explicitly 
for SoS models is pattern-oriented modeling (Grimm and Railsback, 
2012; Railsback and Grimm, 2019; Wiegand et al., 2004, 2003). Here, a 
set of patterns observed at different scales and levels of organization is 
used to reject, as a set of filters, unsuitable parameter combinations and 
process representations, and may be closely related to the use of hy-
drologic signatures for (hydrological) model calibration and testing 
(Gupta et al., 2008). As for parameters, this approach corresponds to the 
rejection method in Approximate Bayesian Computing (van der Vaart 
et al., 2016). The basic idea is that a combination of “weak” patterns, 
which by themselves do not contain much information and thus would 
not reject many parameter combinations, can be as efficient as using a 
“strong” pattern, which is highly distinctive, but might not be available. 
For models with multiple scales, this approach holds high potential as it 
would help to keep both the SoS and constituent models within realistic 
operation spaces. 

3.2.4. Uncertainty analysis 
SoS models often target large problem domains which necessitate 

complex models for their assessment and by their nature have a high 
degree of uncertainty. For the discussion here, we speak to the 

T. Iwanaga et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 135 (2021) 104885

7

may dictate modeling pathways in another. In an SoS setting there are 
many more participants involved and so there is a high degree of un-
certainty stemming from the decisions made as a result. 

Data quality and informativeness (e.g. accuracy or precision) pro-
vided by constituent models may also be diverse. Diversity of data ob-
tained from a diversity of sources, however, runs the risk of conflicting 
information (Gray et al., 2012). Modelers from different disciplines may 
also utilize different scales for the same process, resulting in in-
consistencies, and thus errors, the sources of which are difficult to 
identify. In this regard, non-quantitative sources of information, gath-
ered from literature and/or through stakeholder engagement, may 
become key assets that resolve such issues (Grant and Swannack, 2007). 
In cases where data describing a particular linkage in an SoS model are 
not available, theoretical relationships, generally applicable empirical 
relationships, or model process and output can be useful representations 
for the purpose of the SoS model (Rai et al., 2002). The documentation 
developed in the Scoping phase can be leveraged to ensure applicability 
and validity with regard to the model purpose. 

3.2.2. Construction 
Construction of computational SoS models requires the marrying of 

domain expertise from across the various disciplines involved with 
technical software development knowledge. While the overarching 
context may be well-defined within the scoping phase, it is in this 
Construction step that the individual components, and the scales they 
represent, are developed, and coupled, tested and validated. Here, 
existing models may be repurposed or new models developed. The 
specifics of their initialization, interoperation, method of execution and 
management of the data involved are to be determined and prototyped 
in this phase (Igamberdiev et al., 2018; Madni and Sievers, 2014). 

A balanced approach is needed in SoS model development that takes 
several factors into account. There is a danger that the models them-
selves become treated as pieces of software that merely require 
connection, ignoring the socio-technical context for their intended use 
(Voinov and Shugart, 2013). Another issue is the overparameterization 
of constituent and component models (Brun et al., 2001; Nossent and 
Bauwens, 2012), as simply integrating these models to form an SoS 
model exacerbates issues of uncertainty and identifiability (consider-
ations of which are explored in the following sections). At the same time, 
ignoring the technical considerations of integration is also inadvisable 
(Verweij et al., 2010). Mitigating the issues that consequently arise be-
comes increasingly difficult as more systems and scales are included 
(Voinov and Shugart, 2013; Wirtz and Nowak, 2017). 

Requisite systems could be represented at the level of detail neces-
sary for the SoS model purpose through a tiered modeling structure 
(Little et al., 2019). Implementation of such a tiered approach can 
involve developing metamodels or entirely different system models. 
Metamodels being simplified representations of more complex models 
(revisited in Section 3.3). Two pertinent issues in SoS model construc-
tion are the focus below: managing the conceptual inter-connection 
between models, and the process of integration. 

3.2.2.1. Conceptual integration. Conceptual integration of constituent 
models can benefit from requiring that constituent models be mecha-
nistic as opposed to black boxes. When a model is implemented as a 
black box, it becomes difficult to evaluate and understand (Lorek and 
Sonnenschein, 1999). SoS modeling may make use of pre-existing 
models which constitutes re-purposing, implying the transference of 
the model assumptions, limitations, and scale to a new context. It is 
emphasized here that model suitability within its original context is not 
necessarily applicable to the new context (Ayllón et al., 2018; Belete 
et al., 2017; Voinov and Shugart, 2013). Availability of code alone, for 
example, does not imply transparency. What is important is the 
contextual information that is necessary to assess the suitability of the 
model purpose and functionality. 

A key challenge then is ensuring the box remains open and trans-
parent rather than closed and opaque. Opaque development can be 
attributed to the modular nature of constituent model development, 
with the teams working separately - both conceptually and geographi-
cally - and often split along disciplinary lines. Such teams can be 
described as self-organizing (Sletholt et al., 2012) but may lack 
cross-disciplinary knowledge (cross-functionality, as in Hidalgo, 2019; 
Hoda et al., 2013). The lack of interdisciplinary communication between 
teams then results in black, or at best gray, box models to those not 
involved in their development. 

What is important in this interdisciplinary context is clear docu-
mentation and an organizational culture that supports the perpetuation 
of the relevant contextual knowledge. As previously mentioned in Sec-
tion 3.1.3, describing the model and its conceptual linkages in a single 
canonical document via the ODD Protocol (introduced in Section 3.1.3) 
is one approach that could be leveraged. Furthermore, a “nested ODD” 
approach may be adopted in the case of complex SoS models wherein the 
constituent models may be another SoS model. 

3.2.2.2. Technical integration. Technical integration refers to the cor-
rectness of model interactions, recognizing the distinction between 
conceptual or abstract representation (e.g. an equation or flow diagram) 
and its implementation as software. Successful technical integration of 
computational models requires the necessary engineering expertise to be 
available (Knapen et al., 2013). Crucial considerations are that constit-
uent models interact and accordingly that errors will propagate (cf. 
Dunford et al., 2015), and that each constituent model may undergo its 
own separate development cycle which invariably necessitates continual 
adjustments to be made. 

Flexibility of integration is often desirable as it allows the model to 
be resilient against changes in the modeling scope. Flexibility facilitates 
investigations into model structure (of both constituent and component 
models) and the technical design considerations that lead to flexibility 
allows for the composition of different combinations of relevant code 
and data represented through a nested hierarchy (e.g. ‘loose coupling’; 
Elag et al., 2011; Vale et al., 2016; Whelan et al., 2014). Use of inte-
gration frameworks are helpful in that they allow the treatment of in-
dividual models as loose, composable, modules that provide some 
flexibility in dealing with the range of scales involved. 

Current integration frameworks typically have their roots in specific 
disciplines and tend to focus on physical processes (cf. Ayllón et al., 
2018). The Open Modeling Interface (OpenMI, Moore and Tindall, 
2005), for example, has had to evolve from its initial focus in the hy-
drological sciences to accommodate an interdisciplinary modeling pro-
cess (Buahin and Horsburgh, 2018). Thus, while the processes and 
requirements of such frameworks may be generally applicable, there 
remains some difficulty in their generic implementation and adoption 
within the interdisciplinary context of SoS modeling. 

In some cases, such frameworks may be overly complex or otherwise 
unsuitable for the purpose and context in which the modeling is being 
conducted. Such difficulties may be resolved in the future as improve-
ments to these frameworks are ongoing (Voinov and Shugart, 2013). 
Often modelers adopt a less formalized approach to avoid an inappro-
priate or constraining framework. In either case, ensuring semantic and 
conceptual correctness between models is typically left to the modelers 
themselves (cf. Hutton et al., 2020). Direct, manual, “tight-coupling” of 
models without the use of integration frameworks is still very much the 
norm. 

More recent efforts include a collaborative web-based platform 
through which the conceptual, semantic and technical integration oc-
curs (OpenGMS, in Chen et al., 2019; Chen et al., 2020). Faster feedback 
between participants then allows identified issues to be addressed 
earlier. Other approaches provide a curated ontological set of de-
scriptors for common phenomena of interest (e.g. snowmelt or rainfall). 
These can be referred to as “system variables” (as in Pacheco-Romero 
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group, and when the conflict is task-related rather than interpersonal 
(De Dreu, 2008). Power dynamics within teams and stakeholders 
therefore need to be considered (National Research Council, 2013). 
Identification and focus on objectives that require participants to work 
together (known as goal interdependence) is an identified foundation 
towards project success and may additionally help in avoiding conflict 
(Knight et al., 2001; Lee et al., 2015; Tjosvold et al., 2003). Careful 
design and management of interactions between teams and stakeholders 
requires an explicit consideration of how the multiple, and at times 
contradictory, objectives might align or connect. Approaches to conflict 
resolution and prevention (e.g. boundary critiquing, Midgley and 
Pinzón, 2011) are promising, but still under-utilized techniques. 

Effective stakeholder engagement will in practice be impacted by 
geographic spread (Allen and Henn, 2006), as the realities of scheduling 
rarely allow all stakeholders to be engaged at the same time and place. 
Additionally, a diversity of stakeholders (e.g. policy makers, scientists, 
and the public) mean material and modes of communication may need 
to be tailored for each. Online participation platforms and technologies 
extends the reach to participants and are appealing for their asynchro-
nous and distributed modes of engagement (Yearworth and White, 
2018). These relatively new technologies are simply tools, however, and 
a capacity to both use and leverage their advantages is also required 
(Cooke et al., 2015). Regardless of how interactions are to occur, 
without documenting a Record of Engagement and Decision-making 
(RoED, Cockerill et al., 2019), the original purpose, assumptions, and 
social and biophysical context of the engagement and resulting model 
choices might be lost, leading to mismatches in understanding, 
conceptualization, and implementation. The literature is still limited on 
the effectiveness of using different participatory methods for different 
purposes and audiences (Voinov et al., 2018). Nevertheless, plans for 
stakeholder engagement for SoS modeling should explicitly consider the 
scaling challenges, and devise strategies to deal with these. 

3.1.3. Preliminary conceptual model 
The preliminary conceptual model represents the current under-

standing of the system and the relationship between constituents, 
including identification of key drivers, interactions and outputs of in-
terest (Badham et al., 2019). In describing and capturing the essence of 
the system, development of the conceptual model helps with the design 
of the subsequent (computational) model as well as making concrete the 
model purpose. Two scale-specific aspects are to be considered here: the 
approach used for conceptual model development (see Table 2 for a 
general overview) and the formal representation (e.g. equations, tech-
nical specifications, etc.). The processes that are included or excluded 
based on actors’ perceptions, priorities, beliefs, and values under the SoS 
context will inevitably influence the data leveraged, the properties of the 
computational model, and therefore the paths taken. 

Few mapping techniques exist that focus on illustrating multi-scale 
representations. Scale separation maps (Hoekstra et al., 2007) or 
Stommel diagrams (Scholes et al., 2013) represent the scales of the 
constituent systems on a two dimensional space-time map. System dia-
grams, such as the representations used in van Delden et al. (2011) and 
Oxley and ApSimon (2007), organize the system components according 
to their spatial and/or temporal scales, and show the interactions be-
tween these components. On the other hand, coupling diagrams (Fal-
cone et al., 2010) show the flow of data between models. 

A further approach is to use the ODD protocol, named after its three 
blocks: Overview, Design concepts, and Details (Grimm et al., 2006). 
The original purpose of the ODD protocol was to describe and enable 
transparent communication of agent-based models (ABMs) to ensure 
their replication and the reproducibility of results based solely on the 
model description (Grimm et al., 2020). The conceptualization involved 
in the Overview block mandates identifying the scales of the processes or 
system components to ensure a shared understanding of the system 
being modeled. This is further complemented with the identification of 
relevant resolutions and spatial/temporal bounds. At this stage, the 

bounds can be vaguely defined (e.g. local, regional, global). This initial 
assessment of the scales involved may be revised throughout the 
modeling process as understanding improves. The ODD protocol is 
under continual development, and planned additions extend its 
consideration and applicability of use to other areas not previously 
considered (as outlined in Grimm et al., 2020). 

If differences in conceptual understanding of the scales and their 
interactions cannot be reconciled at this stage, it is possible to create 
multiple alternative models representing the different hypotheses which 
can be tested in later stages of the modeling process. Such an approach 
can also assist in assessing uncertainty rooted in model building choices, 
as the treatment of scale may affect model outputs and outcomes 
(further discussed in Section 3.2.4). Although conceptual diagrams can 
be developed without specifying the scales involved, explicit consider-
ation of scale is valuable for avoiding misinterpretation of the concep-
tualization and ensuring key variables and processes are included. A 
useful reflexive exercise, not usually reported but aiding transparency, is 
to identify what alternative approaches were considered, or could have 
been considered, and how these may have affected results and outcomes, 
if adopted. 

3.2. Development phase 

3.2.1. Collecting data, information, and knowledge 
Data, information and knowledge for each constituent model may 

come from the field or through literature, solicited through expert and 
stakeholder engagement, or collected through analysis. Considerations 
towards data collection in the integrated setting have been previously 
explored in Badham et al. (2019). Correctly communicating and inter-
preting data across heterogeneous systems, however, requires that the 
data are interoperated between constituent models and that model 
behavior across scales remains valid and meaningful (Renner, 2001). 
For this purpose, metadata serves an essential role. 

Transparency in the collection process and approval from those 
involved in the modeling are necessary to ensure that collected data 
remain conceptually relevant across scales. Furthermore, transparency 
in the context of data collection and usage is a key factor to develop trust 
among stakeholders and model users, and future adoption of the con-
stituent models (Barba, 2019; Gray and Marwick, 2019). Data may need 
to be transformed to be fully relevant for the context of its intended use, 
such as up-or-downscaling to ensure compatibility with other processes. 
Ideally, metadata would include information on the data collection, 
uncertainty and transformation process, which aids in determining the 
appropriateness of data for the SoS model. Explicit descriptors of both 
input and output data can assist in identifying the commensurate level of 
data collection with respect to available resources. 

Modeler bias can have a compounding effect as the choice of data 
collection, as well as the metadata that describes the data, influences 
how system interactions are perceived, and thus conceptualized (Bhat-
tacherjee et al., 2008). What may be considered irrelevant in one field 

Table 2 
Description of the general approaches in the development of multi-scale models, 
adapted from Ingram et al. (2004).  

Approach Description 

Top-down Creation of a coarse generalized model which is then progressively 
refined to an appropriate mix of scales. 

Bottom-up Models are developed at the smallest resolution initially 
conceptualized to be necessary and are then expanded to encompass 
scales as further information becomes available. 

Middle-out Development of the SoS model begins at the scale richest in data or 
information, working “outwards” towards smaller and larger scale 
models, as necessary. In SoS modeling, what is “richest” is likely to be 
subjective to each discipline and available understanding. 

Concurrent The process of constructing models to represent all hierarchical levels 
at the same time.  
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and combining data, furthering holistic consideration of system actors 
and aid in developing the model purpose. The relationship between 
actors and their roles in framing the scale, scope and purpose of the 
modeling has been previously recognized (Kragt et al., 2013; Refsgaard 
et al., 2007) and is further explored in the next subsection. 

Insufficient consideration or agreement regarding the overarching 
purpose of the SoS model may ultimately affect model performance and 
outcomes (Connor et al., 2019). The higher number of actors in SoS 
modeling increases the difficulty in reconciling different or mismatched 
perspectives, requirements and purposes. This is a “problem of hetero-
geneity” (O’Connell and Todini, 1996) and is not restricted to any single 
discipline. Often, and by necessity, the scale of the modeling is to be 
commensurate with its purpose, including the level of certainty being 
sought, and the available resources. 

Purpose and use of constituent models may be mismatched if con-
flicting perspectives over the scope of the modeling are not addressed. 
Modelers that have different goals in mind may only consider scales 
relevant to their immediate (and often discipline-specific) concerns, 
leading to an improper selection of constituent models. There is poten-
tial for a high degree of mismatch between constituent models even if 
modelers coordinate their efforts. Unexpected cascades of effects 
through scales is commonplace in complex systems (Tranquillo, 2019), 
and could arguably be taken as the rule rather than the exception. 

Change in scale may also occur during the modeling process, due to 
new information that triggers a necessary change in model context. The 
scale of model interactions to be represented can also influence the 
number and type of constituent models included, and overall system 
complexity. The choices regarding scale then have implications for how 
well interactions among systems can be represented with respect to the 
model purpose. Scope creep, wherein the scale of the modeling is 
continually extended to cover contexts not originally envisioned (cf. 
Barton and Shan, 2017), may eventually compromise modeling efforts, 
as available resources get stretched too thinly to achieve sufficient 
progress (Sarosa and Tatnall, 2015). 

Choice of scales is further compounded in cases where system bounds 
cannot be clearly and definitively defined. Coastal zones, atmospheric 
systems, and natural resource management systems are examples of 
systems with ambiguous system boundaries. Social systems and their 
dynamic structures are another example that do not have clear bound-
aries yet place important, even governing, conditions on system 
behavior. Such social systems, and their influences, are so far under- 
represented in current integrated assessment efforts (Zare et al., 
2017). The lack of clear boundaries of such systems are often considered 
to be part of the problem (Voinov and Bousquet, 2010). 

Reconciling conceptual differences and perspectives between human 

actors can be demanding but not insurmountable. There are various 
methods available for group decision making, such as the Delphi tech-
nique (Gokhale, 2001), which can be used to help the group reach 
agreement on the definition of the problem and/or the system bound-
aries. The subsequent modeling itself can be used to combine and 
reconcile different views among stakeholders, and may be useful in 
cross-cultural or particularly contentious settings (cf. Potter et al., 
2016). The influence of modeler and stakeholder bias can also be con-
strained such as by using numerical optimization and/or exploratory 
modeling processes (Martin et al., 2017; Reichert, 2020). The influence 
of personal preferences is restricted by using the exploratory approach 
as it focuses on identifying the relevant scales and conditions (or com-
binations of conditions) that normally lead to desirable outcomes. 

3.1.2. Stakeholder planning 
Here, “stakeholder” refers to the individual or groups that may affect 

or be affected by the modeling or have an interest in its outcomes 
(Freeman, 2010). Thus, in this context, the modelers (and teams of 
modelers) are also stakeholders. There is a plethora of 
stakeholder-focused approaches (e.g. in integrated modeling, partici-
patory modeling), but these methodologies are still limited in their ca-
pacity to deal with scale-specific questions and challenges brought by 
SoS modeling (Jordan et al., 2018). Generally, participatory approaches 
aim to bring together the multiple goals, issues, and concerns of interest 
from multiple scales and governance systems by developing a mutually 
beneficial relationship between stakeholders (Thompson, 2009). 
Thoughtful consideration of transparency, traceability and governance 
issues in engagement and participatory processes (Cockerill et al., 2019; 
Glynn et al., 2017) will be essential for optimizing saliency, legitimacy, 
and credibility of the SoS modeling (Cash et al., 2003). 

The participation of a higher diversity of stakeholders in such pro-
cesses allows for a more holistic representation to be developed, 
covering potential ‘blind-spots’ in the system conceptualization and 
avoiding the “siloing” of knowledge (Hoekstra et al., 2014). Including 
further perspectives may increase the complexity of the modeling, and 
so requires careful management of individual expectations and biases 
(Martin et al., 2017). Management of an SoS may at times be predicated 
on effective management of stakeholders and their level (and capacity) 
of involvement (Ostrom, 2007; Boone and Fragaszy, 2018). 

Increases in the variety of perspectives also increases potential for 
conflict - defined here as disagreements of any degree - between teams, 
team members and/or stakeholders. On the one hand, there is evidence 
that conflict plays a positive role in learning and effective teamwork 
(Tjosvold et al., 2003). Such positive benefits, however, may only occur 
in cases where there are high levels of pre-existing trust within the 

Fig. 2. Continuous and repeated interactions between human actors (domain experts, stakeholders, modelers, etc. represented by the different colored circles), and 
between their social groups, are necessary throughout the modeling process to ensure mismatches in system conceptualization and constituent model scales 
are avoided. 
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an agricultural system without explicit representation of the hydrolog-
ical dynamics or climatic influences. Consequently, single-system 
models constrain themselves to the concerns and considerations of a 
single sector. Models concerned with a single system may, of course, use 
several models internally (e.g. crop growth, soil water properties, etc.) 
and these are referred to here as component models. 

A direct approach to representing additional systems can be 
accomplished by applying, albeit separately, a selection of single-system 
models for a given problem domain. In such cases, knowledge gained in 
the application of a model may inform the use of another. Data from one 
model may be fed into another, and vice versa, typically via manual 
processes. For example, a weather forecast model may be used to pro-
vide inputs to an agricultural model to determine seasonal effects on 
crops, and the agricultural model may provide land surface boundaries 
to the weather forecast model. 

Multi-system representations can be integrated by coupling models 
together such that data interoperation occurs in an automated fashion. 
Individual “system level” models are then referred to as constituent 
models. The advantage of multi-system models over their single system 
relatives is that the impacts and feedback mechanisms can be repre-
sented across/between their individual scales (Elag et al., 2011; 
Tscheikner-Gratl et al., 2019; Wang et al., 2019). Multi-system models, 
with their explicit representation of system interactions, are therefore 
capable of providing more holistic assessment compared to the use of 
individual models in isolation (Kelly (Letcher) et al., 2013). 
Component-based modeling stems from Component-Based Software 
Engineering (Vale et al., 2016; Hutton et al., 2020) and common usage 
in environmental modeling typically makes no distinction between 
constituent and component models (e.g. Malard et al., 2017). A 
conscious decision has been made here to adopt the term “constituent” 
from the systems engineering field (Nielsen et al., 2015) to convey this 
distinction. 

It is important to note that “integrated” and “multi-system” models 
could then equally apply to both single-system models with several 
component or constituent models. The requirement for a model to be 
regarded as “integrated” is that its (component or constituent) models 
are coupled together through the use of a common automated infra-
structure to facilitate data interoperation (see for example, Malard et al., 
2017; Whelan et al., 2014). By necessity, multi-system integrated 
models are more complex and may involve a variety of modeling par-
adigms (e.g. Bayesian networks, agent-based, system dynamics, etc.) 
and their combinations. 

An SoS model is then regarded here as an integrated model with 
constituent models. Each constituent model may be a single-system or 
another SoS model such that a tiered network of relationships between 
models is formed, with each representing a layer of abstraction. In SoS 
modeling, each constituent model may operate across different spatial/ 
temporal scales, hierarchical levels, and resolutions to incorporate 
multiple aspects of distinctly separate (disciplinary or sectoral) domains 
and modeling paradigms. An SoS perspective allows, but does not pre-
scribe, consideration of complex system properties including non-
linearities, interdependencies, feedback loops, thresholds and 
emergence. 

3. Scale issues to consider 

Models are developed through a life cycle of various phases, each 
with specific considerations and steps (the “modeling cycle”; Grimm and 
Railsback, 2012; Hamilton et al., 2015; Jakeman et al., 2006). SoS 
modeling is more complex compared to ‘single-system’ models due to 
the number of people and disciplines involved as well as the de-
pendencies between the constituent models. Similarly, management of 
the modeling process is made more complex, as there is not a single 
modeling cycle, but multiple cycles occurring asynchronously. Each 
actor and model may have separate objectives and purposes, priorities 
and differing levels of available resources not to mention the need to 

consider the availability of resources for the SoS modeling as a whole. 
The sections below are adapted from the modeling phases identified 

in Badham et al. (2019) and Hamilton et al. (2015), wherein the actions 
undertaken in each modeling phase are described. In contrast, we 
identify the relevant phases within an SoS context and outline the 
considerations with respect to scale issues. Fig. 1 depicts the high-level 
considerations/objectives within each phase. While the sections below 
are presented in a sequential manner, we stress that modeling is an 
iterative and concurrent process. 

3.1. Scoping phase 

In this phase, the objectives of the modeling are clarified by defining 
the problem and how modeling is intended to address it. Examples of 
model (or modeling) purpose could be to fill gaps in knowledge, to 
support learning and communication processes, to validate current un-
derstandings and assumptions, to predict what might happen in the 
future, or to carry out scenario analysis (Badham et al., 2019; Kelly 
(Letcher) et al., 2013). Ideally, this scoping phase results in a clear un-
derstanding of the model types and components that need to be devel-
oped or, in later iterations, their limitations with respect to the model 
purpose and how to address these. 

3.1.1. Problem definition and scoping 
While the overarching purpose of the SoS model may be known, the 

specifics may be less clear at the outset. Development of a consistent and 
shared view of the scales to be considered involves communication of 
the scope and interactions across the constituent systems between all 
involved (see Fig. 2). This process can aid in identifying and addressing 
areas that require reconciliation of different views that often exist across 
the stakeholders. Awareness of the scale issues will likely evolve as the 
modeling progresses through the iterations. The choice of modeling 
pathways and methodological framework employed is heavily informed 
by this awareness (MacLeod and Nagatsu, 2018). 

Involvement of stakeholders, including domain experts, through 
participatory processes can inform the identification of relevant scales in 
the face of uncertainty and (poor) data availability (Hamilton et al., 
2015; Kragt et al., 2013). Stakeholders can also play a role in selecting 

Fig. 1. The phases in the modeling cycle (adapted from Badham et al., 2019, 
and Hamilton et al., 2015) with key considerations within each phase. 
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used in different ways depending on context. This variance has been 
observed in the use of common terms with conflicting definitions be-
tween (and sometimes within) disciplinary fields (Bridle et al., 2013). 

2.2. Scale terminology in SoS modeling 

Defining the terminology associated with scales was an arduous 
process at first, owing to the diversity amongst workshop participants. A 
brief overview of the resulting primary terms used in this paper is pro-
vided in Table 1. For the discussion here, “scale” is taken to have an 
expansive definition, covering the scope of work to be conducted in the 
treatment and representation of system processes. Aspects of scale that 
had unanimous consensus included the commensurability of the choice of 
scale within the purpose of the modeling, and the consistency of spatial 
and temporal scales across models. It was also acknowledged that scale 
can mean many things beyond the spatial and temporal, for example the 
less tangible such as treatment of ethical considerations within the 
modeling process (e.g. Häyhä et al., 2016). Regardless of definitions, 
treatment of scales - and the choices made in this treatment - influences 
the model uncertainties and the outcomes of the modeling. 

Commensurability refers to the appropriateness of the selected ap-
proaches and methods for the SoS modeling purpose. Broadly speaking, 
these approaches can be described as being subject to socio-technical 
considerations, which are the focus of the discussion in this paper. The 
social (human) aspect of modeling includes the circumstances of 
collaboration, project management and participatory processes, as well 
as those settings influencing the technical aspects, including modeling 
and computational considerations. 

The spatial and temporal features of a system are often the primary 
aspects around which scale is traditionally considered and framed. 
These define the time and space of interest (both their horizons and 
discretization) and the events and processes that are considered 
important to represent (Cash et al., 2006). The spatial scales selected 
may be influenced by the temporal scales of interest, and vice versa. 
Their dependence can be intensified by the fact that spatio-temporal 
scales are often influenced by factors outside their defined boundaries. 

Such influences may be important but may not be well understood or 
ignored (Zhang et al., 2014b, 2014a). 

Resolution defines the granularity of system representation and refers 
to the unit of spatial/temporal scale represented in each system. Reso-
lution may be spatial or temporal in nature but extends in other ways 
such as to social units (individuals to families to communities, etc.) and 
thus may be represented so as to conform to a semantic or conceptual 
hierarchy (Cash et al., 2006). Choice of resolution is highly dependent on 
the modeling context, generally informed by the availability of data, the 
needs of the model (including for numerical stability, sensitivity and 
model identifiability), and model purpose. 

Hierarchy and their respective levels of organization relate to the 
representation of nested relationships among systems (Ostrom, 2007). 
For example, various governance systems may co-exist at a range of 
scales with separate administrative or institutional concerns (Daniell 
and Barreteau, 2014). Team-based organizations are one example where 
the hierarchical scales may not be constrained to specific locations, with 
members performing a variety of roles within an organization that may 
be geographically spread across different time zones. 

Actors influence and define the aspects of scale that are considered 
and may be both human and non-human entities which affect or influ-
ence one another. The term has its roots in the social sciences (an 
example may be found in Wessells, 2007). Actors have roles and carry 
out one or more activities in the system and can be represented indi-
vidually or collectively. Human actors have attributes such as values, 
goals and mental models, which influence their behavior (Pahl-Wostl, 
2007). Non-human actors are defined here in a literal sense (i.e. not an 
individual biological person) such that organizations, flora and fauna 
are non-human actors but may still exhibit collective culture and per-
sonalities (Hobday et al., 2018; Schneider et al., 2013). A system can 
encapsulate many actors and may be an actor itself. 

The different types of system modeling encompass many terms that 
are often used interchangeably across the sciences. As alluded to in the 
introduction we are guided by, but do not directly adopt, definitions as 
applied in system-of-systems engineering (cf. Dahmann and Baldwin, 
2008). Here, a single-system model targets a specific system, for instance 

Table 1 
Brief descriptions of the primary terms defined in this paper and relevant literature. Where no references are provided, the terms are assumed to be generic and widely 
known.  

Term Definition Relevant Literature 

Spatial/temporal Spatial and temporal aspects define, respectively, the bounds or horizons over the space 
and time frame of the events and processes of interest as well as their discretization in a 
model. 

N/A 

Multi-system model A catch-all term referring to any model that represents multiple systems. N/A 
Emergence or emergent 

behavior/simplicity/ 
complexity 

Here, emergence relates to the behavior of the system and can span from simple to 
complex. Emergent complexity describes the complex, possibly chaotic, behavior that 
arises from the collective interactions of simple constituent systems, whereas emergent 
simplicity is the opposite. 

Bar-Yam (1997) 

System and System of systems At its core a “system” refers to a collection of processes and mechanisms that may interact 
depending on context. 
A system of systems is represented as a collection of autonomous constituent systems that 
give rise to collective behavior. A constituent model may, itself, be a system-of-systems 
model. A system-of-systems model then is an interconnected, tiered, network of models. 

(Eusgeld et al., 2011; Little et al., 2019; Tranquillo, 
2019) 

Integrated model A model which consists of two or more separate and separable models, connected through 
a common computational framework to allow automated interactions between models to 
occur. 

(van Ittersum et al., 2008; Voinov and Shugart, 
2013; Whelan et al., 2014) 

Resolution/Granularity The represented unit of scale at which a system component is modeled (e.g. unit of 
distance, volume, time, social unit, etc.) 

(Ewert et al., 2011; Groen et al., 2019; Neumann 
et al., 2019) 

Actor Actors are entities, both human and non-human (e.g. objects, biota, flora and fauna, 
institutions, and organizations), which influence the modeling, the pathways taken 
throughout the modeling process, and their representations within a model. 
Actors may themselves be composed of actors, such that a system is an actor within a 
larger system (e.g. engine in a car, team within a company, etc.). Actors may influence one 
another through a network of relationships and be modeled as such. Actors may embody 
collective culture and personalities, as may be the case with teams and organizations. 

(Cresswell et al., 2010; Macy and Willer, 2002; Tate, 
2013; Hobday et al., 2018; Schneider et al., 2013) 

Hierarchy/Level The ordered linkage crossing scales, which may be spatial/temporal (neighborhood to 
city) or virtual/conceptual (employee and employer), and these may be nested within one 
another. 

(Ostrom, 2007; Schweiger et al., 2020; Steinhardt 
and Volk, 2001)  
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1. Introduction 

Socio-environmental systems (SES) function across a range of inter- 
related scales that collectively represent a system of systems (SoS). 
The term SoS has been used since the 1950s and various definitions exist 
(Nielsen et al., 2015). In this paper, we distinguish between an SoS as a 
collection of human and natural systems, and SoS models which are 
engineered representations of an SoS. The former is defined as an 
interconnected collection of multiple, heterogeneous, distributed sys-
tems that collectively may give rise to emergent behavior, where each 
system represents a process or set of processes. In the modeling of SoS, 
we follow Little et al. (2019) who define SoS models as “a collection of 
independent constituent systems, in which each fulfills its own purpose 
while acting jointly towards a common goal.” (p. 84). In environmental 
modeling, SoS models may take the form of Integrated Assessment 
Models (IAMs) or, more generally, Integrated Environmental Models 
(IEMs), which are commonly applied to inform environmental man-
agement processes (Ewert et al., 2011; Iwanaga et al., 2020; Letcher 
(Kelly) et al., 2013; Matott et al., 2009). 

Central to SoS modeling is the view of system representations as a 
multi-tier structure with different levels of abstraction, where systems 
and indicators at lower levels can be scaled up to higher levels. These 
representations capture processes that operate at different scales (e.g. 
temporal, spatial, organizational) in contrast to ‘single-system’ ap-
proaches, which assume such drivers to be exogenous and, crucially, do 
not account for any feedback mechanisms between the represented 
systems. This view also sets the focus on how to integrate knowledge 
from the different disciplines involved and coordinate information ex-
change among these in a consistent and meaningful way. Knowledge 
integration is not limited to the technical coupling of models, but to 
integration among multi-scale stakeholder and expert processes. This 
combined socio-technical focus makes scale issues and their treatment a 
core consideration of SoS modeling. 

1.1. The need for a holistic treatment of scale 

A crucial ingredient in SoS modeling is attending to the socio- 
technical processes involved. Representation of scales is defined by 
modelers for a particular purpose and is ultimately subject to human 
processes (Meadows, 2008). Accordingly, the representation of an SoS is 
the end-product of what the people involved implicitly or explicitly have 
chosen to represent, and how they implemented their choices. These 
then influence the model structure and uncertainties embedded, and the 
consideration of its different dimensions, analyses conducted, and data 
and methods used (Glynn et al., 2017; Gorddard et al., 2016; Voinov 
et al., 2018). Such choices are subject to the available knowledge, ex-
periences, biases, beliefs, heuristics and social values, as well as the 
perceived purpose(s) of the modeling. 

A key scale issue in SoS modeling is the development of a consistent 
and defensible characterization of scale (Elsawah et al., 2020). Existing 
systems analysis and modeling approaches tend to come from 
entrenched disciplinary paradigms and so with a specific focus on their 
scales and facets, and embedded language and terms. Inconsistencies 
then manifest in the conceptualization and treatment of scale in SoS 
approaches, which prevent researchers from: (1) understanding the 
implications of scale choices; (2) formulating, implementing and vali-
dating models that are relevant to the questions of interest; (3) pre-
dicting future SoS responses in support of decision making (Elsawah 
et al., 2020; Little et al., 2019; Razavi et al., 2020); and (4) communi-
cating modeling results in ways that help identify trade-offs and syn-
ergies within an SoS and among the systems under investigation 
(Fridman and Kissinger, 2019; Miyasaka et al., 2017). Addressing issues 
that arise from the conceptualization and representation of multiple 
scales are often omitted or left for future discussion (Ayllón et al., 2018). 

Discrepancies in the treatment of scale can be addressed firstly by 
developing a shared understanding of the system(s) being analyzed 

through a holistic interdisciplinary process (Thompson, 2009; White 
et al., 2019). There is increasing recognition that holistic approaches are 
necessary to enable an integrated assessment of scale issues in 
socio-environmental (social-ecological) systems (Schlüter et al., 2019a, 
2019b; Hoekstra et al., 2014). The rise of inter/multidisciplinary fields, 
such as socio-hydrology (Elshafei et al., 2014; Sivapalan et al., 2012) 
and eco-hydrology (Hannah et al., 2004; Porporato and 
Rodriguez-Iturbe, 2002), gives further credence to this need. For SoSs in 
particular, it is necessary to additionally acknowledge the 
socio-technical influences on their modeling. Explicit inclusion of the 
socio-technical perspective pushes beyond traditional modeling ap-
proaches, as it advocates assimilation of not only the data and mecha-
nistic processes across different systems, but also includes the 
knowledge and information held in the social institutions involved in the 
modeling. 

1.2. Purpose 

The purpose of this paper is to advance knowledge and imple-
mentation of interdisciplinary SoS modeling by identifying and articu-
lating the practices, issues and challenges involved with respect to issues 
of scale. Central to this interdisciplinary lens is making concrete the 
multidimensional nature of scale issues and the interplay among these. 
Here, the term “interdisciplinary” is favored over trans- or multi- 
disciplinary as the focus is on the “blending” of disciplinary knowl-
edge (White et al., 2019). 

The primary audience of the paper is modelers, albeit in different 
domains and scientific disciplines with an interest in adopting an SoS 
approach as a methodological framework in SES modeling. In the 
following (Section 2), we first provide definitions for the key terminol-
ogy used throughout this paper. These definitions are not intended to be 
universal but are provided to contextualize and aid in communication 
given the range of disciplines involved in SES modeling. In Section 3, we 
explore issues of scale which need to be considered throughout the 
modeling. We then describe in Section 4 the long-term challenges to-
wards resolving such scale issues and suggest paths to be taken in the 
shorter-term. 

2. Concepts and definitions of scale 

2.1. The process of defining scales 

SoS models principally provide a representation of the interactions 
that occur between the systems involved. Holistic integration of 
knowledge from the various disciplines involved is necessary so that the 
implications of the different methodological choices on scale can be 
understood (Elsawah et al., 2020). To this end, a three-day workshop 
was held in October 2019 in which a culturally and disciplinary diverse 
group of 20 participants convened to share their knowledge. An addi-
tional 3 contributed in complementary ways to the drafting of this 
paper. Contributors originated from Europe, North America and the 
Asia-Pacific and included engineers, economists, social scientists, 
mathematicians, physicists, hydrologists, computer scientists and 
ecologists. 

To prevent miscommunication, we developed a set of terms (outlined 
in Section 2.2) to build a shared language (Rubin et al., 2010; Spitzberg 
and Cupach, 1989; Thompson, 2009). Although prior definitions of 
“scale” are available (see for example Cash et al., 2006; Gibson et al., 
2000), it was considered useful to develop a shared, empathetic un-
derstanding of each other’s perspectives (Banerjee et al., 2019; Thomas 
and McDonagh, 2013). The process additionally served to break down 
cognitive constraints (MacLeod and Nagatsu, 2018), which may other-
wise blind researchers to relevant notions of scale allowing disciplinary 
bias to creep in and knowledge gaps to form. The range of disciplines 
involved in SES modeling often makes addressing cognitive constraints 
difficult, as there are different notions of scale, and related terms are 

T. Iwanaga et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 135 (2021) 104885

Available online 6 October 2020
1364-8152/© 2020 Elsevier Ltd. All rights reserved.

Socio-technical scales in socio-environmental modeling: Managing a 
system-of-systems modeling approach 

Takuya Iwanaga a,*, Hsiao-Hsuan Wang b, Serena H. Hamilton a,c, Volker Grimm d,e, 
Tomasz E. Koralewski b, Alejandro Salado f, Sondoss Elsawah a,g, Saman Razavi h, Jing Yang i, 
Pierre Glynn j, Jennifer Badham k, Alexey Voinov l,m, Min Chen n, William E. Grant b, 
Tarla Rai Peterson o, Karin Frank d, Gary Shenk p, C. Michael Barton q, Anthony J. Jakeman a, 
John C. Little r 

a Institute for Water Futures and Fenner School of Environment and Society, The Australian National University, Canberra, Australia 
b Ecological Systems Laboratory, Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA 
c CSIRO Land & Water, Canberra, Australia 
d Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Leipzig, Germany 
e University of Potsdam, Plant Ecology and Nature Conservation, Potsdam, Germany 
f Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA 
g School of Electrical Engineering and Information Technology, University of New South Wales, Australian Defence Force Academy, Canberra, ACT, Australia 
h Global Institute for Water Security, School of Environment and Sustainability, Department of Civil, Geological, and Environmental Engineering, University of 
Saskatchewan, Saskatoon, Saskatchewan, Canada 
i National Institute of Water and Atmospheric Research, New Zealand 
j U.S. Department of the Interior, U.S. Geological Survey, Reston, VA, USA 
k Centre for Research in Social Simulation, University of Surrey, Guildford, GU2 7XH, United Kingdom 
l Center on Persuasive Systems for Wise Adaptive Living (PERSWADE), Faculty of Engineering & IT, University of Technology, Sydney, Australia 
m Faculty of Engineering Technology, University of Twente, Netherlands 
n Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing, 210023, China 
o Environmental Science and Engineering Program, University of Texas at El Paso, El Paso, TX, 79968, USA 
p U.S Geological Survey, Chesapeake Bay Program, Annapolis, MD, 21403, USA 
q Center for Social Dynamics & Complexity, School of Human Evolution & Social Change, Arizona State University, Tempe, AZ, USA 
r Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA   

A R T I C L E  I N F O   

Keywords: 
Social-ecological modeling 
Interdisciplinary modeling 
Integrated modeling 
Scale issues 
System-of-systems approach 

A B S T R A C T   

System-of-systems approaches for integrated assessments have become prevalent in recent years. Such ap-
proaches integrate a variety of models from different disciplines and modeling paradigms to represent a socio- 
environmental (or social-ecological) system aiming to holistically inform policy and decision-making pro-
cesses. Central to the system-of-systems approaches is the representation of systems in a multi-tier framework 
with nested scales. Current modeling paradigms, however, have disciplinary-specific lineage, leading to in-
consistencies in the conceptualization and integration of socio-environmental systems. In this paper, a multi-
disciplinary team of researchers, from engineering, natural and social sciences, have come together to detail 
socio-technical practices and challenges that arise in the consideration of scale throughout the socio- 
environmental modeling process. We identify key paths forward, focused on explicit consideration of scale 
and uncertainty, strengthening interdisciplinary communication, and improvement of the documentation pro-
cess. We call for a grand vision (and commensurate funding) for holistic system-of-systems research that engages 
researchers, stakeholders, and policy makers in a multi-tiered process for the co-creation of knowledge and 
solutions to major socio-environmental problems.  

* Corresponding author. 
E-mail addresses: iwanaga.takuya@anu.edu.au (T. Iwanaga), hsuan006@tamu.edu (H.-H. Wang), serena.hamilton@anu.edu.au (S.H. Hamilton), volker.grimm@ 

ufz.de (V. Grimm), tkoral@tamu.edu (T.E. Koralewski), asalado@vt.edu (A. Salado), s.elsawah@adfa.edu.au (S. Elsawah), saman.razavi@usask.ca (S. Razavi), jing. 
yang@niwa.co.nz (J. Yang), pglynn@usgs.gov (P. Glynn), research@criticalconnections.com.au (J. Badham), alexey.voinov@uts.edu.au (A. Voinov), 
chenmin0902@163.com (M. Chen), wegrant@tamu.edu (W.E. Grant), trpeterson@utep.edu (T.R. Peterson), karin.frank@ufz.de (K. Frank), GShenk@ 
chesapeakebay.net (G. Shenk), Michael.Barton@asu.edu (C.M. Barton), tony.jakeman@anu.edu.au (A.J. Jakeman), jcl@vt.edu (J.C. Little).  

Contents lists available at ScienceDirect 

Environmental Modelling and Software 

journal homepage: http://www.elsevier.com/locate/envsoft 

https://doi.org/10.1016/j.envsoft.2020.104885 
Accepted 29 September 2020   



Environmental Modelling and Software 139 (2021) 105013

17

Reiter, R., 1987. A theory of diagnosis from first principles. Artif. Intell. 32, 57–95. 
https://doi.org/10.1016/0004-3702(87)90062-2. 

Ruano, M.V., Ribes, J., Seco, A., Ferrer, J., 2012. An improved sampling strategy based 
on trajectory design for application of the Morris method to systems with many input 
factors. Environ. Model. Software 37, 103–109. https://doi.org/10.1016/j. 
envsoft.2012.03.008. 

Saltelli, A. (Ed.), 2008. Sensitivity Analysis, Paperback ed. Wiley paperback series. Wiley, 
Chichester.  

Saltelli, A., 2002. Making best use of model evaluations to compute sensitivity indices. 
Comput. Phys. Commun. 145, 280–297. https://doi.org/10.1016/S0010-4655(02) 
00280-1. 

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., Wu, Q., 
2019. Why so many published sensitivity analyses are false: a systematic review of 
sensitivity analysis practices. Environ. Model. Software 114, 29–39. 

Saltelli, A., Annoni, P., 2010. How to avoid a perfunctory sensitivity analysis. Environ. 
Model. Software 25, 1508–1517. https://doi.org/10.1016/j.envsoft.2010.04.012. 

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., 2010. 
Variance based sensitivity analysis of model output. Design and estimator for the 
total sensitivity index. Comput. Phys. Commun. 181, 259–270. https://doi.org/ 
10.1016/j.cpc.2009.09.018. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., 
Tarantola, S., 2008. Global Sensitivity Analysis. The Primer. Wiley, West Sussex, U. 
K.  

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2004. Sensitivity Analysis in 
Practice: A Guide to Assessing Scientific Models. Halsted Press, New York, NY, USA.  

Samuelson, W., Zeckhauser, R., 1988. Status quo bias in decision making. J. Risk 
Uncertain. 1, 7–59. https://doi.org/10.1007/BF00055564. 

Sarma, G.P., Jacobs, T.W., Watts, M.D., Ghayoomie, S.V., Larson, S.D., Gerkin, R.C., 
2016. Unit Testing, Model Validation, and Biological Simulation. F1000Res 5. 
https://doi.org/10.12688/f1000research.9315.1. 

Sarrazin, F., Pianosi, F., Wagener, T., 2016. Global sensitivity analysis of environmental 
models: convergence and validation. Environ. Model. Software 79, 135–152. https:// 
doi.org/10.1016/j.envsoft.2016.02.005. 

Sharifi, A., Ahmadi, M., Badfar, H., Hosseini, M., 2019. Modeling and sensitivity analysis 
of NOx emissions and mechanical efficiency for diesel engine. Environ. Sci. Pollut. 
Res. 26, 25190–25207. https://doi.org/10.1007/s11356-019-05613-0. 

Shin, M.-J., Guillaume, J.H.A., Croke, B.F.W., Jakeman, A.J., 2015. A review of 
foundational methods for checking the structural identifiability of models: results for 
rainfall-runoff. J. Hydrol. 520, 1–16. https://doi.org/10.1016/j. 
jhydrol.2014.11.040. 

Sieber, A., Uhlenbrook, S., 2005. Sensitivity analyses of a distributed catchment model to 
verify the model structure. J. Hydrol. 310, 216–235. https://doi.org/10.1016/j. 
jhydrol.2005.01.004. 

Sletholt, M.T., Hannay, J.E., Pfahl, D., Langtangen, H.P., 2012. What Do We Know about 
Scientific Software Development’s Agile Practices?, pp. 24–36. https://doi.org/ 
10.1109/MCSE.2011.113. 

Sudret, B., 2008. Global sensitivity analysis using polynomial chaos expansions. Reliab. 
Eng. Syst. Safety Bayesian Netw. Depend. 93, 964–979. https://doi.org/10.1016/j. 
ress.2007.04.002. 

Sun, X.Y., Newham, L.T.H., Croke, B.F.W., Norton, J.P., 2012. Three complementary 
methods for sensitivity analysis of a water quality model. Environ. Model. Software 
37, 19–29. https://doi.org/10.1016/j.envsoft.2012.04.010. 

Tennakoon, S., Richards, D., Milroy, S., Harris, G., 2013. Water use efficiency in the 
Australian cotton industry. In: Waterpak: A Guide for Irrigation Management in 
Cotton and Grain Farming Systems. Cotton Research and Development Corporation, 
pp. 22–27. 

Thomas, J., McDonagh, D., 2013. Shared language:Towards more effective 
communication. Australas. Med. J. 6, 46–54. https://doi.org/10.4066/ 
AMJ.2013.1596. 

Vanrolleghem, P.A., Mannina, G., Cosenza, A., Neumann, M.B., 2015. Global sensitivity 
analysis for urban water quality modelling: terminology, convergence and 
comparison of different methods. J. Hydrol. 522, 339–352. https://doi.org/ 
10.1016/j.jhydrol.2014.12.056. 

Verweij, P.J.F.M., Knapen, M.J.R., de Winter, W.P., Wien, J.J.F., te Roller, J.A., 
Sieber, S., Jansen, J.M.L., 2010. An IT perspective on integrated environmental 
modelling: the SIAT case. Ecol. Model. 221, 2167–2176. https://doi.org/10.1016/J. 
ECOLMODEL.2010.01.006. 

Voinov, A., Shugart, H.H., 2013. “Integronsters”, integral and integrated modeling. 
Environ. Model. Software 39, 149–158. https://doi.org/10.1016/j. 
envsoft.2012.05.014. 

Wagener, T., Pianosi, F., 2019. What has Global Sensitivity Analysis ever done for us? A 
systematic review to support scientific advancement and to inform policy-making in 
earth system modelling. Earth Sci. Rev. 194, 1–18. https://doi.org/10.1016/j. 
earscirev.2019.04.006. 
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Fig. 12. DMIM analysis on OAT samples.  

Fig. 13. DMIM analysis on Morris samples.  

When compared to the results of OAT-based GSA (Morris and R-OAT in the main text), it appears that methods which indirectly estimate first-order 
sensitivity while varying multiple parameters at once do not correctly identify inactive parameters, at least at the given sample sizes. Furthermore, a 
significantly larger number of model evaluations may be required to achieve convergence which may exceed the available time for diagnostic testing, 
particularly in the case of complex and highly parameterized IEMs. 
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Fig. 10. First order effect (S1) of irrigation efficiency on surface water allocations using OAT samples. EASI analysis indicates the parameter is sensitive where model 
interactions are disabled. 

Fig. 11. Example of EASI analysis on results taken with Morris sampling. Results of first-order sensitivities (S1) appear near identical indicating larger Morris 
samples are necessary for a distinction to be made with EASI. Note that the y-axis for the top panel is in log scale. 

DMIM was unable determine the lack of influence from the PoI (see Fig. 12 and Fig. 13) with similar issues.          
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discipline over the other. There are, however, barriers to the adoption of 
this hybrid approach. For one, it requires the technical knowledge and 
capacity of modelers to develop and maintain tests, including the 
application of relevant SA techniques. 

It is demonstrated here that a diagnostic property-based testing 
approach with SA methods is a useful, pragmatic, and computationally 
efficient approach to providing a line of evidence that the model pa-
rameters are, in fact, having an (expected) effect. In the IEM develop-
ment context, any single model may itself require teams of domain 
specialists to fully understand, and no single person can be expected to 
grasp, all aspects, especially in cases where legacy models are adopted. 
Assessing the expected behavioral properties of a model could be 
leveraged to reduce the time taken to identify and correct model 
implementation and integration errors. 
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Appendix A 

Here, we showcase some preliminary results with three global sensitivity analysis approaches, namely Saltelli (2010), EASI (2010), and DMIM 
(2013). Unreliable results are obtained for all approaches at these relatively low sample sizes. EASI and DMIM are “given data” approaches, for which 
Morris samples are used. For the Saltelli method, only first order indices (S1) are shown (using the approach described in Saltelli et al., 2010) estimated 
with a cost of n⋅(p + 2). In practice, total, first and second order indices may be estimated at a cost of n⋅(2p+2) runs (Saltelli, 2002). The results for the 
Saltelli analysis include negative values (Fig. 9), which indicate an insufficient number of samples (Saltelli, 2008; Sharifi et al., 2019), which is to be 
expected given the known high sampling requirements of Sobol’-based approaches (Razavi and Gupta, 2015).

Fig. 9. Negative first-order sensitivity values (S1) from the Saltelli method analysis for both inactive and active cases.  

The EASI analysis technique indicates that an effect is occurring when interactions are disabled (i.e., Type I error, as shown in Fig. 10). While the 
EASI approach does not require a specific sampling scheme (Plischke et al., 2013), the results produced may be sensitive to the sampling approach. 
Very little difference was found between disabled and enabled cases when results were obtained with Morris sampling (see Fig. 11). In both cases EASI 
was unable to distinguish the (lack of) effect of an inactive parameter at these low sample sizes.                
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models, particularly in terms of checking the effects of active/inactive 
parameters on (expected) model behavior. Including such property- 
based diagnostics as part of an automated test suite can aid in 
conserving a limited computational budget, which is often desirable 
even in cases where there is an abundance of computational time 
available. 

With the Campaspe Integrated Model used as an example, the lack of 
an expected relationship between a PoI and QoI could be identified using 
extremity parameter value testing with just N = 2 runs when an activity 
threshold is applied. Although global sensitivity analysis methods can be 
computationally demanding, the use of R-OAT is shown to be a 
computationally efficient approach to assessing expected behavior. 
Although the Morris method was able to identify inactivity of the 
parameter of interest, it required more model runs to do so, at least in 
the presented example case. It is emphasized here that for the purpose of 
integrated model testing, the number of parameters to be perturbed 
could be further reduced in all approaches described through qualitative 
assessment that identifies which parameters would have system-level 
(or inter-system) implications. Targeting these parameters, or orga-
nizing these into groups, such that the number of perturbations is much 
fewer than the total number of model parameters would reduce the 
overall computational effort involved to gain an indicative result. 

Additionally, a failing test may negate the need to conduct further 
diagnostics as the assumption that the model is operating correctly is 
falsified, thereby aiding in conserving computational budget. More 

complete analyses could follow in cases where no Property-based SA 
tests fail. In a “full” property-based testing approach, the framework 
applied would generate a random set of inputs and iteratively narrow 
the parameter space to specific areas that cause unexpected model 
behavior (Löscher and Sagonas, 2017). Such tests could be augmented to 
use GSA methods that require comparatively limited number of samples, 
such as R-OAT. Use of ‘given data’ methods such as PAWN (Pianosi and 
Wagener, 2015), HDMR (Li et al., 2002) or methods with flexible sam-
pling requirements such as STAR-VARS (Razavi et al., 2019) could also 
be explored to identify potential advantages and limitations (e.g., Puy 
et al., 2020). 

These “given data” methods may be more suitable in the IEM context 
due to their ability to leverage available samples, and may also be used 
to complement any diagnostic analyses conducted towards a compre-
hensive GSA (Mora et al., 2019). The use of dummy parameters in 
combination with extremity testing under conditions in which model 
parameters (or targeted subset of parameters) are known to be active 
could also be explored. Alternate OAT-based global analyses that are 
potentially more efficient for obtaining indications of parameter inter-
action (e.g., Borgonovo, 2010), may also be beneficial. 

There are many approaches to validating computational models. 
Model developers can adopt a mix of testing practices from both soft-
ware engineering and statistical/mathematical analysis to cover the 
range of issues that may occur during model development. Ideally, 
modelers would not restrict themselves to techniques found in one 

Fig. 8. Similar to R-OAT, the Morris method is capable of determining insensitivity in the disabled case but required 486 evaluations (i.e., n = 9) to confirm correct 
behavior in the enabled case. Dashed line indicates the parameter activity threshold of 0.1. 

Fig. 7. Elementary Effects (EE) analysis on Radial OAT (R-OAT) samples demonstrating a lack of effect on the QoI (surface water allocations). X-axis refers to the 
total number of model evaluations. R-OAT was able to determine expected behavior at N = 108 (i.e., n = 2) model evaluations for both active and inactive cases. 
Dashed line indicates the parameter activity threshold of 0.1. 

T. Iwanaga et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 139 (2021) 105013

11

issues (e.g., different compilers producing different machine code). It is 
acknowledged here that the presented approach is viable in cases where 
the rough order of magnitude effect is known. The results additionally 
indicate that the QoI will be affected even if the PoI is completely 
deactivated, suggesting that the QoI is affected by other factors. Thus, 
the conceptual understanding (depicted in Fig. 4) is not complete; there 
are other factors which influence the QoI. Example code, data, and 
figures presented in this paper are provided as supplementary material 
via the Open Science Framework (see Iwanaga, 2020; Iwanaga et al., 
2020b). Further description of other model analyses conducted on the 
CIM can be found in Iwanaga et al. (2020a). 

A single parameter can be targeted (i.e., s = 1), either after the above 
issue has been identified and further confirmation is desired, or where 
the relative change from perturbing all parameters is unknown. In this 
specific case, any perturbation of the PoI should be sufficient, as the 
behavioral property being tested for is the presence of change in the QoI 
when all other parameters are set to their nominal “best guess” values. 
An OAT test with a further two model runs is thus applied to the PoI 
(illustrated in Fig. 6). Because the interaction between models is 
disabled, the results show no change in long-term surface water allo-
cation. It is re-emphasized here that the diagnostic property-based test 
targets areas of parameter space for which the PoI and QoI are expected 
to be sensitive, and that diagnostic applications of SA should be con-
ducted alongside other testing processes. 

5.2. A global approach to Property-based SA 

In this example parameter activity/inactivity is used as a proxy to 
indicate correct model integration. The relationship between the PoI and 
QoI could be tested using R-OAT and Morris to confirm the presence of 
some sensitivity across parameter space. The R-OAT and Morris methods 
are applied here given that they are known to provide reliable in-
dications with fewer samples compared to other GSAs (as noted in 
Section 2.1). Samples were generated by producing n⋅ (p+1) parameter 
sets, such that n points in parameter space were sampled based on the 
targeting distribution. 

As shown in Fig. 5, other factors may influence the QoI and so a non- 
zero sensitivity value is to be expected given that these GSA approaches 
report the average effect with parameter interactions. For this reason, 
we adapt the dummy threshold approach from Zadeh et al. (2017), 
wherein a parameter is considered insensitive if the reported sensitivity 
value is comparable to the sensitivities reported for the dummy 
parameter. In this case, we apply such a threshold to indicate an unex-
pected lack of activity: an “activity threshold”. 

An “activity threshold” of 0.1 is empirically set for this example, a 
value lower than expected sensitivities for the parameter in question for 
the available number of samples, but higher than typical sensitivity 

thresholds (e.g., 0.05; Sarrazin et al., 2016). As the PoI is expected to be 
active, its reported sensitivities should be above this threshold, and 
values lower than the threshold indicate a cause for concern. Testing for 
the property of parameter activity in this manner is more robust 
compared to searching for absolute inactivity as computational (preci-
sion) error – compounded as the models within the IEM continually 
interact – may introduce variability in results (Dunford et al., 2015). 
Unexpected interactions (based on modelers’ current understanding of 
model interactions) may also cause non-zero sensitivities. 

Such tests could be incorporated as part of an automated test suite. 
Existing property-based testing frameworks could also be leveraged to 
aid in pinpointing areas of parameter space wherein errors of concern 
occur (e.g., Löscher and Sagonas, 2017). The number of repetitions 
possible under the hypothetical 16-h time limit (i.e., 5pm to 9am) is n =

2, i.e., total number of possible model runs is N = 108 given that a 
model run takes roughly 30 min. Performing an additional repetition 
(N = 162 when n = 3) would exceed the available time limit, taking 
over 20 h. We take 540 model evaluations (i.e., n = 10) purely to 
illustrate response of μ*. 

In this example, indicative confirmation that the model is not 
behaving as expected could be obtained with n ≤ 2 using R-OAT (N =

108, see the disabled case in Fig. 7). In general, how low n can be de-
pends on the parameter and model context, and some initial experi-
mentation is likely required. Similar results may be obtained with the 
Morris method (Fig. 8) in the disabled case, although in the active case 
concrete confirmation does not occur until n = 9 (i.e., N = 486). The 
results for both (i.e., no sensitivity at N = 54 for R-OAT and insufficient 
activity until N = 486 for Morris) suggest that the sampling scheme 
plays an important role in the efficacy of GSA methods for diagnostic 
purposes. 

The diagnostic context severely limits the number of samples that 
could be obtained in a timely manner and, for this reason, other GSA 
methods were not wholly considered. Preliminary results are included in 
Appendix A for the Saltelli (2002), EASI (Plischke, 2010), and DMIM 
(Plischke et al., 2013) methods, which indicate the unreliability of GSA 
methods at such low sample sizes. These results indicate potential issues 
to be overcome if these methods are to be applied for diagnostic pur-
poses in the context of rapid, iterative, model development and testing. 
In cases where no issues are identified, it is desirable for obtained 
samples to be reused to conserve computational budget. 

6. Discussion and conclusions 

This paper outlined a role SA can play in software testing practices in 
the IEM development process. Specifically, local OAT analyses coupled 
with R-OAT and/or Morris can provide a first-pass indication of the 
correctness of technical and conceptual integration of constituent 

Fig. 6. Change in results from a targeted OAT testing (N = 2). Given the model context, we would expect to see even minor changes. Analysis of model runs with the 
surface water model interactions disabled (left hand side) correctly finds no parameter effect on surface water allocation. 
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5.1. Extremity testing results 

To demonstrate the diagnostic use of OAT, interactions between the 
surface water and policy models are initially deactivated such that dam 
level calculations never account for the volume of water used by farms. 
Therefore, pipe and riser irrigation efficiency (the PoI) will not directly 
influence the long-term surface water allocation index (the QoI). Func-
tionally, the deactivated parameter is equivalent to a dummy parameter. 

In this example, an extremity test is applied by those integrating the 
models (the ‘model integrators’). All 53 parameters are perturbed be-
tween their lowest and highest values with a cost of N = 2 model runs. 
Unexpected results (e.g., no change, or smaller-or-larger than expected 
change) indicate issues which modelers should investigate. Grouping 
parameters by their parent model components could also give at least an 
indication of which model in the IEM the issue stems from. The example 
results show that significantly higher volumes of water are allocated in 
the deactivated case, much more than what would be expected under 
“normal” circumstances (as shown in Fig. 5). The reason is that the farm 
water orders are never considered, and the dam is never depleted. 

Such errors may inadvertently creep in during model development 
and integration. Examples include misunderstanding of the model 
interoperation (e.g., what outputs from one model relate to an input to 
another) implementation error (e.g., a bug in a model), or technical 

Fig. 5. Extremity testing results where all parameters are perturbed between their lower and upper bounds (i.e., N = 2). Change in surface water allocations in the 
disabled case far exceed what is possible from parameter perturbations alone. 

Table 3 
Description of the parameter of interest: irrigation water application efficiency.  

Parameter of Interest Nominal Value 
(and Range) 

Reference(s) 

Pipe and Riser Irrigation 
Efficiency (%) 

60% (60–90%) (Finger and Morris, 2005;  
Tennakoon et al., 2013)  

Fig. 4. A simplified component interaction di-
agram showcasing the feedback loop between 
constituent models, as initially envisioned by 
the model integrator. The farm model de-
termines the volume of water to apply to satisfy 
crop needs. The volume of water required is 
dependent on the efficiency of the irrigation 
system (the Parameter of Interest). The water is 
extracted from the dam (represented in the 
surface water model) and the subsequent water 
levels inform the future volume of water allo-
cated for agricultural use and thus, long-term 
surface water allocations (the Quantity of In-
terest). The inter-connection between the sur-
face water and policy models is switched on (*) 
and off (**) to generate two case results for this 
study, simulating an inadvertent implementa-
tion and/or integration error.   
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in this hypothetical context. The parameter relates to the efficiency of 
water application for “pipe and riser” irrigations, a common irrigation 
mode available to farmers in the Campaspe region. We consider the 
effect on modeled long-term average surface water allocations. 
Rendering the PoI static simulates an inadvertent change that intro-
duced an implementation or integration error. Interactions between 
models are consequently inappropriately represented. Specific details of 
the PoI are provided in Table 3. 

Irrigation efficiency relates to the proportion of water that reaches a 
crop’s root zone. The higher the efficiency rating, the less water that is 
“wasted” or “lost” from a farmer’s perspective to evaporation, run-off, or 
deep drainage (e.g., aquifer recharge). Hence, the more efficient an 
irrigation system, the less water required to maintain crop productivity 
for a given spatial area, and the less water extracted from the dam. Water 
is allocated each year to farms by the policy model. Excessive use of 
water by farmers in one year can reduce farm water availability in 
subsequent years, making efficient irrigations desirable. 

Given the available computational budget (as contextualized in 

Section 2.1), overnight execution of tests between 5pm and 9am (i.e., 16 
h) would allow < 128 model evaluations on a (currently) typical 4-core 
machine, using Eq (1) above, assuming a consistent 30-min runtime. A 
lesser number should be selected to ensure model runs resolve within the 
available time as runtime should not be expected to be consistent (as 
explained in Section 2.1). Relevant to the point here is the application of 
the Morris method for a REALM model as reported in Braddock and 
Schreider (2006). The REALM model is similar to the CIM in terms of 
geographic region (targeting the neighboring Goulburn catchment) and 
its use in water allocation modeling. Computational considerations 
which constrained the number of available model samples are high-
lighted therein. Use of cloud-based testing infrastructure is ignored for 
the purpose of illustration and may potentially be cost-prohibitive 
depending on the project budget. It is unlikely that indicative results 
would be obtained with GSA. Development and use of emulators are 
similarly precluded given their requirement for sufficient areas of 
parameter space to be represented, which is not possible within the 
allotted time. 

Box 5 
Example automation of extremity testing where the bounds of each parameter are set to − 100 and 100. Output has been modified for clarity. In 
this specific case, checking for a lack of change in the ‘result’ variable relative to ‘nominal_result’ or a ‘y_diff’ equal to 0.0 also suffices. This test 
could be repeated with varying parameter values using a sampling scheme (e.g., Sobol’, Latin Hypercube) or monte carlo.
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expansive example is provided in Section 5. 
Although the Morris method is applied in this specific diagnostic 

case, the same conclusion of inactivity can be reached with a purely One- 
At-a-Time (OAT) analysis with p + 1 model evaluations in the worst case 
(i.e., N = 6 for the example function). As indicated in Section 2.1, 
identified issues with the model implementation (or integration) 
through the failure of a test at any point may negate the need to run 
further tests. Failure of OAT to produce expected results negates the 
need to apply other, more computationally intensive, tests and SA. For 
this reason, the total number of evaluations to invalidate the model may 
be less than p+ 1. Hypothetically, it may not be necessary to test all 
parameters, as in cases where only a certain subset of parameters 
(denoted as s, where s < p) is expected to influence model interactions. 
In such cases, inappropriate model behavior could be determined with 
N = 2, …, s + 1 model evaluations. 

Unexpected results should be investigated before any further ana-
lyses proceed. Use of a purely OAT approach is heavily discouraged in 
the literature (Saltelli et al., 2019; Saltelli and Annoni, 2010) and it is 
suggested as appropriate here only because of the expectation that other 
forms of tests and SA will be applied after property-based SA tests pass. It 
is stressed here that relying on OAT for purposes outside this first-pass 
diagnostic context is not encouraged. In the case of IEM development, 
property-based tests that focus on parameters that influence model in-
teractions can be a computationally effective approach to obtaining a 
first-pass indication of correct conceptual and technical model 
integration. 

4.2. Example Property-based SA for parameter inactivity 

We devise two property-based testing strategies for the quick, first- 
pass, identification of model integration issues. The first is a form of 
OAT referred to as extremity testing, and the other follows a more usual 
sensitivity analysis approach using R-OAT. As noted previously, failure 
of these tests indicates the presence of issues that should be further 
investigated prior to the application of more computationally expensive 
diagnostics (e.g., a global sensitivity analysis) or operationalization of 
the model. Both approaches require that the conceptual relationships 
between parameters at their extremes and the targeted QoIs are known 
beforehand. 

With extremity testing the model is run just twice (i.e., N = 2). One 
run is to be conducted with the targeted parameters perturbed to their 
lower extremes, and the other run with parameters set to their upper. An 
example is shown in Box 5. In practice, any sufficiently large pertur-
bation should suffice, and the upper and lower extremes are suggested 
here for conceptual simplicity and ease of application. Under usual ap-
plications of SA, extremity testing comes with a risk of Type I and II error 
(a false positive or negative) due to non-monotonicity. The approach is 
applicable in this specific case as the conceptual relationship between 
QoIs and parameters is an a priori expectation. Diagnostics are being 
carried out in a restricted (local) area of parameter space where sensi-
tivities are expected to exist. The primary concern is to determine 
whether the effect can be identified before the application of the model 
and more rigorous analysis such as with GSA. Note that diagnostics may 
also be carried out in regions of parameter space that are known to 
produce no effect, wherein larger than expected (i.e., non-zero) sensi-
tivities can also indicate an issue. 

PbSA, in this case using R-OAT, can be useful in identifying the 
conditions in which unexpected behavior occurs, thereby helping to 
avoid a potentially time-consuming debugging exercise. Two re-
quirements can then be set for a GSA method to be a practical comple-
ment in the IEM development context. It would be desirable for any 
samples to be reusable in a later GSA if results are found to be accept-
able. Another requirement is that the time taken to conduct such ana-
lyses should not exceed the available computational budget for such 
analyses to be timely and useful. 

The illustrative examples provided in earlier sections showcase a 

diagnostic approach from both software development and SA perspec-
tives. In these examples, however, the hypothetical modeler has suffi-
cient understanding of the model and its implementation details to apply 
and evaluate results from both tests and diagnostic SA. In the context of 
integrated environmental modeling, this may be a luxury rather than a 
given due to the aforementioned interdisciplinary nature of IEM devel-
opment (Iwanaga et al., 2021; Knapen et al., 2013). In Section 5 we 
describe the case of the Campaspe Integrated Model and the usefulness 
of PbSA with extremity testing as an indication of valid model 
integration. 

5. An example with the Campaspe Integrated Model 

The Campaspe Integrated Model (CIM) (Iwanaga et al, 2018, 2020a) 
is a hydro-environmental-economic model used to explore water man-
agement options. The CIM is highly complex, featuring interactions 
between six non-linear component models, each representing a specific 
system. It can be considered a system-of-systems model in which a 
representation of the socio-environmental system is built up from mul-
tiple independent and interacting constituent models (Little et al., 
2019). In the hypothetical development context, individual model de-
velopers are disciplinarily diverse with their own traditions, practices 
and preferred modeling approaches. A common language and perspec-
tive of the modeling being conducted may still be developing (MacLeod 
and Nagatsu, 2018; Thomas and McDonagh, 2013). Modelers may also 
be geographically spread, inducing delays in communication that in-
crease the risk of inadvertent errors being introduced. 

To reflect this interdisciplinary context, the model is treated here as a 
gray-box for the purpose of the example. Modelers involved in the 
integration of constituent models may have working knowledge of the 
represented system and the operation of each model (e.g., imple-
mentation and usage), but are not necessarily disciplinary specialists 
themselves. Thus, the primary concern in the initial stage is to gain 
confidence that operation of the IEM is both conceptually and techni-
cally sound by testing the assumptions associated with the conceptual 
understanding (Iwanaga et al., 2020a; Wilson et al., 2017). Falsifying 
the assumption that the model is integrated correctly also helps to pre-
serve available computational budget. 

In the development IEMs, the relationships between all parameters 
and QoIs may not be fully known because of the complex model in-
teractions that occur. Parameter activity/inactivity may be a proxy that 
indicates correct model integration. Testing for the “obvious” behavior 
(i.e., change of PoI have flow-on effects that should affect the QoI), and 
continual confirmation that the behavior is present throughout the 
development cycle is valuable in that errors or conceptual mismatches 
could be highlighted, and corrected, earlier in the modeling cycle. In 
other cases, the conceptual understanding that the model integrator has 
may not be complete and so the testing process could be helpful in 
improving modelers’ understanding of the IEM. New knowledge or 
model configurations may invalidate previously “obvious/assumed” 
behavior; in which case the tests serve to alert modelers to a change in 
context. Change in context should subsequently be documented and the 
relevant tests updated to reflect this new understanding. 

In this example, the model integrator is principally focused on the 
policy, surface water hydrology, and farming system models, however 
the entire model also includes representations of climate, groundwater 
and ecology. An example of the initially known interactions between the 
constituent models of interest is provided in Fig. 4. Further description 
of the CIM may be found in (Iwanaga et al., 2020a). Interactions be-
tween all models affect the main quantity of interest selected here; that 
is, the long-term surface water allocation index, which indicates the 
average volume of water made available to water users over the simu-
lation period. The CIM has 53 parameters which may all be varied. 
Runtime of the model is variable depending on the scenario being run 
but typically takes 30 minutes. 

The influence of a single PoI – “irrigation efficiency” – is investigated 
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(Voinov and Shugart, 2013). One barrier to the adoption of diagnostic 
SA is the reported lack of norms around investigating model sensitivities 
(Saltelli et al., 2019). Use of SA, in general, is reportedly low with the 
complexity and lack of understanding of recommended SA techniques 
being one suggested reason for the lack of uptake (Ferretti et al., 2016; 
Saltelli et al., 2019). There may also be resistance towards the adoption 
of the new and unfamiliar (known as the status quo bias; Samuelson and 
Zeckhauser, 1988) as hypothesized in Ferretti et al. (2016). 

4. Parameter (in)sensitivity as a property to test 

The IEM development context can involve multiple modeling para-
digms, disciplinary/sectoral knowledge and feature the adoption of 
multiple technologies, including different computational infrastructure 
and programming languages (Hannay et al., 2009; Hut et al., 2017; 
Hutton et al., 2016; Sletholt et al., 2012). As mentioned in the Intro-
duction, this leads to a situation in which no single modeler has a full 
and complete understanding of the models involved. Given the complex 
development context of IEMs, one fundamentally important property 
that IEM and other model developers can target for indicative assess-
ment is the inappropriate sensitivity of parameters known to have 
cross-system influences. 

The principal idea here is that parameter sensitivities are generally a 
robust property of model behavior that provide indications of correct 
model implementation and integration. Parameter activity or inactivity 
(i.e., complete insensitivity) is a property that will remain invariant even 
as the model itself changes and evolves through the model development 
cycle and as the precise model outputs change. Thus, diagnostic SA 
applied as a form of property-based test to regions of parameter space in 
which model behavior is expected to be sensitive (or insensitive) can 
then provide early confidence that other, more computationally 
demanding, processes can proceed without issue. 

For IEMs, conceptual analysis of the relationships between the 
models can be invoked to identify parameters to test (an example is 
provided in Section 5). Quantitative assessment of SA results within the 
automated testing process could alert modelers to unintended changes 
that unknowingly affect model applications. Such tests may also guard 
against issues of technical uncertainty (specifically computational 
infrastructure uncertainty), as model behavior may differ under 
different computational contexts (Bhandari Neupane et al., 2019; Iwa-
naga et al., 2020a; Walker et al., 2003). 

4.1. Testing for inactivity with Property-based SA 

To provide a concrete example with the earlier example function, 
another error is introduced, perhaps in the process of correcting the 
earlier implementation issue (shown in Box 4), which cancels out the 
effect of parameter x5. Diagnostic SA results with the Morris method are 
shown in Fig. 3, highlighting the issue for modelers to investigate. This 
simplistic example is intended to illustrate the concept; a more 

Box 4 
The example function with another bug introduced in the process of correcting the earlier issue shown in Box 3. Note that an addition of x5 has 
been accidentally included rather than replacing the earlier subtraction of x5.

Fig. 2. Example of diagnostic sensitivity analysis using Morris. Identical, or 
near identical, positive effect (indicated by μ) would be expected for the 
example linear function. Diagnostic results instead show negative effect from x5 

given the incorrect implementation. The μ* values indicate equal contributions 
from all parameters as is expected. The σ metric is not shown here to reduce 
clutter in the figure as it is unimportant for the purpose of this illustration. The 
number of grid levels for the Morris approach is set to 4 as suggested in the 
literature (Campolongo et al., 2007). Results were obtained with 12 model 
evaluations (n = 2). 

Fig. 3. Unexpected results (with Morris method) for the model with imple-
mentation error which renders x5 inactive. Results obtained with 12 model 
evaluations. 
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universally applicable rule that provides a reliable estimation of the 
number of samples required, which changes from method to method, 
sampling regime, the number of parameters, the model itself and its 
quantities of predictive interest (Wagener and Pianosi, 2019). 

Pure OAT is unsuitable for comprehensive analysis of sensitivities in 
complex models with non-linear behavior as wider areas of parameter 
space must be explored to capture global indications of parameter in-
teractions (Razavi and Gupta, 2015; Saltelli and Annoni, 2010; Yang, 
2011). Despite these shortcomings, OAT remains prevalent in model 
assessment against published advice (Ferretti et al., 2016), although the 
situation does appear to be slowly improving (Douglas-Smith et al., 
2020). One clear advantage that OAT has, exploited in the PbSA 
approach of this paper, is its conceptual and computational simplicity 
relative to other methods. 

The Morris method (Morris, 1991) is an extension of the OAT 
approach (Vanrolleghem et al., 2015), being capable of providing 
adequate indications of sensitivity for a variety of purposes in the 
context of complex nonlinear models (Sun et al., 2012). The Morris 
method changes parameter values one-at-a-time (and so is sometimes 
referred to as Morris One-At-a-Time) but does so in a stepwise manner, 
without dependence on nominal values, through a process known as 
trajectory sampling. Unlike the pure OAT approach, parameter values 
are not reset to their original start points and instead are kept until all 
parameters have been modified. The process is repeated n times so that 
the total number of model evaluations is N = n⋅(p + 1), where usually 
n ≈ p or less (Norton, 2009). Thus, the number of model evaluations 
increases quadratically with the number of parameters, unless n≪ p in 
which case the increase is linear. 

The sensitivity index produced by the Morris method indicates the 
relative change in the quantity of interest regarding the changed 
parameter value (the average elementary effect, μ), the average absolute 
change in parameter value, which accounts for the effect negative values 
may have (denoted as μ*), and its standard deviation (σ), which in-
dicates interaction and non-linear effects. A high σ indicates that a 
parameter is interacting with others (Braddock and Schreider, 2006; 
Pianosi et al., 2016; Saltelli et al., 2008). The Morris method is often 
recommended for screening and ranking purposes (Cuntz et al., 2015; 
Saltelli and Annoni, 2010) as it requires fewer model runs to arrive at an 
acceptable parameter rank or screening conclusion compared to other 
common SA approaches (see, for example, (Braddock and Schreider, 
2006; Cuntz et al., 2015; Herman et al., 2013; Sun et al., 2012)). 

An alternative to the Morris approach is the application of OAT with 
a “radial design”, wherein the pure OAT approach is repeatedly applied 
around different “start points” (Campolongo et al., 2011). In this Radial 
approach (referred to as R-OAT from hereon), the model is evaluated n⋅ 
(p+1) times, where n is the number of repetitions. It is noted here that 
R-OAT transforms OAT from a local to global SA when n > 1. Thus 
R-OAT is equivalent to pure OAT when n = 1, and the total number of 
model evaluations is the same as with the Morris method. Unlike the 
Morris method, however, R-OAT does not require a specific sampling 
scheme and can leverage existing schemes such as Latin Hypercube, 
Sobol’ sequences, or even simple Monte Carlo to gain an indication of 
variance-based indices (Campolongo et al., 2011; Pianosi et al., 2016). 

R-OAT is particularly appealing within the IEM context due to its 
simplicity and scalability, leading to its application being relevant 
throughout the model development life cycle. As suggested previously 
by Campolongo et al. (2011), a collection of SA results can be built up in 
stages where and when necessary. Smaller samples for diagnostic pur-
poses can be built on, with additional samples added for screening and 
ranking. Larger samples can be used to obtain an indication of global 
effects via variance-based indices, assuming no implementation or 
integration errors are identified. 

There are alternatives to variance-based approaches, such as 
moment-independent (also known as density-based) approaches from 
which usable indicators can be obtained with a reduced number of 

samples relative to variance-based approaches. The PAWN method 
(Pianosi and Wagener, 2015, 2018), for example, was found to be able to 
identify parameters of significance with 10% of the samples needed by 
the Sobol’ method for a 26-parameter hydrological model (200 
compared to 2000 samples; Zadeh et al., 2017). 

With the PAWN and Sobol’ methods, a dummy parameter can be 
used to obtain an indication of insensitive parameters. A dummy 
parameter is an inactive factor that does not have any influence on the 
behavior of the model (i.e., it is completely insensitive). Parameters that 
are awarded a sensitivity rank equal to or less than the dummy 
parameter are assumed to be insensitive. The focus therein, however, is 
on assessing parameter sensitivities rather than expected model 
behavior. 

The use of emulators, which approximate the model response surface 
with an abstract formalism, is one oft-suggested approach to resolving 
issues of computational complexity and runtime (e.g. Yang et al., 2018), 
and could in principle be used to speed up testing. Developing emula-
tors, however, requires sufficient areas of parameter space to be repre-
sented. The time taken to obtain the necessary samples for a complex 
model is typically prohibitive in the context of the model development 
cycle. By the time the emulator is ready, the model is likely to have 
undergone significant changes such that the emulator represents an 
obsolete version. A further consideration is that many methods require 
that the response surface have a level of smoothness for it to be 
approximated and that the parameterization of the original model is not 
exceedingly high (Oakley and O’Hagan, 2004; Sudret, 2008). The above 
criteria are often not met in the case of IEMs. The error in emulators also 
needs to be evaluated prior to use, as emulation of an IEM with con-
ceptual or implementation issues renders any subsequent uses of the 
emulator beyond diagnostic tests inappropriate, making their develop-
ment too costly for the sole purpose of obtaining indicative results. 

3.2. Example diagnostic SA 

To provide an illustrative, if simplistic, example of diagnostic SA 
within the development cycle, a hypothetical model developer could 
apply the Morris method (Morris, 1991) to gain an indication of the 
behavior of the (incorrectly implemented) model introduced above (see 
Box 2 and 3). The Morris sensitivity index indicates the relative change 
in the quantity of interest regarding the changed parameter value (μ), 
the average absolute change in parameter value (μ*) which accounts for 
the effect negative values may have, and its standard deviation (σ) 
which indicates interaction and non-linear effects (Campolongo et al., 
2011). The method as implemented in the SALib (Sensitivity Analysis 
Library; Herman and Usher, 2017) package for Python is used here for 
demonstration purposes, which applies the improved sampling method 
introduced in Ruano et al. (2012). Relevant code for this example may 
be found in Iwanaga (2020). 

For the example linear function (Eq (2)), two properties are ex-
pected. First, the effect of each parameter is expected to be positive 
given the quantity of interest is the sum of all inputs. Second, the 
contribution of parameters to the quantity of interest is expected to be 
equal, again due to the linear nature of the model. Although the second 
property is satisfied, the results indicate that x5 is having a negative 
effect due to the erroneous implementation. Fig. 2 depicts this unex-
pected result for the erroneously implemented example function (see 
also Eq (2) and Box 3). 

In the software testing paradigm, diagnostic SA is a form of property- 
based test as the model property (i.e., its sensitivities) are being inves-
tigated and evaluated, although modelers usually apply this in a more 
‘manual’ manner through the visualization and qualitative assessment of 
results. Diagnostic SA may be an effective complement to ‘traditional’ 
software development tests, particularly in complex integrated 
modeling contexts, as the correct functioning of code in isolation does 
not necessarily imply conceptually correct integrated model behavior 
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(parameters and input variables) according to their influence on model 
outputs (Razavi et al., 2020; Saltelli et al., 2008). SA may also be used to 
analyze the bounds and uncertainties of a model’s parameters and its 
predictions, and is valuable in assessing model identifiability (Guillaume 
et al., 2019; Shin et al., 2015). Model sensitivities have also been 
assessed as part of a diagnostic evaluation procedure, to aid in verifying 
models and their structure (Gupta et al., 2008; Pianosi et al., 2016; 
Sieber and Uhlenbrook, 2005). Typical applications of diagnostic SA 
concern themselves with the identification of model components or 
parameters that explain (or should explain) differences between simu-
lated and observed system behavior (Gupta et al., 2008; Reiter, 1987; 
Saltelli et al., 2004). Diagnostic SA typically assumes that model 
development is complete. Rarely is it framed as an approach to test and 
validate model behavior throughout the model development cycle. 

A key consideration in the selection of an SA method (or methods) is 
its appropriateness for the intended aim constrained by the available 
computational budget. Screening and ranking parameters, for example, 
requires substantially fewer model runs to accomplish compared to 
obtaining estimates of parameter sensitivities (Herman et al., 2013; 
Sarrazin et al., 2016). Screening for parameters on which to conduct 
further analysis is a common practice that aids in conserving computa-
tional budget (Cuntz et al., 2015; Mai and Cuntz, 2020). Fixing the 
resultant insensitive parameters constraints the number of parameter 
combinations to be run for later Global SA or Bayesian uncertainty 
analysis. The trade-off is a risk that fixing parameters may introduce 
large errors in the quantities of interest. 

In the following subsections, we describe typical SA approaches and 
their suitability in the diagnostic context. For context, brief descriptions 
of the terms used are provided in Table 2. 

3.1. Sensitivity analysis methods 

In typical local sensitivity analysis (LSA), each model parameter is 
assigned a “best guess” baseline value and then changed (‘perturbed’) by 
setting to some pre-selected value or multiplying by some proportion 
and then returned to their baseline value whilst others remain fixed 
(Campolongo et al., 2011). The derivative is calculated for each change 
and the process repeated for each parameter one after the other, giving it 
its name “One-At-a-Time” (OAT). Any changes to the model output are 
thus attributable to the parameter that was perturbed. Such approaches 
are defined as “local” as they are only capable of providing indications of 
sensitivity at specific points in parameter space. In contrast to global 
sensitivity analysis (GSA), LSA cannot provide indications of in-
teractions between parameters and their effect on model outputs (Salt-
elli et al., 2019; Wagener and Pianosi, 2019). The OAT approach 
described here is referred to as a ‘pure OAT’ to distinguish it from other 
(global) approaches, which may also vary parameters one-at-a-time. 

There are other approaches to SA that do not rely on OAT. Variance- 
based methods are a commonly used class of GSA which involve the 
perturbation of parameters all-at-a-time (Douglas-Smith et al., 2020). 
Although more appropriate for parameter sensitivity estimation 

compared to pure OAT, variance-based approaches can be difficult to 
apply for early diagnosis of model issues where large numbers of pa-
rameters and long runtimes are involved. Sufficient samples are needed 
to obtain accurate sensitivity estimates, and this can increase exponen-
tially with the number of parameters involved. There is, however, no 

Box 3 
The example function (#1) from Li et al. (2010) with an incorrect implementation. Note the subtraction of x5 and compare with (Eq (2)).

Table 2 
Terms used to describe the role of sensitivity analysis.  

Term Description Reference for more 
information (where 
applicable) 

SA Sensitivity analysis – 
LSA Local sensitivity analysis – 
GSA Global sensitivity analysis – 
OAT One-At-a-Time analysis – 
R-OAT Radial One-At-a-Time analysis Campolongo et al. 

(2011) 
PoI Parameter of Interest – 
QoI Quantity of Interest – 
Parameter 

sensitivity 
Measures of sensitivity may have 
a direct interpretation, e.g., the 
magnitude of effect of an input on 
the output, or the variance 
attributable to an input. 

(Hamby, 1994; Saltelli 
et al., 2008) 

Screening The identification of insensitive 
parameters; those that have little 
to no effect on model outputs. 
Screening may also be used as a 
diagnostic test for parameter 
inactivity (proposed in this 
paper). 

(Herman et al., 2013;  
Saltelli et al., 2008;  
Sarrazin et al., 2016) 

Ranking The ordering of parameters by 
their influence on model results 

(Pianosi et al., 2016;  
Saltelli et al., 2008) 

Parameter 
identifiability 
and equifinality 

“Parameter identifiability 
analysis assesses whether it is 
theoretically possible to estimate 
unique parameter values from 
data, given the quantities 
measured, conditions present in 
the forcing data, model structure 
(and objective function), and 
properties of errors in the model 
and observations.” 
If the objective function is 
insensitive to a parameter, it 
means that the objective function 
is flat, and the parameter is not 
identifiable. 
A related concept is that of 
equifinality, which refers to the 
principle that the same output 
may be obtained using different 
methods, models, parameters, 
and combinations of parameter 
values with the same set of 
observations. In short, multiple 
conceptualizations may lead to 
equally acceptable outcomes. 

Guillaume et al. (2019) 
Beven and Freer (2001)  
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provision of model code (Hutton et al., 2016). Adoption of software 
development practices such as testing is likely to be low given recent 
literature that encourage their adoption. Software development prac-
tices, in general, are also acknowledged to play a part in resolving issues 
with replicability and reproducibility of studies in environmental sci-
ence and the computational sciences (Ahalt et al., 2014; Easterbrook, 
2014; Gray and Marwick, 2019; Hut et al., 2017). 

One possible reason for the sparsity of (reported) software testing is 
the lack of formal software development training for researchers (Han-
nay et al., 2009) and the reliance on mathematical or statistical rigor in 
model implementation. There is also an element of trust involved due to 
the variety of disciplines found within IEM development: as constituent 
models and their components are taken to function correctly in the un-
integrated context, they are assumed to be correct in the integrated 
context. Regardless of the reasons, the consistent application of tests for 
environmental model quality assurance appears to still be in its infancy. 
The subsequent possibility of technical complications influencing model 
results (referred to as technical uncertainty; Walker et al., 2003) or as a 
consequence of conceptual mismatches across disciplinary specialists 
appears to be largely ignored. 

2.1. Practical considerations of computational budget 

It is important to recognize and consider the computational costs 
involved in the diagnostic context as every computational work is sub-
ject to a budget arising from the intertwined concerns of available time, 
computational power and monetary cost. These concerns are collec-
tively referred to here as the computational budget. A hypothetical 
context, wherein a model integrator performs tests on a typical desktop 
computer, is described here to service the argument. Although dedicated 
infrastructure may be available (e.g., distributed or cloud-based plat-
forms), they too would be constrained by the same or at least similar 
considerations regarding their computational budget. 

As IEMs are often time-consuming to evaluate, model diagnostics 
may be scheduled to run overnight on a desktop computer (e.g., 5 p.m. 
to 9 a.m., or 16 h). Current typical development machines have 4 cores. 
If the model is estimated to take, on average, an hour to run, then 64 
model evaluations may be conducted in the available time. In practice, 
model runtimes should be expected to be variable, and computational 
performance is unlikely to scale linearly with the number of cores due to 
the computational overheads involved. A rule of thumb to arrive at an 
estimate of runtime is given by: 

c ⋅ t⋅(1 / r) (1)  

where c is the number of cores available, t is the time available in hours, 
and r is the estimated model run time in hours (assumed here to be ≤ t). 
It is common practice to inflate the runtime estimate (r) by some degree 
(e.g., by 10%) based on prior empirical knowledge of the model’s 
computational performance and requirements. Overestimating the 
runtime ensures that model evaluations complete within the defined 
available time given the variability of model runtime and computational 
overhead. Such considerations are also important in cases where cloud- 
based infrastructure is adopted as such services may charge by a unit of 
time (e.g., per minute). Description of the terms used throughout the 
paper are provided in Table 1 for ease of reference. 

Running of tests can be structured such that they are run from the 
simplest (and least time-consuming) to the most complicated (and 
computationally intensive). Failure of a simple test may then negate the 
need to run a more computationally intensive test. In some cases, failure 
of any single test may preclude the necessity of running any other tests, 
as the model has been shown to have issues, or at least allow for a more 
targeted diagnostic to occur. Structuring tests in this manner aids in 
conserving available computational budget. 

2.2. Example unit and property-based testing 

Box 1 shows an example unit test implemented in the Python pro-
gramming language (with the ‘pytest’ framework; Krekel et al., 2004) 
for an example linear function (Case 1 in Li et al., 2010): 

y= x1 + x2 + x3 + x4 + x5 (2) 

This simple example illustrates unit tests that protect modelers from 
changes (inadvertent or otherwise) that may introduce errors that would 
otherwise go unnoticed, but only for a specific known result. One 
disadvantage of unit testing is the need for such specificities to be 
known, and for tests to be written for each. While requirements may be 
known in advance, particularly in “business-oriented” software devel-
opment, it is less likely in research modeling contexts, and even less 
likely where the complex interactions between models are involved, as 
in IEMs. While it is possible to test that a known correct model output 
has not changed, such a test does not apply to new model configurations, 
as is common when integrating existing models. 

To counter this limitation, modelers may adopt a property-based 
testing approach (Fink and Bishop, 1997), wherein the expected 
behavioral aspect of the software/model is tested, rather than a specific 
known output as with the regular unit testing approach. Sets of inputs to 
feed into the model would be automatically generated in a 
property-based testing approach. Property-based testing was perhaps 
popularized by the QuickCheck tool for the Haskell programming lan-
guage (Claessen and Hughes, 2000), which sparked the development of 
similar tooling for other programming languages. Such testing frame-
works can assist in determining the properties of failing tests themselves, 
helping to identify specific cases in which the model does not behave as 
expected (Löscher and Sagonas, 2017). 

To give a specific example, one such test could serve to ensure a zero 
or positive valued output is obtained (i.e., ≥ 0) in cases where the sum of 
positive inputs is greater than the absolute sum of negative inputs, as 
this is an expected property of the model. Box 2 depicts an imple-
mentation of such a property-based test, along with its output indicating 
that the test failed as the model does not produce the expected behavior. 
Code for these examples are provided in Iwanaga (2020). On examina-
tion, we see that the model was incorrectly implemented (see Box 3) but, 
crucially, in a way the previous unit test shown in Box 1 would still pass. 
The results illustrated here should not be taken to mean that 
property-based testing supersedes unit testing as both are useful and can 
be leveraged in tandem to inform the level of confidence in the model 
implementation. 

Modelers may find that property-based testing is somewhat analo-
gous to pattern-oriented modeling (Grimm, 2005; Grimm and Railsback, 
2012), although the focus of the latter is on model construction and 
calibration. There is a conceptual similarity in that both 
pattern-oriented and property-based approaches evaluate model “ac-
curacy” against known (or desired) behavioral properties rather than 
evaluating against a single point of truth (i.e., a benchmark). Failure of a 
model to adhere to expected behavior then invalidates the assumption 
that the model is functioning correctly. It is, therefore, useful to test 

Table 1 
List of terms and their definitions as used in this paper.  

Variable Definition 

n  Number of sample repetitions 
p  Number of model parameters/factors/inputs/dimensions 
N  Total number of model evaluations 
s  A targeted subset of model parameters, or groups of parameters, for 

analysis such that s < p  
c  The number of available computer cores for the purpose of running a 

model for diagnostic sensitivity analysis 
t  The time (in hours) available to conduct diagnostic sensitivity analysis 
r  The estimated runtime of the model (in hours), assumed to be ≤ t   
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may inadvertently creep in may increase as time progresses (Boehm, 
1986). The associated opportunity cost may be substantial and so it is 
desirable for any issue to be identified and corrected as early in the 
development cycle as possible. Continuous and repeated testing of the 
models and their integration, therefore, plays an important part in the 
model development cycle. 

In the development of software, “testing” is leveraged to gain con-
fidence that the underlying code is working as intended and continues to 
do so throughout the rapid pace of iterative development (Danglot et al., 
2020). A failing test then falsifies the assumption that the software is 
working correctly. Researchers in the field of Sensitivity Analysis (SA) 
have independently arrived at the idea of “diagnostic evaluation”. 
Estimated sensitivities of parameters are used to provide some valida-
tion that the model behavior is in line with expectations (Campolongo 
et al., 2011; Gupta et al., 2008; Pianosi et al., 2016). Such diagnostic 
approaches have been recognized as vital for maximizing the capabil-
ities of mathematical models (Rabitz, 1989). Due to the computational 
demands of IEMs, results from diagnostic SA may be effective as once-off 
analyses yet take an excessive amount of time relative to the computa-
tional time and budget available for continuous testing purposes. 

Given the context of rapid iteration and high complexity of IEM 
development, there is a need for a diagnostic process that aids in the 
quick and early identification of issues throughout the integrated 
modeling process. In this paper, we showcase how a simple and 
computationally inexpensive SA, based on One-At-a-Time (OAT) sensi-
tivity analyses, applied in the frame of software testing can be a com-
plementary strategy in identifying model implementation and 
integration issues early in the modeling cycle. The approach, which we 
refer to as Property-based Sensitivity Analysis (PbSA), can help expose 
issues in the course of building or integrating models by exploiting ex-
pected and unexpected sensitivity of parameters. These are used as in-
dicators to confirm the expected model behavior in areas of parameter 
space with known model behaviors. 

In the following sections, we briefly introduce software testing 
practices contextualized by the integrated model development context 
(Section 2) and explore its conceptual linkages with diagnostic sensi-
tivity analysis (Section 3 and 4). We then provide an illustrative example 
(in Section 5) using the Campaspe Integrated Model (CIM), an integrated 
model developed to explore sustainable water management futures 
within an agricultural setting in the Lower Campaspe catchment of 
Victoria, Australia (Iwanaga et al., 2020a). We then conclude in Section 
6 with a discussion on directions for future research. 

2. Software testing in integrated model development 

Computational models are software in that they are implemented as 
code and are run on computers. Although there are clear similarities 
(perhaps even identicalities) between software and model development, 
model testing and development practices that are common in software 
production may not be readily adopted (Crouch et al., 2013; Hutton 
et al., 2016; Sletholt et al., 2012). In fact, publications have been 
retracted in the past for errors that software testing practices would have 
assisted in identifying (Ahalt et al., 2014; Bhandari Neupane et al., 2019; 
Kanewala and Bieman, 2014). In this section, we briefly introduce the 
concept of “unit testing” and the practice of “property-based” testing. 

It has long been recognized that issues are easier and cheaper to 
address if they are identified earlier in the development process (Levin 
et al., 2019; Mossalam, 2018). A core aim of software testing is to reduce 
the time taken to reach a “stable” working piece of software (in this case, 
a model) by aiding in the identification of issues as early as possible in 
the development workflow (see Fig. 1). Developers write code to ensure 
the correct functionality of other code to accomplish this aim. Such code 
are referred to collectively as “tests”. A common type of software test is 
referred to as a “unit test”, as it tests an arbitrary but preferably small 
‘unit’ of code against a specific known result (Sarma et al., 2016). 

Unit tests support the development process by providing indications 

that the model is working in line with expectations. Frequent re-running 
of these tests (e.g., after every change) shorten the time between changes 
to the code and identification of issues, thereby smoothing the model 
development cycle. One issue is that identifying the “correct” behavior 
to test may be challenging in cases where the effects of model in-
teractions may not be fully understood, as in the IEM context. 

Running of tests can be automated (Verweij et al., 2010) such that a 
collection of unit (and property-based) tests could then form a regression 
and/or integration test suite. Regression tests help alert developers to 
the unintentional (re)introduction of issues that may have been previ-
ously addressed during model development (Huizinga and Kolawa, 
2007; Yoo and Harman, 2012). Integration tests are those intended to 
ensure that the combined operation of multiple functions (e.g. model 
coupling) is both technically and conceptually sound and may also be 
continuously applied throughout the modeling process (Danglot et al., 
2020; Laukkanen et al., 2017). Testing can uncover bugs or other issues 
that are “show stopping”: high-priority issues that render further work 
inadvisable without them being addressed. From a Bayesian perspective, 
the more tests that are available (covering more of the codebase and the 
conditions of their use), the more confident modelers can be in the 
correct functionality of the model (Davidson-Pilon, 2016). 

Although there is some evidence that software testing practices are 
being adopted within the computational sciences (Hannay et al., 2009; 
Sarma et al., 2016; Sletholt et al., 2012), to what extent is difficult to 
ascertain given the weak, albeit strengthening, norms requiring the 

Fig. 1. Conceptual overview of the model testing workflow within the devel-
opment process. 
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A B S T R A C T   

Diagnostic testing is an oft-recommended use of sensitivity analysis to assess correctness or plausibility of model 
behavior. In this paper we demonstrate the use of sensitivity analysis as a complementary first-pass software test 
for the validation of model behavior. Typical testing processes rely on comparing model outputs to results known 
to be correct. Such approaches are limited to specific model configurations and require that correct results be 
known in advance. Property-based Sensitivity Analysis (PbSA) examines model properties in terms of the 
behavior of parameter sensitivities to provide a line of evidence that the expected conceptual relationships be-
tween model factors and their effects are present. Unanticipated results can indicate issues to be corrected. The 
PbSA approach is also scalable as it can complement existing testing practices and be applied in conjunction with 
global sensitivity methods that can reuse existing model evaluations or are otherwise independent of the sam-
pling scheme.   

1. Introduction 

Integrated Environmental Models (IEMs) are often developed to 
inform policy and management processes. In the problem realm of socio- 
environmental systems (SES), such integrated models account for mul-
tiple sectoral influences and their interactions, including the biophysical 
(e.g., hydrological, climate, ecological and agriculture) and socio- 
economic processes (e.g., human drivers, economy/market, policy and 
legislative interactions). Multiple models, both purpose-built and pre- 
existing (i.e., legacy models; Kelly (Letcher) et al., 2013), are often 
coupled to represent this system-of-systems. 

Typical IEM development conceptualizes an iterative ‘cyclic’ process 
in which an interdisciplinary team (of teams) collaborates to appropri-
ately represent the interactions across the SES being modeled (Hamilton 
et al., 2015; Little et al., 2019). The development process is such that the 
suite of models that constitute an IEM, and their coupling, are in a state 
of flux with each undergoing a separate iterative development cycle. 
Changes to one model component may necessitate changes in another, 
and there will be emergent behaviors that arise only when models are 

integrated. The modeler(s) responsible for integrating the disparate 
models involved is the foundation for ensuring that the constituent 
models and the resulting IEM are both technically and conceptually 
sound, lest usability of the IEM and confidence in the results be 
compromised (Voinov and Shugart, 2013). 

Compounding matters is the fact that IEMs are increasingly being 
operated at grander ‘scales’, in terms of the number of systems repre-
sented, the breadth of researchers and interest groups involved, and 
consequently the required computational infrastructure, budget and 
time available (Elsawah et al., 2020; Little et al., 2019). The resulting 
IEM may have hundreds, possibly even thousands, of parameters. 
Models external to each discipline or sectoral component are often 
treated as black (or at best, gray) boxes given the spread of 
domain-specific knowledge required to understand, in full technical 
detail, the models representing the system-of-systems. Consequently, no 
single person is likely to have a full and complete understanding of the 
models involved. 

Given the complex and complicated context of SES modeling and the 
pace at which IEM development occurs, the cost of correcting errors that 
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represented by a temporal period. A single parameter set that is optimal for all periods could then 

be selected for use (as suggested in Gharari et al., 2013). It is noted here that further investigation 

and exploration of hydrological ensemble model development approaches to address known 

limitations is well outside the scope of the chapter and is likely a series of papers in and of itself. 

Multi-model ensemble approaches are not, at time of writing, widely used and remain an area ripe 

for further research (Sharma et al., 2019). 
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River Red Gum (tree) Index

River red gums play vital roles in the maintenance of the aquatic and riparian ecosystem in the Campaspe River. The model
provides indications of suitability for maintenance and regeneration (e.g. promotion of new growth) of River Red Gums which
incorporates both groundwater and surface water flow regimes. Suitable groundwater conditions were taken from Roberts and
Marston (2011) with established trees preferring the groundwater table to sit between 2 and 6 m below the ground. A linear reduction
from 6 m to 12 m (where 12 m or more will produce a zero indicator value) is used in the model. Younger trees are modelled to prefer
groundwater depths between 0.5 and 1 m, after which the index linearly deteriorates towards 2 m at which point the indicator gives a
score of 0.

Recreation Index

Lake Eppalock is a popular destination for water-related recreational activities including boating, water skiing, and wind surfing,
with associated economic benefits (City of Greater Bendigo, 2009). Falling water levels during the millennium drought and in recent
years have led to increased concern for the continued viability of the dam for recreational purposes (ABC News, 2015; City of Greater
Bendigo, 2009).

The volume of water in the dam is used to indicate the perceived suitability of the dam for recreational purposes where suffi-
ciently high dam levels (> 65 % dam capacity) allows full enjoyment of recreational activities, whereas lower dam levels impede
them. Collision with debris and fallen trees is a risk when the dam falls to 30 % capacity. Issues of crowding can occur at lower
volumes as it equates to lower surface area for recreational use.

Appendix F. – Parameter Covariance Analysis

Fig. 25.
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Fig. 25. Covariance matrix indicating (statistical) independence of model inputs. The number of scenarios to run (896) for each climate scenario
was selected as a compromise between the time taken to run the model and the independence of inputs.
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Appendix D. Calibration periods for IHACRES rainfall-runoff model

See Table 11.

Appendix E. Ecology and recreation index model detail

Platypus Index

Indicators developed for platypus are based on recommendations outlined in the Environmental Water Management Plan set out
by the North Central Catchment Management Authority (North Central CMA, 2014). Following these recommendations streamflow is
to be maintained to at least 10 ML/day in the summer, and 50 ML/day in winter to allow for movement and food supply (macro-
invertebrate productivity and dispersal). Water releases in the summer and autumn (“freshes”) are necessary to maintain food supply
and, in the autumn, aid in the movement of platypus young. An additional “burrow flooding” index is used to represent prolonged
high flow events during the nursing season which may flood platypus burrows and drown the young.

Fish Index

Fish represented in the ecology model are categorised by their lifespans (long and short-lived fish). Examples of long-lived fish
include the Murray Cod and the Golden Perch, with their oldest recorded estimated ages being 48 years (Anderson et al., 1992) and
26 years (Mallen‐Cooper and Stuart, 2003) respectively. Short-lived fish include the rainbowfish and carp gudgeons which have
typical lifespans of 2–3 years. Species of long-lived fish have individual spawning preferences, e.g. Murray Cod is considered to spawn
in low-flow conditions whereas Golden Perch prefer high-flow flood conditions. In contrast, short-lived fish generally prefer low-flow
conditions (Ralph et al., 2010). Fish indicators represent suitable conditions during breeding and nesting seasons (low flow in
summer and winter, e.g. 500–1000 ML/day), spring freshes to trigger spawning events for long-lived fish (at least 500 ML/day for
two days), and summer and autumn freshes for dispersal for long-lived fish (e.g. 50 ML/day for at least two days).

Fig. 24. Linear relationships between Campaspe allocations and allocations in the Goulburn catchment.

Table 11
Time span of each period used to calibrate the IHACRES model.

Label Historic Time Span Daily Time Step Index

Pre-drought 1981-01-01 to 1995-03-13 1 – 5185
Start-drought 1995-03-14 to 2000-06-13 5186 – 7104
Early-drought 2000-06-14 to 2003-04-20 7105 – 8145
Mid-drought 2003-04-21 to 2005-11-21 8146 – 9091
Late-drought 2005-11-22 to 2010-06-20 9092 – 10763
Post-drought 2010-06-21 to 2016-12–31 10764 - End
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The North Central region represents an area significantly larger than the Lower Campaspe sub-catchment, however it is the most
(spatially) relevant dataset available.

Calibration used the L-BFGS-B function minimization routine – implemented in the `scipy` Python package (Jones et al., 2001) – to
reduce Root Square Mean Error (RMSE). This process achieved results with an overall RMSE of 0.68 and a long-term average yield
comparable to what has occurred historically; 2.37 t/ha compared to the historic seasonal average of 2.27 t/ha for dryland wheat.
The parameters for irrigated crops were adjusted to return higher yields (as is usual for crops under irrigation). The modelled results
with calibrated values for both dryland and irrigation yields were deemed to be acceptable and reasonable by stakeholders. Further
example calibration results are shown in Fig. 23.

The seasonal profit is calculated in the same manner as used to optimize water usage (see Eq. (1)), albeit with yield values (Y )
replaced with those calculated by the French-Schultz equation, and the costs now representing the variable and fixed costs associated
with the cropping enterprise, but also the costs accrued throughout the growing season, such as cost of pumping and water access
fees. From here, the per hectare profit for a growing season ( ha) and profit per ML of water used ( W ) can be determined as:

=
Aha

T

T (12)

=
Ww

T

T (13)

where WT is the total water volume applied for the season and AT is the earlier defined total field area. Rather than model a global
crop market, it is assumed here that the harvest for each year is sold.

Appendix C. Representing Goulburn Allocations

See Table 10 Fig. 24.

Fig. 23. Calibrated crop model results for (left to right) dryland and irrigated wheat. Long-term modelled yield was 2.37 t/ha compared to the
historic average of 2.27 t/ha for dryland. The irrigated crop yields were adjusted to return higher yields compared to dryland production as the
historic observations are farm averages. The Campaspe catchment is said to produce higher yields than regional averages. Results were deemed
acceptable by stakeholders.

Table 10
Goulburn allocation scenarios and relationship with Campaspe
surface water allocations.

Scenario Equation

High 1.2525x + 48.541
Median 1.4005x + 5.3381
Low max(0, (1.0116x – 3.2019))
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value is multiplied by a constant of 102 to convert unit of pressure (kPa) into metres (given in Faour 2001 in Robinson, 2002). The
derating factor (D) accounts for efficiency losses between the total amount of energy required and the energy required at the pump
shaft. The derating factor is said to be 0.75 for diesel pumps (Faour 2001 in Robinson, 2002). As pumping efficiencies may vary model
evaluation was conducted with Ep set to a conservative value of 0.7, the suggested value to use when the pump configuration and
efficiency are unknown (Vellotti and Kalogerinis, 2013). Other efficiency losses which influence total pumping head are not explicitly
considered but are accounted for through the use of this conservative pump efficiency value (as in Vellotti and Kalogerinis, 2013).

Groundwater pumping costs may fluctuate due to the changes in height distance between water source and discharge point
resulting in an increase in total pumping head. Such a decrease in water levels necessitates increased amounts of energy (and thus
fuel) to pump water from the increased distance. To account for decreasing water levels the depth of groundwater is added to the
head values given by Smith (2015) to allow consideration of the effect of fluctuating groundwater levels.

The time taken to pump a single ML of water (hML) is then determined by dividing the number of litres in a ML by the flow rate (Q,
in litres per second). This resolves to the number of seconds required to pump 1 ML. Dividing this by the number of seconds in an
hour (3600 or 602) results in the hour(s) required to pump 1 ML.

= =h
Q

10 /60 , 10 1MLML
6

2 6
(10)

Crops

The crops represented include three cereal crops of wheat, barley and canola. These are applied as a three-year rotation; i.e.
cultivating wheat one year, barley the next, and finally canola after which the rotation is repeated. An earlier version included tomato
however this crop was removed as its widespread cultivation was described as unrealistic and highly improbable by stakeholders, as
were horticultural crops in general.

Determining Seasonal Profit

Values for the expected revenue (R) and associated production costs (C) for each crop and irrigation type used in Eq. (1) are taken
from various grey literature sources to determine the optimal irrigation volume throughout the growing season (or the irrigated area
in the case of the first time step). Once the growing season has ended, however, a modified French-Schultz equation (Oliver et al.,
2009; Whitbread and Hancock, 2008) is used to obtain the final crop yield (Table 9).

= + +Y SSM GSR IW V CWUE(( ) )
1000 (11)

The modified French-Schultz equation above takes into account the stored soil water at the start of season (SSM), the effective
rainfall that occurred during the growing season (GSR, which is the sum of Et from Eq. (4)), the sum of any irrigation water applied
(IW , which will be 0 for dryland crops), and the crop evaporation coefficient (V ) which represents the required rainfall before a crop
will yield. These are then adjusted by a Crop Water Use Efficiency Index (CWUE) to arrive at the per hectare crop yield (Y ). The
resulting value is then converted to tonnes per hectare by dividing by 1000.

Values for the French-Schultz equation were initially taken from published FAO guidelines (Allen et al., 1998), with SSM assumed
to be 30 % of rainfall that occurred over February to April. These were subsequently calibrated against historic (per farm average)
crop yield data for the North Central region obtained from the Australian Bureau of Agricultural and Resource Economics (ABARES).

Table 8
Typical total head for each irrigation system, adapted from Smith (2015) and adjusted with input from Maskey (2016). The
typical pumping costs indicated on the right-hand column were used to evaluate the pumping cost model.

Irrigation System Total Head (m) Pumping Cost ($/ML) @ $1.20/L diesel fuel

Gravity 10 - 15 8 - 15
Pipe and Riser 10 - 15 8 - 15
Spray 25 - 35 30 - 60

Table 9
Growth stages for Winter Wheat, the length in days for each stage, and assumed planting date in month and day for each season.

Growth Stage Duration (in days) Crop Coefficient Depletion Fraction Source

Initial 30 0.4 0.6 Allen et al. (1998)
Development 140 0.4 0.6
Mid-season 40 0.9 0.6
Late 30 0.25 0.9
Season Length 240 Days
Assumed Plant Date 05-25 (MM-DD) DEDJTR (2015b)
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=PUMP P kW F( )fuel (9)

where

=F 0.25

=P kW
H f

E D
( )

( )
(102 )*

c

p

The volume of diesel fuel (PUMPfuel) is based on the required energy (P kW( )) and number of litres required to produce 1 kW
( =F 0.25, as given in Robinson, 2002). The amount of kilowatt energy required is dependent on the total head pressure (in metres,
H), the flow capacity of the irrigation system in use ( fc), pump efficiency (Ep) and derating factor (D).

Head pressure (H) is defined as the sum of 1) the discharge pressure head, 2) the friction head of water flow (i.e. friction loss) and
3) the height between the source of water and the discharge level (Robinson, 2002). The typical total pumping head for a given
irrigation system supplied with surface water is taken from Smith (2015). These values range from 10 m head pressure for gravity to
60 m for spray irrigation. Although the values in Smith (2015) are intended for irrigators in New South Wales, the indicated pumping
costs were within the value range suggested by a local irrigation specialist (Maskey, 2016) for a type of flood irrigation (pipe and
riser, $8-15), and spray irrigation system (centre pivot, $30-50). Typical head and cost ranges are shown in Table 8. Head pressure is
multiplied by the flow capacity of the irrigation system ( fc) the value of which is taken from literature regarding a farm in the study
area, given as 138.88 litres/second, or 12 ML/Day (DEDJTR, 2015). The literature-derived values assume that the pumping system
can operate at the desired head pressure and flow rate and that the pump itself is in good condition.

Pump efficiency (Ep) is the percent energy efficiency of the pump, representing the amount of energy imparted on the water. This

Fig. 22. Number of bores within each farm zone.
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is the most efficient but is also the most expensive to install and operate due to the fuel costs necessary to generate the pressure
needed to move and apply water.

The upper limit for all irrigation systems was set to 90 % - which is possible for all systems depending on soil type, system set up
and configuration, and additional work conducted to make the field more amenable for the chosen irrigation type (Finger and Morris,
2005). For example, the field could be laser graded to ensure a more consistent application of gravity fed irrigation water. Indeed, 77
% of those survey respondents reported having undertaken additional improvements to gravity irrigation such as laser grading and
tail-water reuse (from excess water reaching the bottom of the field). Gravity irrigation was then modelled as being 50 % and 90 %
efficient based on this information with the base efficiency set at 50 % representing the “usual” case (Table 7).

Soils

An early iteration of the model used the dominant soil type found in the Lower Campaspe area (sandy loam, see Fig. 21) as a
representative surrogate. Stakeholders indicated that this approach may not adequately represent the importance of soil type and
health in agricultural enterprises due to the diversity found at the smaller (zonal) scales. Stakeholders further indicated that farmers
with lighter soils on their lands may find spray irrigation more attractive as light soils are not capable of holding as much water as
heavy soils – the TAW value is comparatively less, influencing irrigation scheduling. Equally true is that farmers with heavier soils
may not see a benefit from a move to spray. To reflect this, only farm zones that were identified as having light soils were modelled to
have the option of changing irrigation systems to spray irrigation.

To better represent the conditions which impact irrigation scheduling and choice of irrigation system it is then necessary to
represent the range of soil textures within the model farm zones. To achieve this, published TAW value ranges for various soil types
(Allen et al., 1998; Qassim and Ashcroft, 2002) were used in conjunction with a soil map of the Campaspe catchment to create
weighted zonal values (see Fig. 20). These values were based on the proportional area of soil types found within a zone. A weighted
average median value was used as the nominal “best guess” value, with the weighted minimum and maximum values indicating the
possible value bounds. The soil map was kindly provided by EcoDev, a Victorian State Government department.

Pumping

Pumping water for irrigation typically represents the largest operational costs for a farm (DEPI 2014a). Seasonal pumping costs
were considered as this may vary depending on climate conditions and allocated water availability. This cost can itself vary de-
pending on the type of pump and its configuration. Extracting groundwater decreases the groundwater level, thereby increasing
pumping costs due to the greater distance and pressure required.

Pumping systems were simplified into two categories, indicating whether they are for shallow or deep bore pumping. The former
represents pumping from an irrigation channel or shallow aquifer, with the latter used to represent groundwater pumping at a depth
of 20 m or more. Stakeholders indicated that a mix of diesel and electric pumps are used in the study area (60 % and 40 %
respectively). Electric pumping costs can range from 16.5c to 32.8c per kilowatt (kW), while electricity plans with a flat rate of 27c/
kW can also be arranged (Bob Knowles, 8 Jan 2018, pers. comm). Diesel fuel was assumed to have a cost of $1.20 per litre, with a fuel
volume per kW of 0.25 (Robinson, 2002), resolving to 30c/kW. A weighted average of these values was used to represent the mixed
(60 %/40 %) use of both diesel and electric pumps (28.5c/kW). The kW cost of pumping is likely to change over time but was
modelled as a constant under the assumption that the cost of upgrading infrastructure is cost prohibitive within the modelled time
frame.

Installation of bores to access groundwater incur significant capital costs, ranging from $18,000 to $70,000 for a shallow bore and
$90,000 to $320,000 for deep bores (Robinson, 2002). It is assumed here that such infrastructure is already in place and so no initial
capital costs are considered. The average annual maintenance costs are included in the modelling, however, and are taken to be 5 %
of capital costs every 5 years and 20 % every 15 years (minor and major maintenance respectively). Nominal values for these (shallow
and deep bore) capital costs were $18,000 and $235,000 (taken from Robinson, 2002). The number and location of groundwater
bores for each farm zone are indicated in Fig. 22.

Table 7
Implementation costs for each irrigation system considered and their efficiencies.

Variable Irrigation Nominal value (and range) Description Reference(s)

Cost ($/Ha) Dryland $0 (relies on rainfall) Cost of implementation (or replacement) per
hectare of irrigated area in AUD ($/Ha)

(Laffan and Smith, 2015)
Gravity $2000 ($2000 - $2500)
Pipe and Riser $2500 ($2000 - $3000)
Spray $2500 ($2500 - $3500)

Irrigation Efficiency (%) Gravity 50 % (50 %–90 %) Expected efficiency for each irrigation system Finger and Morris (2005)
Tennakoon et al. (2013)Pipe and Riser 70 % (60 %–90 %)

Spray 80 % (70 %–90 %)
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= =NID D RAW RAW TAW p,t rz t, (3)

Here,TAW corresponds to the Total Amount of Water a soil can hold, and p represents the crop soil water depletion fraction (as in
Qassim and Ashcroft, 2002). The values used forTAW is discussed in the next section on soils. The soil water deficit at a point in time
can be calculated as:

= +SWD SWD ET E IWmin{ ( ), 0}t t c t t t1 , (4)

where

= =

=
E

P
P

if month is June to August
max{ 5, 0} if other monthst

t
n

t

t
n

t

1

1
and represents the total effective rainfall that occurred within the (two week) time step

(i.e. all winter rainfall is assumed to be effective rainfall)
IWt denotes the irrigation water applied at the time step. No water may be applied in the time step in which case this coefficient

will be 0.
ETc t, is the sum of crop evapotranspiration (ETc) that occurred within the time step.
It should be noted here that the intention of this particular model is not to have an accurate representation of effective rainfall or

water recharge/drainage processes. The model is, as mentioned above, based on the published advice for irrigators in Victoria and so
represents the assumed behaviour of the irrigation process. Irrigation occurs to refill SWD once it reaches (or goes beyond) NID, and
these are both represented as negative values (or else 0). The base volume of irrigation water (IWb) to be applied is taken to be equal
to SWDt when it reaches this refill point. This volume is then adjusted to reflect the efficiency of the implemented irrigation system
(IE) to arrive at the amount of irrigation water to be applied (IWt).

= =IW
IW

IE
IW SWD SWD NID, max{abs( ), 0}t

b t
b t t t t

,
, (5)

Irrigation efficiency refers to the percentage of water that reaches the crop root zone, allowing the crop ease of access to water.
Water applied with less efficient irrigation systems are said to be “lost” for the purpose of contributing to crop growth. Therefore,
more water is required if applied with irrigation systems of lesser efficiency for an equivalent effect on SWD. Irrigation systems
considered in this study include gravity, pipe and riser, and spray with IE ratings of 0.5, 0.7 and 0.8 respectively. Returning, finally,
to the proportional use of irrigation water, Agw sw, (the areas watered by ground and surface water respectively) are each then divided
by Af (total irrigated area) and constrained by the volume of water available. The optimal mix of water sources to use is then
indicated by:

IW A
A

V IW
A

min , /
t

ws

f

t

f (6)

whereV is the volume of available water (in ML), and Aws is the fixed area irrigated by the given water source (e.g. Asw or Agw). This
process (depicted in Fig. 19) is repeated until the crop is harvested at the end of the growing season.

Estimated costs for each irrigation system were corroborated by a senior irrigation specialist with EcoDev (Maskey, 2016). The
simplest irrigation system is “gravity” which relies on, as the name suggests, gravity to flood an area with water. Pipe and riser
systems are similar in that it also ‘floods’ a field but instead uses a pressurized pipe system to transport water, increasing costs. Spray

Fig. 19. Example depiction of irrigation scheduling.
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Appendix A. – Key Terms

Term Description

Beneficial change/out-
come

Positive change in the indicators Avg. Annual Profit, Ecology Index, GW Level Change, and Recreation Index compared to baseline (i.e.
> 1.0). Negative changes to total surface and groundwater volume used (< = 1.0) and to Income Volatility (< 1.0) is preferred.

Desirable outcome Scenarios which exhibit a beneficial change in system state across all indicators
Robust outcome Scenarios which exhibit desirable outcomes across all climate conditions

Appendix B. – Farm Model Details

The farm model optimised irrigated area and source of water through linear programming, conducted with the OptLang python
package (Jensen et al., 2017) in the form of:

=
= …

A R Cmaximize , ( )
i

i i i
1 3

s.t.

=
=

+

A L L A
A A
A A A

Rule1.0 if field is dryland only
Rule 2.
Rule 3.0

i i i T

T

sw gw f

,

(1)

where A indicates the area to be serviced by each water source, and where i {1,2, 3} represents the water source to be used: sw
(surface water), gw (groundwater), or only rainfall (dryland, nw). R is the gross revenue per hectare that can be expected with the
crop (sown for the season), irrigation system, and water source(s),C represents the costs incurred for the same. A is limited (Li) by the
available water resources and expected crop water demands. In the case of dryland, the total field area can be used (AT). The values
for L are calculated asV W/i c ha, as in the volume of available water from a particular water source (Vi) divided by the expected seasonal
(per hectare) crop water requirements (Wc ha, ). In future modelling, irrigation areas could be informed based on recent Landsat
imagery.

At the start of the season, only Rules 1 and 2 are used to determine the irrigated area for the growing season. The initially
optimised area (Af ) is then locked for the rest of the growing season and is used to determine the proportional amount of water to be
applied with surface and groundwater, such that in subsequent time steps Rule 3 is included in the formulation.

Dryland cropping is assumed to occur on non-irrigated areas, the area for which is calculated as = +A A A A( )nw T gw sw . Costs
included in the calculation include the variable costs for the crop sown, maintenance of irrigation and pumping systems (if ap-
plicable), costs associated with licensing, water ordering, and pumping costs. The sum of these gives the dollar profit/income ( ) for
the farm/zone. In this manner the farm costs, expected yields and profit, and estimated crop water requirements play a role in
scheduling irrigation events. The estimated total profit is necessarily an approximation. Profit after harvest is calculated directly from
crop yield, as detailed below.

Irrigation Scheduling

Farmers will irrigate, ideally, when crops require additional water. Determining when these irrigations occur is referred to as
irrigation scheduling. In this model it is assumed that farmers are monitoring soil moisture levels and have access to weather data,
specifically pan evapotranspiration (ET0). Soil water deficit (SWD) is a cumulative indicator of how dry soils can become before
additional water is required to be applied to avoid crop losses. Soil water deficit worsens by subtracting crop evapotranspiration (ETc)
which is calculated by applying a scaling crop coefficient Kc (i.e. =ET ET Kc c0 ), with each crop type having a corresponding Kc value.
Once SWD reaches a refill point – commonly referred to as the Net Irrigation Depth (NID) – an irrigation event is scheduled and SWD
reduced by the effective water applied. This approach is commonly applied on-farm and examples can be found in publications from
State governments (see for example, Hughes, 1999; Qassim and Ashcroft, 2002).

The NID value itself is calculated by multiplying the effective root zone at a point in time (Drz t, ) with the possible Readily
Available Water (RAW ) for the given soil type. The effective root zone is the depth at which the crop gets much of its water via its
roots and is dependent on soil type and crop properties (Baker and Ahern, 1989). Here, Drz is assumed to be 55 % of root depth for the
given crop type (as in Qassim and Ashcroft, 2002) where relevant information regarding root depths throughout the season and crop
growth stages could not be obtained, and as such acts as a constant. If sufficient data were available, the alternative approach would
be to calculate it as:

=D RD ERDrz t t t, (2)

where RDt is the root depth for the stage of growth at time t , and ERDt the effective root depth coefficient for the crop type
(Maihol et al. in Itier et al., 1996). Nominal values for these parameters were obtained from FAO guidelines (Allen et al., 1998).

The Net Irrigation Depth can then be calculated as
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limitations and avenues for future work.
Climate data used in the modelling display little changes in evapotranspiration from scenario to scenario. Evapotranspiration is

used as a reference value that informs crop water use in the model, and ultimately the frequency of irrigation throughout the growing
season. Crop loss, due to extreme heat, pests, or other influences, are also not considered. Changing weather events due to a changing
climate will also require the growing season to be shifted earlier or later (Prokopy et al., 2015; Wang et al., 2019), or timed to take
advantage of forecasted rainfall, however these planting/harvest dates were constants in the modelling.

An avenue for further enhancement can be expanding the agricultural activities represented in the model. Dairying is a primary
industry in the study area but is not explicitly represented in the model. Cropping was determined to be the common agricultural
activity regardless of farm enterprise and so the decision was made to focus efforts towards representing farm behaviour in that
context. While irrigation with groundwater was found to be an important aspect towards yielding robust outcomes, the model did not
incorporate water quality aspects and so further in-depth investigation, particularly on salinity issues, are required.

Cropping enterprise profitability may reflect dairying (financial) performance and so beneficial model outcomes are used in the
study to indicate beneficial outcomes for the catchment generally. As noted by stakeholders, the relationship between the enterprises
is expected to be particularly poor in dry conditions as dairy farmers have the option of acquiring feedstock externally. Irrigators may
also trade water (an activity not represented in the model) to cover shortfalls in water availability.

Averaging farm water orders across a 14-day time step means that the CIM does not represent high volume water orders that are
released within a shorter time span. Consequently, the implications of high-volume water orders on ecological flow suitability
indicator may not be adequately captured. On this note, the policy model currently includes environmental considerations based on
legislated flow requirements but is not reactive to modelled streamflow/level or groundwater head, and effects on ecological in-
dicators. Future work could then consider possible adaptive management processes in which water allocations and/or their releases
are adjusted to meet environmental considerations.

Whilst uncertainty in the modelling is taken into account largely through the use of climate scenarios and sampling of parameter
space, future work is envisaged to identify the most important sources of uncertainty in the modelling. In this endeavour, one way
forward is to use a comprehensive qualitative and quantitative approach (e.g. Refsgaard et al., 2007), especially involving stake-
holders and experts in helping to rank the criticality of the different sources as to their influence on model outcomes before em-
barking on a quantitative set of exercises. Nevertheless, we believe the work to this point is a valuable starting point for raising
awareness and discussion amongst stakeholders as to opportunities for managing water more beneficially in the catchment.

One important social aspect not represented in the presented study is the cultural importance of the local flora and fauna and
issues of cultural flows – the release of water to fulfil activities or conditions of cultural and social importance (Moggridge et al.,
2019). Indeed, it has been increasingly acknowledged that water entitlements for cultural flows are not yet made a consistent part of
Australian water management legislation, policies or guidelines despite being identified as a national priority area (Jackson et al.,
2012; Williams et al., 2019). This limitation will be addressed in planned future work currently under discussion.

7. Conclusions on sustainable water management opportunities

This paper presents a component-based integrated environmental model developed to explore sustainable water management
options within the Lower Campaspe sub-catchment of the Murray-Darling Basin. Stakeholder participation was critical to the model
capabilities, as local stakeholders provided knowledge, feedback and data to assist in conceptualising the system. The participatory
and model-based collaborative approach yields results that reveal opportunities to consider for achieving improved socio-environ-
mental outcomes and water security, relative to the modelled historic baseline. Improvements at the farm level were found to be a
prospective contribution towards this goal, as were farm (water) management and changes to governing policy rules. Specifically,
conjunctive use of surface and groundwater resources and increased use of the latter was found to improve outcomes. Adoption of the
most efficient irrigation systems considered (spray and pipe and riser) did not necessarily lead to desirable outcomes across all
climate conditions. It then follows that simply improving irrigation water efficiency is not a sufficient course of action.
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Each scenario explored was tied to three specific climate datasets which represent hypothetical shifts in aridity (i.e. “dry”, “usual”,
and “wet” conditions). Limiting the climate scenarios to these three was done to keep the total number of possible scenario com-
binations to a manageable level as model runtime was a concern. An alternate approach is the use of multiple projections for each
aridity scenario. This would more comprehensively address scenario uncertainty with respect to climate inputs as it would allow the
influence of differing degrees of “dryness” to “wetness” to be explored.

Another source of uncertainty, rarely discussed, is computational infrastructure uncertainty. Here, we define computational infra-
structure uncertainty as the uncertainty that arises in model interoperation and integration and application across various compu-
tational contexts. Model technical uncertainty (as defined in Refsgaard et al., 2007) is a related issue which we regard as being specific
to the uncertainties that may arise from a model’s implementation. Computational infrastructure uncertainty is distinguishable from
model technical uncertainty in that models that have identical implementations may yet exhibit different behaviour when applied on
different infrastructure, such as operating systems (see for example, Bhandari Neupane et al., 2019), platforms (e.g. desktop vs
supercomputer), interoperation of data via various means (e.g. local storages vs over a network) and formats and different

Fig. 17. Dimensional stack of current and conjunctive use policies under median Goulburn allocations with respect to considered farm groundwater
use. A concentration of robust outcomes is found in scenarios wherein conjunctive use is allowed with groundwater use levels in line with what has
been occurring historically. Without conjunctive use increased groundwater use (to 90–100 %) is necessary to achieve robust outcomes.
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– aspects which the modelling presented here did not cover.
The results suggest that improvements to farm soils and infrastructure will be beneficial within the Campaspe, and additional

communication, training, and (financial) incentive programmes beyond what has already been occurring may increase benefits. Any
such programme should consider possible issues surrounding social acceptability and be cognisant of issues with previous approaches
to appraising the cost-benefits (Grafton and Wheeler, 2018). While increasing groundwater use is generally beneficial, possible issues
surrounding social acceptability of increased use and water quality, particularly salinity, should be fully considered. The results raise
the possibility of increasing groundwater allocations in the Lower Campaspe, especially if Managed Aquifer Recharge is adopted in
the region (Chiew et al., 1995; Ticehurst and Curtis, 2017).

5.1. Model and scenario uncertainty

Integrated models are constructed through the interfacing of models that collectively cross disciplinary lines and their respective
system boundaries. Intuitively, uncertainty will not decrease if more models are added, simply due to compound uncertainty. This is
the uncertainty that arises as outputs from one model are used as inputs to another, with each interaction propagating some amount
of error (Dunford et al., 2015; Refsgaard et al., 2007).

In the context of the CIM the sources of uncertainty and their contributions to total model uncertainty are too great to list out
individually within the confines of this paper. Formal analyses of individual model components and total model uncertainty including
structural uncertainty with regards to model selection, is the subject of another paper. Qualitatively, however, the farm model
represents the largest source of (compound) uncertainty as all components, except for climate, are influenced by mechanisms internal
to the farm model. In other words, the farm model behaves as a nexus point between models and thus the errors in the interoperated
data may be cancelled out or compounded and subsequently propagated through. An over estimation of streamflow may be “cor-
rected” in a sense by over estimation of required crop water and under estimation of irrigation efficiency. Similarly, the opposite may
also be true. Such influence may occur directly (e.g. streamflow reduced due to farm water extraction) or indirectly (e.g. ecological
suitability influenced by streamflow). The reader is once again referred to Fig. 2 which indicates the component interactions.

Uncertainty within the models was addressed through participatory engagement processes (Section 3.1) and the conceptual
testing process (Section 3.9), both of which ensured model behaviour is qualitatively plausible (as judged by stakeholders), and which
involved changes in response to their feedback. On top of this, exploratory modelling was applied to hypothetical policy contexts
identified by stakeholders and the range of on-farm activities considered, using results from the farmer survey (Ticehurst and Curtis,
2017, 2016).

Fig. 14. Influence of soil total available water (TAW) towards achieving robust outcomes (shown in log scale).
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water is allowed. Under median allocation situations, conjunctive use allows robust outcomes to be achieved while maintaining
groundwater use in line with historic behaviour. Without conjunctive use enabled however, considered use of groundwater has to
increase to 90–100% in order for the changes to be robust (Fig. 17). As Goulburn water availability further decreases, groundwater
use becomes especially important towards achieving robust outcomes. Robust outcomes are more likely if conjunctive use is enabled
along with high levels of groundwater use (Fig. 18). The modelling suggests that groundwater levels can be maintained above the
lowest trigger level, however careful consideration is required especially with regard to the effect on salinity and water quality issues

Table 5
Description of notable farm model inputs.

Factor Name Category Description

gw_cap Direct Control Groundwater cap – described in the policy section above. Reflects maximum volume of groundwater allocation
considered by a farmer. The farmer may choose to favour future water security under dry conditions by carrying over
(25 % of) unused water potentially sacrificing the ability to achieve maximum crop yields in the current season.

irrigation_efficiency Direct Control Irrigation efficiency rating of a given irrigation system. More efficient irrigation systems require less water to irrigate
the same area, but cost more to operate. Efficiency can also be improved by adopting best management practices,
which irrigators have been doing.

pumping_costs Direct Control Perceived cost of pumping on a $/kilowatt basis. Farmers can adopt more efficient pumps, irrigation designs, or other
practices which reduce this cost.

Irrigation Direct Control Indicates adopted irrigation system for a Zone
crop_water_use Limited Control Perceived crop water requirements. Under-estimating crop water requirements leads to too large an irrigated area

relative to available water. Farmers can become better informed of crop attributes but cannot directly control these.
crop_root_depth Limited Control Perceived average crop root depth of a crop at each growth stage. Affects irrigation scheduling, as crops with deeper

roots typically require less irrigation events.
TAW_mm Limited Control Total Available Water – represents the soil water holding properties of a given soil type. Farmers may improve soils

through best management practices or invest in monitoring but cannot change the soil type at the landscape/field
level.

Table 6
Summary of indicator metrics and their beneficial directions. All values should be taken as relative to a baseline, either modelled historic outcomes
or a relevant scenario baseline. Indicators provided without a beneficial direction are included to contextualise outcomes, with respect to area
irrigated and water used.

Indicator “Beneficial” direction Purpose/Description

Avg. Annual Profit Up General farm profitability
Income Volatility Down Severity of fluctuation in profit from year to year
Avg. Irrigated Area – Average total irrigated area over time
Total SW Used – Comparative surface water use
Total GW Used – Comparative groundwater use
SW Allocation Index – Surface water allocations throughout scenario period.
GW Allocation Index – Groundwater allocations throughout scenario period.
GW Level Change – Averaged normalised change in groundwater level between the start and end of a scenario period.
Ecology Index Up Assessment of ecological outcomes of streamflow
Recreation Index Up Assessment of impacts of dam levels on recreation

Fig. 13. Robust scenario results (93 of 5625) under all climate conditions. Salient factors leading to robust outcomes include crop, field, and
irrigation factors followed by policy factors and the amount of groundwater considered for use.
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while the informal and disparate approach to conjunctive use may be adequate, farmers who are overly cautious and restrict
groundwater use may not experience the maximum possible yields and capital returns in the long term.

The results shown in Fig. 13 emphasize the importance of farm level factors towards achieving robust outcomes. Stakeholders
have specified various programmes designed to engage with and promote farm management best practices (e.g. DEDJTR, 2015a;
Department of Economic Development, 2017). Assuming then that farms have little room for further improvement in terms of soil
water holding capacity, knowledge and consideration of crop properties, and on-farm infrastructure such as irrigation and pumping
systems, we can then identify which factors contribute towards robust outcomes. Focusing the analysis on factors external to the
farming system itself, the amount of allocations from the Goulburn system is identified as playing a large role, perhaps unsurprising
given the volume of entitlements which Campaspe irrigators rely on, particularly in zones 8 and 10 (see Table 1). Aside from the
Goulburn catchment allocations, the conjunctive use policy rules in place for a given scenario (`gw_restriction`) have a notable effect
(Fig. 16).

In scenarios where Goulburn allocations have lowered we see a concentration of robust scenarios wherein conjunctive use of

Fig. 11. Baseline future scenario results compared against modelled historic outcomes (relative values) with beneficial directions indicated as
directional arrows. Farm profitability is reduced in all but the least arid scenario, while volatility of income generally increases. Ecological indicators
generally only improve under “wet” conditions.

Fig. 12. Desirable scenarios identified when compared to historic baseline (796 of 5625). No desirable results were identified for the dry climate
scenario.
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increases costs and water usage thereby impacting farm profitability (Fig. 13).
At the field level, improving the availability of accurate information on soil water holding capacity has the greatest contribution

to farm profitability. Specifically, soil water retention within Zones 5, 10, and 9 are indicated to influence outcomes more than at
other locations in the Lower Campaspe (Fig. 14). At the same time, targeted adoption of spray irrigation within Zones 4 and 9 (the
zones indicated to be most amenable to spray irrigation systems in our analysis) did not necessarily lead to robust outcomes, further
highlighting the point that simply improving irrigation systems across the catchment is not a viable adaptation strategy. Possible
reasons for this include operational costs incurred with spray irrigation and the lower water efficiency of pipe and riser systems
contributing to increased recharge or streamflow under certain conditions, having the effect of improving ecological outcomes (i.e.
due to higher return flows).

One particular aspect of interest was the percentage of groundwater allocation which irrigators consider for use (`gw_cap`,
previously explained in Section 3.4.2). While irrigators have historically used 60 % of groundwater allocations in a bid to enhance
future water security, increased consideration of groundwater use improves the likelihood of desirable outcomes to be experienced
under all climate conditions (Fig. 15).

Increasing the volume of groundwater to be considered for use compensates for the decreased surface water availability under
more arid conditions. Consideration of all available groundwater resources (100 %) may be necessary under proposed conjunctive
use rulesets, likely due to the reduction in accessible groundwater in wet periods enforced by the proposed rules. This suggests that

Fig. 10. Modelled catchment average yields produced by CIM under historic climate conditions against available historic data (per farm average for
the North Central region) for the crops considered. The Campaspe region reportedly produces higher yields compared to the North Central average.
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The lack of desirable outcomes for the dry climate scenario suggests that improved outcomes compared to historic conditions become
increasingly improbable as the climate becomes drier, regardless of what changes are made (Fig. 12). One suggested scenario was the
adoption of irrigation systems with higher water application efficiencies to increase water savings across the catchment. Although soil
factors may make such a scenario unlikely (see Section 3.5), no beneficial outcomes were identified in such cases even in the case
where all non-dryland zones (i.e. all zones except for 1, 3, 5, and 12) adopted improved irrigations.

Given no robust scenarios were identified against historic results, we then conduct comparisons against baseline results for
specific climate conditions. In other words, scenarios under “dry” climate conditions were compared against the “dry” climate
baseline in order to identify conditions that led to relative improvements. A small number of scenarios were identified as being robust
under all climate conditions (93 scenarios). Input parameters of most import leading to these are related to crop, field, and irrigation
factors, followed by policy factors and the maximum amount of groundwater considered. These farm level factors are listed in Table 5
(under Section 3.5). The high feature score attributed to crop, field, and irrigation factors is perhaps unsurprising, but it does
highlight the importance of a well-informed farming community. Over-estimating crop water requirements and costs reduces the
irrigation area considered, and poorly set up or poorly maintained irrigation infrastructure (including pumps) and soil health

Fig. 8. Calibrated model compared to observed historic dam level (in mAHD) with an NSE of 0.967. Model parameters were estimated separately for
each of the six segmented time periods indicated with the background colours in the left-hand plot.

Fig. 9. Groundwater model components and model area as well as points and interactions with other component models from the perspective of the
groundwater model. Figure adapted from Iwanaga et al. (2018).
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annual) income along with larger fluctuations from year to year (depicted by the Income Volatility indicator in Fig. 11).
A reduction in groundwater use can also be seen (compared to the modelled historic scenario), attributable to the reduction in

irrigated area. Groundwater use under drier conditions is higher than their wetter counterparts but does not offset the lack of
available surface water. As would be expected, ecological and recreational indicators diverge from the historic baseline results based
on the climatic condition. It should be noted that any decrease to the ecological indicator is undesirable given that riverine health is
already considered to be highly stressed.

Comparisons of the 5625 scenario results against the historic baseline revealed 796 with desirable outcomes, however none of
these were robust, i.e. beneficial under all climate conditions, with no desirable outcomes identified under dry climate conditions.

Fig. 7. The six stream gauge locations used to indicate streamflow and level for the Lower Campaspe model. Figure from Iwanaga et al. (2018).
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between parameter independence and model evaluation time (see Appendix F). Latin hypercube sampling – a stratified Monte Carlo
sampling approach – was used to generate each scenario. In total, 5625 model evaluations were performed, consisting of 1875
scenario samples for each selected climate scenario.

Apart from the 5625 scenarios above, the model was initially run using “best guess” (default) values for each model parameter for
all climate scenarios. These are referred to as the “baseline” results. Indicator scores from these then establish a baseline against
which further comparisons can be made and represent the “business as usual” case in which the status quo is maintained in terms of
farm management and policy under changing climate conditions. Further scenarios are then run allowing parameter values to vary to
explore the possible outcomes under a range of conditions. Baseline results are compared against modelled historic outcomes while
results from exploratory modelling are presented as comparisons to their respective baseline scenario.

Comparing results to a baseline allows like-for-like comparisons. It is assumed that change in a beneficial direction (see Table 6) is
always desired and a scenario which exhibits improvements to system state relative to the baseline scenario is considered a desirable
outcome. For the purpose of this analysis, a desirable outcome is one in which all indicators perform comparatively better when
compared against their respective baselines. To be explicit, Avg. Annual Profit, Ecology Index, and Recreation Index were all required
to have scores above 1, whilst Income Volatility should be below 1.

Choice of farm and policy inputs that lead to these desirable outcomes of improved farm, water, and environmental conditions
across the possible climate futures and policy conditions are then regarded as robust; a system state in which desirable outcomes are
achieved under a range of plausible conditions (McPhail et al., 2018). The indicators of interest are described under relevant sub-
sections in Section 3 above, and are summarised in Table 6 with their “beneficial” direction indicated. Once desirable scenarios are
identified, the contributing model inputs were ranked using a random forest feature scoring approach. Feature scoring identifies
factors of relative import towards a given result. Dimensional stacking (Suzuki et al., 2015) is then used to identify the inputs that led
to the outcome of interest. Appendix A gives a description of terms used in referring to outcomes.

The above approach allows communication of the model inputs that lead to the outcomes under different scenario conditions. The
range of results then represent the uncertainty in achieving desirable outcomes and increases confidence that a given condition leads
to a desirable change, at least under the model assumptions (Reichert and Borsuk, 2005). The adopted method also avoids prescribing
specific conditions to be undertaken, and instead considers a range of alternate decisions that fulfil stakeholder requirements
(Herman et al., 2015).

5. Results and discussion

Overall, the results indicate that further pressures will be placed on farmers and the environment without changes to adapt to
uncertain climate conditions, as have previous studies and reports in the Murray-Darling Basin (Austin et al., 2018; MDBA, 2019;
Steffen et al., 2018). Comparisons of results against the modelled historic climate scenario are depicted in Fig. 11. Surface water
allocations are lower in the majority of scenarios, which is expected here as they are typically more arid compared to the historic
condition (as shown in Fig. 5). In order to cope with this situation the area under irrigation is reduced so as to maintain the necessary
ML/ha volume to attain crop growth and maximum yields. Doing so however comes with a commensurate reduction to (average

Fig. 5. Future climate scenarios sorted by calculated aridity index value in descending order. The dashed line indicates historic aridity for com-
parison. The semi-transparent magenta bar (top) represents the historic aridity index for the Lower Campaspe catchment (0.335). Coloured bars
indicate the wettest (green), comparable to historic conditions (opaque magenta), and driest conditions (orange). Climate scenario data that were
not used extensively in the modelling are coloured grey (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).
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accurate forecasting. The purpose here, however, is in representing futures (expanded on further in Section 4). Thus, the focus in
model development was on representing hypothetical groundwater level response to farmer behaviour and the water policies in
place. These are discussed in Sections 4 and 5.

3.8. Ecology and recreation indicator models

The models developed to represent ecological and recreational aspects of the Lower Campaspe system produce indicator values
reflecting the suitability of stream and groundwater flow for key ecological purposes and dam water levels for recreational purposes.
Ecological indicators represent the suitability of flow conditions for breeding, feeding, nesting, and dispersal of platypus (4 indices)
and native fish (2 indices), as well as maintenance and regeneration of the iconic River Red Gum trees (2 indices). Suitability
thresholds were based on the North Central CMA Environmental Water Management Plan (North Central CMA, 2014) in conjunction
with feedback from ecologists from the Australian Platypus Conservancy and the North Central CMA (as detailed in Iwanaga et al.,
2018). It was suggested by stakeholders (local representatives from the government department, EcoDev) to lump ecological in-
dicators into a single metric to ease interpretability of results.

The recreation indicator is based on a linear relationship between dam water level and perceived recreational suitability elicited
through interviews with stakeholders from GM Water, caravan park managers and other recreational users. All indicator models
produce index values which range between 0 (being unsuitable) and 1 (most preferable). Although ecology and recreation are
separate and distinct systems they are lumped together here as the recreation index model constitutes a small aspect of the modelling
presented here. Details specific to each ecological and recreational component are provided in Appendix E, with further detail
available in Fu (2017).

3.9. Conceptual integrated testing

An issue in the development of CIM was the lack of data to validate coupled model behaviour – known as integration testing in
software engineering parlance. One example is the lack of farm-level crop yield data (partly due to privacy concerns). Data that were
available describe average yield from both irrigated and dryland cropping on a “per farm average” basis for the entire North-Central
region of the state of Victoria, an area of approximately 47,000 km2 compared to 2600 km2 for the Lower Campaspe. Additionally,
the temporal scale of available data is relatively short, with records starting from 1990 to the early 2000s.

Under such circumstances model testing and validation chiefly involved high-level conceptual checks selected to indicate un-
acceptable model behaviour. Data to develop a strict quantitative metric was not generally available across the range of component
model contexts, and so the adopted approach was to contextualise performance against relevant criteria to provide an indication of
model acceptability.

For example, while financial data at the individual farm level were not available, regional economic production data are available
for the Campaspe (via Australian Department of Agriculture, 2019). Performance of the farm modelling was considered unacceptable
if calculated crop profits exceed or comprised an unjustifiably high proportion of the agricultural output of the Campaspe catchment.
Modelled crop profits under historic climate conditions amounted to 20.54 % of the Campaspe agricultural activity ($13.81 M of
$67.26 M), which stands to reason given that the Campaspe region is principally a dairy farming community. Long-term average
values were also used as a qualitative measure of acceptability, wherein long-term behaviour of the model was in line with historic
observations (example given in Fig. 10).

It must be noted here that such an approach is subject to available expert knowledge. Tests at this conceptual level may be the
only kind of integration tests applicable given the available resources, data and domain knowledge, and the purpose of the model. For
this reason, the scope of testing must be carefully targeted and in line with available resources.

4. Methods for the scenario modelling

Exploratory scenario modelling was used to identify conditions which led to beneficial outcomes. The term “scenario” here refers
to the specific set of model inputs used for a model run, which in turn leads to a specific spatial and temporal evolution of system
variables and final outcomes. From the perspective of farmers and policy managers, these scenarios represent a possible farm and
policy context. The scenarios are run through the model and those with beneficial outcomes are subsequently identified. Thus, the
model is used in an exploratory manner rather than to obtain precise prediction of events.

Only factors pertaining to the farm and policy models are considered in the scenario modelling. Calibration was not conducted for
the integrated model in its entirety. Instead component models were calibrated individually against relevant historic observations of
crop yields, dam level, and observed groundwater head and feedback obtained from stakeholders in cases where quantitative data
were not available (e.g. for the recreational indicator). The approach is justified as the data used for calibration encompass a wide
range of conditions and the trends (rather than absolute values) of the climate scenarios are similar to observed historical data, as
explained earlier in Section 3.3. The ecology model takes no inputs other than the modelled streamflow and groundwater level. The
total number of model inputs that are directly considered in the CIM comes to 266 of which 212 factors are regarded as constants.
This still leaves 54 parameters that can vary between scenarios and are largely inputs for the farm models for the different zones.

Covariance analysis was carried out to determine the number of scenarios to run. It is desirable for the input values not to be
correlated across the sampled scenarios as this could induce artificial correlation within the results for those scenarios, i.e. the
covariance value should be as close to zero as possible. A threshold of 0.02 for off-diagonal values was selected as a compromise
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and recreational use of the dam (described in later sections). Stream flow and level are estimated at specific nodes (show in Fig. 7)
which were selected based on the location of gauges with suitable data, taking into consideration the needs of the integrated model
(see Fig. 2). These values are passed to the groundwater model in order to estimate infiltration loss and baseflow contribution to
surface flow.

Calibrating the model against historic observations proved difficult due to variation of parameter values estimated depending on
climate sequence, and so a decision was made to divide the climate sequence into six time periods and calibrate parameter values for
each separately using the Differential Evolution algorithm (Storn and Price, 1997). A good fit with historic dam levels was achieved
with this approach (with a NSE value of 0.96, depicted in Fig. 8). Calibrated values were then used for the corresponding time periods
for all climate scenarios. Each set of parameters have a limited scope of applicability, but their use for the segmented time periods is
arguably justified for the modelling purpose as similar patterns can be associated with the provided climate scenarios (as previously
described in Section 3.3). Time periods defined for calibration purposes are detailed in Appendix D.

3.7. Groundwater model

The groundwater component serves two roles in the CIM. The first is to provide estimations of the exchanges between surface
water and groundwater along the Lower Campaspe River at specific gauge locations. The second is to provide estimations of the
groundwater levels for each farm zone and at specific bore locations, which influence allocations of groundwater and pumping costs
and is a factor in the ecological indicator metric (see Section 3.8). Interactions at a daily time step with the surface water, farm,
ecology, and policy components are included in this manner, and are forced by rainfall, irrigation, pumping, and river stages (de-
picted in Fig. 9).

Stakeholders provided knowledge and data with respect to pumping, observational groundwater head, and chemistry, which
informed the groundwater model boundaries ensuring that the necessary spatial area is captured in the model. The groundwater
model represents the Lower Campaspe at a 5 km grid resolution with 7 layers comprising 1386 active cells, spacing of which was
informed by hydrogeologic unit rasters from the Victorian Aquifer Framework DSE, 2012c). The relatively large grid resolution was
selected as 1) it aligns with the provided climate data, and 2) for computational reasons, as higher resolutions required prohibitively
longer run times.

MODFLOW-NWT (Niswonger et al., 2011) was used to construct the groundwater component and is interfaced with via the Flopy
package (Bakker et al., 2016). MODFLOW was selected due to its open-source and well-documented nature, which complements our
iterative development, and because the modelling platform is regarded as an industry standard. Modelled groundwater extraction is
distributed across known wells within each farm zone. Response to input from the streamflow lags the surface water model as
component models are run sequentially. It is assumed that the daily lag will not have a significant impact on model behaviour.
Recharge is derived by multiplying the sum of rainfall and irrigation by a rainfall reduction parameter between 0 (no recharge) and 1
(no diversion) with values being in the range of 0.001 – 0.43. These rainfall reduction values were derived from a map of recharge
ranges for recharge zones defined by rainfall, land use and soil type (detailed in Xie et al., 2019).

Outputs from the groundwater model, while not precise at the scale of local wells due to model resolution, were fit for purpose for
indicative average groundwater levels in areas of interest. In the case of the ecology model, the requisite groundwater heads obtained
from the groundwater model would be subject to the largest variance due to the proximity to the Campaspe River and variability of
heads within a groundwater model cell. For the policy model the trigger bores are chosen to be indicative of larger scale behaviour,
and hence the use of the average head in cells that correspond with the trigger bores is deemed appropriate.

Effectiveness of policies in maintaining groundwater levels above the lowest trigger level is indicated by two metrics. The first
indicator is a weighted score based on the percent irrigation season allocation across the scenario period (GW Allocation Index)
where a score of 1.0 indicates that water users were given 100 % of their entitlements every year, and values close to zero indicate
consistently low water table such that pumping is disallowed. The second indicator (GW Level Change) is the averaged normalised
change in groundwater level between the start and the end of the model period relative to the lowest trigger level. Negative values
then indicate that the lowest trigger level was breached. These two indicators are referred to in the results as the “GW Allocation
Index” and “GW Level Change” (see Section 4 for further detail).

Poor performance of the groundwater model in the integrated context compared to historic observations can be expected due to
the integrated model structure and design. For one, both the policy and farm models were developed to represent a more recent socio-
hydrological context (i.e. post 2010) as required by the purpose of the modelling. This temporal mismatch has the effect of reducing
the overall volume of groundwater extraction and recharge compared to historic occurrences. As noted in Section 2, 90 % of the
irrigators had stopped irrigation practices leading to the closure of the Campaspe Irrigation District and so the farm model represents
this current level of irrigation activity. The policy model includes reforms introduced to allow carryover of unused water to the next
irrigation season as well as environmental water provisions which has an influence on the level of groundwater extractions. Con-
temporary accounts estimate 35,000 ML of water was used for irrigation within the Campaspe Irrigation District, including ap-
proximately 3000 ML extracted from the aquifers (Chiew et al., 1992).

We also note reported difficulties in representing the groundwater system of the Campaspe region in earlier studies. It has been
previously noted that the Campaspe region is a difficult region to model (Beverly and Hocking, 2014; Goode and Barnett, 2008). One
confounding factor is the long history of system regulation and incomplete data with respect to groundwater extraction and usage at a
fine(r) scale. Another reason is the local topography and landscape. Towards the south, large elevation changes can be seen which are
not captured by the 5 km grid resolution. Due to the coarse resolution in use for the purpose of the model, there are significant
differences in elevation between model cells (> 20 m). These model conditions preclude the use of the groundwater model for
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week) time step for each farm zone until the pre-determined harvest date. Again, further details of the model formulation are given in
Appendix B.

The assumption of this approach is that a series of short-term decisions that are financially sound will result in a profitable
outcome. The two-week time step was also necessary to facilitate representation of cross-domain interactions as agricultural irri-
gation/pumping activities influence stream and groundwater systems. All events (irrigation, planting/sowing, harvest) are assumed
to take place within two week periods.

In terms of interactions with other component models, the farm model is influenced by the water allocation determined by the
policy model, and subsequently influences the surface and groundwater models through irrigation water extraction (pumping and
irrigation activities). Further interaction with the policy model is included due to local policies allowing carryover in which a portion
of unused water is made available to irrigators in the following year.

From the perspective of the farm model, three categories of factors can be identified: uncontrollable, limited control, and direct
control. Uncontrollable factors are those that cannot be influenced in any direct manner such as climate condition, water allocations,
or crop water requirements. Limited control factors are those which a farmer may influence to some degree, such as how much water
a soil type can hold, by applying soil management practices. Direct control factors are those that a farmer can influence directly, such
as the irrigation system in use, their efficiencies (through irrigation design and monitoring), and so on.

Groundwater cap (`gw_cap`) is a model input of note, and acts to force the model to limit available water for consideration by the
farm model. As noted above in the groundwater policy section (Section 3.4.2), only 60 % of allocated groundwater has been used by
irrigators in the past. The considered parameter range was 60–100%, where 60 % represents past behaviour and 100 % reflects
consideration of all available groundwater for use without regard to future water security. The cap can be applied in combination
with the conjunctive management scenario detailed in Section 3.4 above.

Three key indicators were used to represent farm performance: 1) the average seasonal farm profit for the scenario, 2) the average
seasonal water use in ML, and 3) the coefficient of variation ( µ/ ) for farm income taken as a measure of fluctuations in yearly income
(i.e. a volatility index). Larger values for the volatility index indicate scenarios in which farm income undergoes large variations from
year to year. Irrigation area (relative to catchment area) and water use are also included.

3.6. Surface water model

The surface water system is represented by a purpose-built variant of the IHACRES rainfall-runoff model (Croke and Jakeman,
2004) written in Fortran and interfaced with a Python wrapper. The component model comprises a rainfall-streamflow model, a
routing module and a rating curve module. The component is driven by rainfall and potential evapotranspiration (climate data),
estimated groundwater and surface water interactions (from the groundwater component), dam releases (as given by the policy and
farm components) and water extractions from the stream (farm component). As water orders are lumped due to the farm model
operating on a two-week time step, the volume extracted is disaggregated uniformly across the 14 days as a daily average.

Effective rainfall i.e. rainfall that contributes to streamflow is calculated from rainfall via a non-linear loss module from Croke and
Jakeman (2004), modified to partition effective rainfall between quick and slow flows based on modelled catchment moisture status
(Croke et al., 2015). Movement of water through the river network is represented by two parallel exponentially decaying stores
representing quick and slow flow contributions. A further exponentially decaying store is used to route the flows between nodes
(Croke et al. 2006). Modelled flows are converted to stage heights by the rating curve module using data available at most gauge sites.
The single exception is gauge 406218 where available data were limited to water level. Losses from the river network to groundwater
are considered via interactions with the groundwater component, similar to the approach in Ivkovic et al. (2014).

Dam level, streamflow and level were important quantities to represent as these influence water allocations, ecological health,

Table 4
Irrigation options considered for each farm zone. All zones can also consider switching to dryland farming. Zones 1, 3, 5 and 12 are modelled
with no water entitlements and are assumed to be dryland only. Assumed efficiency ratings for each are given in brackets (see details in
Appendix B). See Zone definitions in Fig. 6.

Irrigation Option

Zone Gravity (50–90 %) Pipe and Riser (70–90 %) Spray (80–90 %)

1 –
2 ✓ ✓
3 –
4 ✓ ✓ ✓
5 –
6 ✓ ✓
7 ✓ ✓
8 ✓ ✓
9 ✓ ✓ ✓
10 ✓ ✓
11 ✓ ✓
12 –
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In the current policy context surface and groundwater are managed separately, however stakeholders have explicitly suggested a
move towards a conjunctive management approach. A possible change in the policy space includes the relaxation of trigger levels
during dry periods (thereby enabling irrigators to use more groundwater) followed by compensatory actions to increase recharge
during wet periods. Hypothetical trigger rules for conjunctive use were developed for the model. These rules define two sets of trigger
levels (referred to as the “drought” and “non-drought” rulesets) and management is switched between these depending on the surface
water allocation. “Drought” trigger rules come into effect after consecutive years of surface water allocations below 60 % or 80 %.
Depending on scenario, this may be after 1 or 3 years after which irrigators are able to use their full groundwater entitlement for all
but the lowest trigger level. These are detailed in Table 2 and referred to collectively as the “proposed trigger rules”.

Farmers surveyed in the area have indicated that such increased use of groundwater is technically feasible. Most irrigators are
reliant on surface water resources, with 91 % of those surveyed holding surface water licences compared to 22 % who additionally
hold groundwater licences (Ticehurst and Curtis, 2017). Groundwater use historically has reached a maximum of 60 % of allocated
volumes, although this has increased to 80 % in recent times (2016 water usage as reported in Ticehurst and Curtis, 2017). Recalling
that 25 % of unused water can be carried over, the current view is that irrigators are reserving water for drier times accepting a trade-
off between enhanced yields in wet years in return for water security in dry conditions. Hence the farming community could be
described as managing water resources in a conjunctive manner, albeit informally.

The CIM includes a scaling factor (60–100%) to adjust the amount of allocated groundwater considered for use by the farm model
to reflect this informal management approach. Note that setting the scaling factor to 100 % only makes all groundwater available, it
does not enforce its use. Limiting allocation to 60 % then reflects a return to historic behaviour in which farmers intentionally reserve
water to enhance future water security.

Water usage and its impact is indicated with percentage increase or decrease in water use (both ground and surface water)
compared to the baseline scenario, and the long-term decline (or improvement as the case may be) in terms of depth to groundwater
across the farm zones. In addition, two quantities of interest relate to groundwater: average groundwater allocation (“GW Allocation
Index”) and the relative depth to groundwater (head), normalised by the lowest trigger level at each reference bore and averaged over
the time series (“GW Level Change”). Average allocations indicate reductions in access to groundwater, whereas the change in
relative depth provides an indication of how sustainable groundwater use is under the given condition. Negative changes to the GW
Level Change imply increased reliance on groundwater and/or reduced groundwater recharge. Notable model inputs are given in
Table 3.

3.5. Farm model

The farm model represents the agricultural system by dividing the catchment into 12 Zones based on their water entitlements,
policy rules governing water allocations, and land use (depicted in Fig. 6), corresponding to the Management Zones in use by GM
Water (see Goulburn-Murray Water, 2015). Key attributes of a modelled farm include the costs and capital returns of crop sown,
nature and cost of irrigation and pumping systems, and the soil water holding properties of the soils found within the Zone. The
model focusses on cropping enterprises; water use for dairying is not considered here. Cropping is modelled as a three year rotation of
wheat, barley and canola. Further details on the model formulation are provided in Appendix B.

Irrigation systems considered in the model include gravity, pipe and riser, and spray. These represent the cheapest and least water
efficient to the most expensive and efficient option available to farmers. Gravity is regarded as the dominant form of irrigation in the
Lower Campaspe, although it is known through stakeholder feedback that there is increasing adoption of spray irrigation in the area.
Parameters representing soil water capacity were raised by stakeholders as particularly important as they determine what irrigation
system is suitable and influence frequency of irrigation events. Farms with sandier soils see a greater benefit from a switch to more
efficient irrigation systems as such soils have a lower water retention capacity. While farmers cannot change the soil type, it is
possible to improve soil health such that water retention is enhanced through best management practices (Bruyn, 2019). Table 4 lists
the considered irrigation options for each farm zone based on the weighted zonal average soil water capacity. For the presented
study, only Zones 4 and 9 were modelled as being suitable for spray irrigation.

Farmer decisions are modelled through linear programming at the start of and during a growing season. The available area is
allocated to dryland cropping and irrigation with surface and groundwater by optimising profit calculated with assumed per hectare
revenues and costs, constrained by water availability. The model then optimises for profitable water usage for each subsequent (two-

Table 3
Policy model inputs of interest and their description.

Factor Name Description

restriction Groundwater allocation ruleset (“current” or “proposed”) used for the scenario run.
drought_trigger Surface water allocation threshold for switching to the proposed allocation ruleset under conjunctive use scenarios (see

restriction factor above), defined as a percentage of entitlements. Either 60% or 80%.
max_drought_years The number of years surface water allocations must be below drought_trigger before switching allocation ruleset. Either 1 or 3.
goulburn_allocation_scenario Assumed allocation relationship between Campaspe and Goulburn (“high”, “median”, or “low”). Informs allocation volume

from the Goulburn catchment.
gw_cap Scaling factor limiting the volume of groundwater allocation the farm model considers. Set to 100 %, but can vary between

60–100%.
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to calculate the total allocation for the Lower Campaspe catchment. The allocation is announced on 1 July and is re-calculated
throughout the irrigation season. As such, a water user’s allocation may increase over the course of the growing season if larger-than-
expected rainfall and inflows occur, and so the volume of allocations will not decrease retrospectively. Dam operation requirements
as dictated by local policy and legislative rules, including environmental watering and minimum flow rules, are also factored into the
allocation calculations. The model represents this process on a two-week basis (rather than 6-weekly as happens in reality) to allow
for better interoperation with the farm model.

A complication in the surface water policy model is the fact that irrigators in the Lower Campaspe hold additional licences for
water from the neighbouring Goulburn catchment (east of the Campaspe). Rather than model another catchment in its entirety, linear
relationships at three different levels were developed between the Campaspe and Goulburn allocations. Details on this relationship
may be found in Appendix C. These are referred to as “high”, “median” or “low” and represent the level of allocation volume
available from the Goulburn catchment for a modelled future scenario. The separate allocation scenarios allow the model to account
for conditions which influence availability of water from the Goulburn including variability between the two catchments. These
different conditions may be due to climate variability, water demand, and policies that affect Goulburn allocations which in turn may
affect the indicators of interest for the Lower Campaspe. Associated costs were assumed to be identical to that of GM Water. Water
entitlements for individual farm zones (detailed in Section 3.5 below) are shown in Table 1 and were calculated by proportionally
distributing the entitlement based on the Water System area under which the given zone falls under.

3.4.2. Groundwater policy
Groundwater allocations are restricted by policy rules surrounding what are referred to as “trigger levels”. These indicate the

groundwater level at which allocations are reduced to a specified percentage or, at its lowest level, no allocation at all. Groundwater
use is progressively restricted in this manner as the water table decreases in order to prevent salinity intrusion. Allocations are
determined based on the recorded groundwater level at two reference bores with the IDs 62589 in the south and 79324 in the north
Goulburn-Murray Water, 2015) and are detailed in Table 2 (under “Current Modelled Allocation”).

Table 1
Campaspe entitlements in ML for each farm zone used in the modelling (see Fig. 6). Entitlements for a given water system were proportionally
distributed based on zonal area.

Zone ID High Reliability Entitlement
(ML)

Low Reliability Entitlement
(ML)

Goulburn High Reliability Entitlement
(ML)

Water System Name

1 0 0 0 –
2 12050.87 4008.06 0 Campaspe River (Eppalock to

Weir)
3 0 0 0 –
4 5703.12 1896.83 0 Campaspe River (Eppalock to

Weir)
5 0 0 0 –
6 1086.30 353.10 0 Campaspe River (Weir to WWC)
7 674.90 383.80 215.10 Campaspe Irrigation Area
8 46.71 7.68 39249.62 Rochester Irrigation Area
9 707.05 0 0 Campaspe River (WWC to Murray)
10 96.68 15.91 81223.37 Rochester Irrigation Area
11 224.44 0 0 Campaspe River (WWC to Murray)
12 0 0 0 –

Table 2
Groundwater allocation rule sets (current and hypothetical). Reduced allowable allocations under surface water allocations> 60 % or 80 % de-
pending on scenario then saves water for use in dry (drought) periods. Groundwater head at reference bores influence allocations for separate Zones.

Proposed Trigger Rules

Farm Zone(s) Reference bore Depth from natural
surface (m)

Water level
(mAHD)

Current Modelled
Allocation

Non-drought
Allocation*

Drought Allocation

3 – 12 79324 0 – 16 82.1 – 97.1 100 % 80 % or 100 % 100 %
16 – 19 79.1 – 82.1 75 % 65 % 100 %
19 – 22 76.1 – 79.1 50 % 35 % 100 %
22 – 25 73.1 – 76.1 40 % 25 % 40 %
< 22 < 73.1 0 % 0 % 0 %

1 and 2 62589 0 – 16 115.8 – 131.8 100 % 80 % or 100 % 100 %
16 – 18 113.8 – 115.8 75 % 65 % 100 %
18 – 20 111.8 – 113.8 50 % 35 % 100 %
< 18 < 111.8 0 % 0 % 0 %

* non-drought is defined as>60 % or> 80 % surface water allocation as a scenario option.
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Environment Programme (UNEP) was used to compare the climate scenarios. The index is calculated as P PET/ , where P is the annual
average rainfall and PET is the annual average potential evapotranspiration (Gamo et al., 2013). An AI value of 0.2 to 0.5 indicates a
semi-arid climate condition (Sahin, 2012), and the AI value for the historic climate dataset falls within these bounds with a value of
0.34, as is expected for this semi-arid location.

Of the procured climate datasets, the driest conditions are represented by the notation “worst_case_rcp45_2016-2045″ ( =AI 0.26).
The “best_case_rcp45_2016-2045″ scenario was most comparable to historic aridity ( =AI 0.34), while “best_case_rcp45_2036–2065”
was the least arid ( =AI 0.35). The indicated climate scenarios are taken to represent the extremes of future climate variability (i.e.
the most and least arid conditions) and one that is most similar to historically observed conditions. For this reason, modelling with
the other climate scenarios were not conducted in-depth. Interpolation between the extremes would likely provide indicative in-
termediary results. These climate scenarios are referred to as “wet”, “usual”, and “dry” for brevity from here on and were used to
drive the CIM in order to investigate the impact of such changing climate conditions.

3.4. Policy model

Significant reforms to the water policy in the Campaspe introduced water trading, user carryover (specified below), and en-
vironmental water provisions (Alston and Whittenbury, 2011; McKay, 2005; Wheeler and Cheeseman, 2013). As part of these reforms
the environment is regarded as a water user with water entitlements and yearly water allocations similar to any other entity with a
water licence. The policy model provides representations of policies that determine water allocation and carryover.

Access and use of water resources are governed by a licencing system in which a licence held by a water user specifies a given
volume of water called an entitlement. Separate licences are issued for surface and groundwater. Access to the full entitlement is not
guaranteed and is subject to water availability. An allocation is announced by GM Water each irrigation season indicating the
percentage of the entitlement an irrigator can use – i.e. 100 % allocation is equal to the full entitlement volume. Carryover here refers
to the amount of unused water allocation which licence holders (irrigators and the environment) are able to add to the following
year’s allocation.

Current carryover rules indicate that irrigators are able to carry over 95 % of unused surface water, with 5 % deducted to account
for evaporation loss (DSE, 2012a, 2012b), and 25 % of unused groundwater (Goulburn-Murray Water, 2015). While irrigators can
decide not to carryover (DSE, 2012b), it is assumed in the model that carryover always occurs. As indicated in Fig. 2, the policy model
dictates availability of water for agricultural and environmental purposes and is itself influenced by climate conditions, dam and
groundwater levels.

3.4.1. Surface water policy
Surface water allocations in the Lower Campaspe are calculated based on the available volume of water in the dam as well as

projected inflows. GM Water holds rights to 82 % of the dam volume as well as 82 % of projected inflows and the sum of these is used

Fig. 4. Pearson correlation matrix between future climate scenarios and historic observations.
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Currently, the model takes approximately 30 min. to run for a single scenario on a desktop computer with a Core i5-7500 CPU.
The groundwater model based on MODFLOW-NWT is run as an external program and is currently the primary bottleneck limiting
further increases to runtime efficiency. Although MODFLOW itself is written in Fortran – considered to be a “fast” language –
numerical solution of groundwater models is time consuming and the MODFLOW software itself uses several input files which must
be written out for each time step and the results read back in. Overheads due to the constant file operations takes a large proportion of
the runtime. As much as 43 % of the CIM runtime can be attributed to the groundwater model. MODFLOW’s position as an industry
standard was the primary reason for its use.

The exploratory approach conducted for the study involved many runs and so the CIM was designed to run multiple scenarios in
parallel in order to overcome computational runtime issues. Model runs are invoked via the command-line and is compatible with
both Linux and Windows systems. No graphical user interface was developed for the study as use by non-technical “end-users” was
not planned and is not expected.

3.3. Climate and scenarios

Changes in rainfall and temperature influence water availability and their trends can impact the volume of irrigation water
necessary to achieve optimum crop growth and yield throughout a growing season. The importance of considering climatic influences
in managing farm processes is reflected in the survey conducted by Ticehurst and Curtis (2016). Over 80 % of respondents ranked
change in rainfall patterns and the impact of drought as “important” or “very important”.

Comparing long term (100 year) average growing season rainfall against more recent trends highlights the impact of the
Millennium Drought (1996–2010). A growing season refers to the time span in which crops are usually sown and harvested, defined
here as May to February. Average long-term growing season rainfall between 1892–2013 amounted to ∼420 mm in line with the
reported usual growing season rainfall of 400–500 mm (EcoDev, 2015). Growing season rainfall from 1982 to 2016 however shows a
decrease of 67 mm to ∼353 mm (see Fig. 3). The trend of decreased rainfall during crop growth may continue with agricultural water
management becoming increasingly challenging.

To investigate the impacts of a changing climate, historic and future climate data were sourced from the Climate Change in
Australia data service (https://www.climatechangeinaustralia.gov.au; CSIRO, 2017). The provided datasets consist of daily rainfall
and evapotranspiration in 5 km grid format for a 30-year period. The future climate data provided were developed through a process
of scaling historic observations (described in Mitchell, 2003) and thus exhibit similar rainfall trends to historic observations. Pearson
correlations between climate scenarios are depicted in Fig. 4 with a minimum correlation value of 0.88 and 0.99 for rainfall and
evaporation data respectively. Future climate datasets are based on the historic timeframe from 1981 to 2011, and thus cover the
Millennium Drought period. Therefore, each climate scenario includes a representation of a multi-year drought at differing levels of
severity. For the purpose of calibration and analysis, the historic climate dataset was extended to 2016 in order to capture the post-
drought recovery. The set of climate scenarios covers RCP4.5 and 8.5 for 2016–2045, 2036–2065 obtained from multiple climate
models, “best case”, “worst case” are wettest and driest across models, whilst “maximum consensus” represents conditions somewhat
comparable to historic experience.

To determine the range of conditions that the climate sequences represent, the aridity index (AI ) developed by the UN

Fig. 3. Comparisons of growing season rainfall over the long-term (100+ years, left panel) and a shorter (30+ year) period (right panel). Dashed
black line indicates median values which were found to be 420 mm over the long term which reduced to 353 mm in the recent past (1982–2015
growing seasons) indicating the effect of the Millennium Drought. Long term data were developed through interpolated historic rainfall data (see
Vaze et al., 2011).
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use the water, managers of the water, and those with specialised knowledge of the system, including farm management and irrigation
specialists, ecologists, geo-hydrologists and catchment managers to name a few.

A stakeholder group of representatives from GM Water, the local Catchment Management Authority (North Central CMA) and a
relevant state government department (at the time, the Department of Economic Development, Jobs, Transport and Resources)
attended workshops to identify potential opportunities for conjunctive use in the region. Farmers were engaged through interviews
and surveys prior to model development, details of which can be found in Ticehurst and Curtis (2017, 2016). This engagement
identified the current and future intention to adopt various management options including the use of groundwater, various irrigation
practices, and the technical feasibility and social acceptability of the range of conjunctive use opportunities identified in previous
workshops. GM Water also provided irrigator data and aided in defining the spatial scope and boundaries of the study with respect to
the represented groundwater catchment and management zones. The stakeholder group also took part in later workshops and served
to provide information and knowledge which corrected earlier assumptions and provided further feasibility assessment of on-farm
scenarios. Issues and concerns surrounding ecological aspects were elicited through engagement with ecologists from the Australian
Platypus Conservancy and the North Central CMA. Further details may be found in Iwanaga et al. (2018).

3.2. Technical implementation

A requirement of the integrated model development was to be flexible in the face of changing and evolving understanding of the
system due to the amount and spread of knowledge being engaged with through the participatory engagement process that was
described in the previous section. To facilitate this an iterative component-based approach was adopted in the development of the
CIM. Construction of the CIM involved the use of a mix of programming languages including Fortran and Python (and its compiled
cousin Cython), incorporation of pre-existing models, and the development of a purpose-built (software) framework through which
each component model was coupled.

Interfaces (commonly referred to as wrappers) were developed for the purpose of invoking component model runs and thus
provide the necessary linkage between the framework and the component models. Fig. 2 depicts the inter-relationship between the
component models. Inter-model communication (i.e. data exchange) occurs with the framework acting as an intermediary. Con-
version of data, such as between types or units of measurement, occurs where necessary and is specifically coded. While not adhering
to all aspects, the structure of the interfaces is similar to those specified by the Basic Modeling Interface (Peckham et al., 2013) in that
each interface provides a method to invoke a run of the component model for a given time step. This design pattern was selected for
its flexibility, simplicity and ease of implementation. Component models are run as a serial process with one model run after the
other, with feedback occurring across (daily) time steps. Further details on the choice of modelled spatial and temporal scale is given
in later sub-sections for each system component.

Fig. 2. Component diagram indicating the interactions between model components in the Campaspe Integrated Model (CIM) and the key outputs
relevant to the modelled Lower Campaspe system.
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3. Integrated model development

To explore possible futures in the Campaspe, changes to on-farm practices and water allocation policies were modelled and the
subsequent effects on farmer income, streamflow conditions for platypus colonies, native fish and river red gums (trees), and re-
creational use of the dam were analysed. Specifically, these scenarios represent the conjunctive management of both surface and
groundwater (Pulido-Velazquez et al., 2011), encouragement of further use of groundwater resources in general, and further im-
provements to irrigation (water application) efficiency (Ticehurst and Curtis, 2017, 2016). The CIM comprises models to represent
climate sequences, policy rules, agricultural activities, surface and groundwater hydrology, and indicators of ecological and re-
creational suitability. Individual model domains deal with their own unique issues and conceptualise the system, and their inter-
actions with other models, in separate ways. This is most obvious in the represented spatial and temporal scales. In building the CIM,
compromises were necessary in order to suit the purpose of the modelling and in the face of inter-linked requirements and available
resources. For this reason, further detailed framing of each model domain and, where relevant, model inputs and indicators of interest
are described in the sub-sections below.

3.1. Stakeholders and engagement process

As noted in the introduction, engagement with local stakeholders was particularly important to both the development and va-
lidation of the CIM. Relevant stakeholders were identified through sectoral interests and relevance (e.g. farmers will be interested in
policies that affect farming), as well as a snowball sampling approach where known experts where recruited to suggest other experts
of interest relevant to the study. Stakeholders involved both prior to and during the modelling process included local farmers, GM
Water, and representatives from government departments and non-profit organisations. These represent actors within the system that

Fig. 1. Map of the Lower Campaspe catchment (left panel) in relation to the Murray-Darling Basin (top right) and the North Central Region of
Victoria (bottom right). The Lower Campaspe constitutes the area north of Lake Eppalock, which is the primary reservoir for the study area. The
Campaspe River flows south to north, into the Murray River.
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disregarding crucial aspects of the management context and the flow-on effects without which the conclusions reached may be
compromised (Kelly et al., 2013). To this end Integrated Environmental Models (IEMs) are often constructed to aid in informing
management and policy decisions (Elsawah et al., 2020a; Janssen et al., 2010; Voinov and Shugart, 2013).

Stakeholder engagement is an important step in integrated modelling, particularly in developing socio-economic scenarios that
are acceptable and relevant to stakeholders. Such participatory approaches within water resource modelling processes are now
considered best practice in facilitating stakeholder buy-in, credibility of the modelling and integration of local knowledge and
information into the model (Kelly et al., 2013; Megdal et al., 2017; Refsgaard et al., 2007). To holistically develop the model, an
approach such as the one described in Badham et al. (2019) can be used to elicit stakeholder knowledge to aid in defining the
problem frame and key issues.

The Murray-Darling Basin Plan (introduced in 2012) increases the amount of water allocated for environmental purposes by
decreasing the volume for consumptive use (Bowler, 2015; North Central CMA, 2014). The intention of the Plan is to rectify the
observed long-term degradation of environmental health of river systems within the Murray-Darling Basin generally. To this end,
beneficial future scenarios would improve, or at least maintain, current levels of water availability for agricultural, environmental,
and recreational purposes in the face of uncertain future climate conditions.

The primary aims of the study presented within this paper were to identify these future pathways (“scenarios”) to improved
environmental and socio-economic outcomes under a variety of climate conditions for the Lower Campaspe catchment in North
Central Victoria (Australia). On-farm practices and water allocation policies were modelled and an exploratory modelling approach
(Haasnoot et al., 2013) adopted to identify these possible robust outcomes. Such scenario discovery approaches have been utilised
previously to identify viable adaptation strategies with indication of trade-offs between scenarios (Kwakkel et al., 2016).

The variety of data and knowledge sources, number of systems involved and the interactions and feedbacks between them
required to represent such a system made the use of an integrated model a natural fit. An IEM was developed for the study, which we
refer to as the CIM (Campaspe Integrated Model). The CIM includes representations of relevant systems across the socio-environ-
mental spectrum and their interactions. These include policy, farm, surface and groundwater hydrology, ecology, and recreational
values. Climate factors are represented by rainfall and evapotranspiration data, which drive the modelled system. The CIM is used to
explore the mix of considered farm and policy level options that are robust in the long-term, in terms of successfully achieving
desirable improvements from a baseline across climate scenarios. In this paper we detail the model components developed, discuss
the integration process, and finally present the model results and their implications. The specifics of the management context and
modelling process are reported in Iwanaga et al. (2018), however relevant elements will be repeated herein for context.

2. Lower Campaspe study area

The Lower Campaspe study area is a semi-arid region situated in the North-Central region of Victoria, Australia and is named for
its primary river (the Campaspe), which flows northwards, joining the Murray River. The primary water source for the Lower
Campaspe is the dam at Lake Eppalock, which divides the Campaspe into its Lower and Upper sub-catchments. The dam is operated
by Goulburn-Murray Water (GM Water) subject to local and federally mandated policies such as the aforementioned Murray-Darling
Basin Plan. Under current policies the environment is regarded as a water user with its own water entitlements (North Central CMA,
2014). Aside from managing dam operations and other responsibilities GM Water is the local irrigation authority, determining water
allocations (for both agricultural and environmental users) and managing licencing for water use and access.

The Campaspe catchment is a mixed-farming area with a focus on dairy farming, with 55 % of its land use devoted to annual and
perennial pastures. Cereal cropping amounts to 36 % of reported agricultural land area. Fig. 1 displays a map of the Lower Campaspe
in context of the North Central region and the Murray-Darling Basin. Historically the Campaspe region was an irrigation intensive
area, but a decade-long drought – the Millennium Drought – reduced water availability such that 90 % of irrigators elected to cease
irrigation practices in 2010 (North Central CMA, 2014; NVIRP, 2010). Approximately 38 % of the Lower Campaspe is under dryland
farming (Ticehurst and Curtis, 2016) with the north of the catchment focused on cropping activities (depicted in Fig. 1).

Water resources have been described as historically over-allocated for agricultural purposes, and the possibility of a drier climate
in the future (van Dijk et al., 2013v) implies balancing available water resources between competing needs and interests is expected
to become increasingly difficult. Ecological health of the Campaspe river system has been in decline over the past decades as water
was historically prioritised for agricultural purposes. This has had the effect of substantially decreasing local biodiversity (MDBA,
2012; North Central CMA, 2014). Communities of the iconic River Red Gum eucalypts, platypus colonies, and populations of native
fish (such as the Murray Cod and Golden Perch) exist along the Lower Campaspe system.

Recent water reforms have included provisions for increased environmental flows to support recovery and maintenance of
ecosystem health (GHD, 2015; GM-W, 2013; Hughes et al., 2015). Water to support environmental flows include 75 G L reallocated
from agriculture as well as estimated water savings due to infrastructure improvements conducted through the Goulburn Murray
Connections project (NVIRP, 2011). Recreational use of the dam is an additional area of concern, with viability of recreational
activities (e.g. boating and yachting) suffering as the water levels at Lake Eppalock fall. There has been public outcry in this regard, as
evidenced by local media reports (ABC News, 2015; Wines, 2015).

Decisions made in managing the lower Campaspe River affect river systems downstream, the Campaspe being a tributary of the
Murray. Therefore, beneficial ecological outcomes within the Campaspe are likely to support ecological recovery elsewhere down-
stream. The CIM was designed and developed to inform management and decision-making processes within this context through an
exploratory process.
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Study region: Lower Campaspe, North Central Victoria, Australia
Study focus: This paper presents a component-based integrated environmental model developed
through participatory processes to explore sustainable water management options. Possible fu-
tures with improved farm profitability and ecological outcomes relative to modelled baselines
were identified through exploratory modelling. The integrated model and the results produced
are intended to raise awareness and facilitate discussion with and amongst stakeholders.
New hydrological insights: The modelling illustrates that improved farm level knowledge and
management with regard to crop water requirements, soil water capacity, and irrigations are the
most significant factors towards achieving outcomes that are robust to a range of climate and
water policy futures. Assuming farmer management with regard to these factors are at their most
optimal, increasing irrigation efficiency alone did not lead to improved farm profitability and
ecological outcomes under drier climate conditions. Likelihood of achieving robust outcomes
were further improved through the conjunctive use of surface and groundwater, with increased
consideration of groundwater use a key factor. Further discussion on the viability and impact of
increased groundwater use and conjunctive use policies should be further considered.

1. Introduction: Sustainable water management and aims of the integrated modelling

Management of water resources takes place within the context of a complex socio-environmental system. Sustainable manage-
ment of water resources requires the needs of several agricultural, environmental, and social domains to be balanced with explicit
consideration of a multitude of interacting factors. Here, “sustainable” refers to water usage that is both beneficial and robust -
featuring improved farm profitability and environmental outcomes and maintaining these under changing, possibly adverse, climatic
conditions within hypothetical policy contexts (revisited in Section 4).

Holistic modelling of this socio-environmental system then requires an integrated approach due to the number of system domains
under consideration, the level of interactions that can occur at different (spatial and temporal) scales, and the uncertainty that comes
with it (Letcher et al., 2007; Schlüter et al., 2019). A well-considered integrated approach can reduce the risk of unintentionally

https://doi.org/10.1016/j.ejrh.2020.100669
Received 4 December 2019; Received in revised form 29 January 2020; Accepted 1 February 2020

⁎ Corresponding author.
E-mail address: iwanaga.takuya@anu.edu.au (T. Iwanaga).

Journal of Hydrology: Regional Studies 28 (2020) 100669

2214-5818/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T



12 T. Iwanaga et al.: Development of an integrated model for the Campaspe catchment

Tennakoon, S., Richards, D., Milroy, S., and Harris, G.: Water
use efficiency in the Australian cotton industry, in: Waterpak: A
Guide for Irrigation Management in Cotton and Grain Farming
Systems, edited by: Wiggington, D., 22–27, Cotton Research and
Development Corporation, 2013.

Ticehurst, J. and Curtis, A.: Improving on-farm water use effi-
ciency amongst irrigators in the Campaspe River system and the
Rochester Irrigation Area, Wagga Wagga, NSW, 2650, Australia,
2016.

Ticehurst, J. and Curtis, A.: Preliminary assessment of conjunctive
use opportunities for in the Murray Darling Basin: a case study
in the lower Campaspe catchment, Wagga Wagga, NSW, 2650,
Charles Sturt University, 2017.

Van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., De Jeu, R. A. M.,
Liu, Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Mil-
lennium Drought in southeast Australia (2001–2009): Natural
and human causes and implications for water resources, ecosys-
tems, economy, and society, Water Resour. Res., 49, 1040–1057,
https://doi.org/10.1002/wrcr.20123, 2013.

Vaze, J., Teng, J., and Chiew, F. H. S.: Assessment of GCM sim-
ulations of annual and seasonal rainfall and daily rainfall distri-
bution across south-east Australia, Hydrol. Process., 25, 1486–
1497, https://doi.org/10.1002/hyp.7916, 2011.

Voinov, A. and Gaddis, E. J. B.: Lessons for successful
participatory watershed modeling: A perspective from
modeling practitioners, Ecol. Model., 216, 197–207,
https://doi.org/10.1016/j.ecolmodel.2008.03.010, 2008.

Wheeler, S. A. and Cheeseman, J.: Key Findings from a Survey
of Sellers to the Restoring the Balance Programme, Economic
Papers, 32, 340–352, https://doi.org/10.1111/1759-3441.12038,
2013.

Proc. IAHS, 379, 1–12, 2018 proc-iahs.net/379/1/2018/



T. Iwanaga et al.: Development of an integrated model for the Campaspe catchment 11

CSIRO: Climate Change in Australia, available at: https://www.
climatechangeinaustralia.gov.au/en/ (last access: 13 Decem-
ber 2017), 2017.

de Kok, J. L., Engelen, G., and Maes, J.: Reusability
of model components for environmental simulation –
Case studies for integrated coastal zone management,
Environmental Modelling and Software, 68, 42–54,
https://doi.org/10.1016/j.envsoft.2015.02.001, 2015.

Doherty, J. E.: PEST, SENSAN and Global Optimisers, in:
PEST, Model-Independent Parameter Estimation User Manual
Part I, Watermark Numerical Computing, Brisbane, Aus-
tralia, available at: http://www.pesthomepage.org/getfiles.
php?file=newpestman2.pdf&usg=AOvVaw0XsrKp9kwYUaX_
DkwULET9 (last access: 26 February 2018), 2016.

DSE: Victorian Aquifer Framework: Updates for Seamless Map-
ping of Aquifer Surfaces, available at: http://www.vvg.org.au/
cb_pages/files/207086.pdf (last access: 26 February 2018), 2012.

EcoDev: Victorian Winter Crop Summary 2015, Depart-
ment of Economic Development, Jobs, Transport and
Resources, Horsham, Victoria, Australia, available at:
https://grdc.com.au/resources-and-publications/all-publications/
publications/2015/03/nvt-victorian-winter-crop-summary-2015
(last access: 26 February 2018), 2015.

Finger, L. and Morris, M.: Water Management Options: Assisting
irrigators with Stream Flow Management Plan implementation,
Department of Primary Industries (DPI), State of Victoria,
Tatura, Victoria, available at: http://vro.agriculture.vic.gov.au/
dpi/vro/vrosite.nsf/0d08cd6930912d1e4a2567d2002579cb/
adbda16966d0e530ca2574c8002ccbfa/$FILE/
WaterManagementOptionsReport_2005.pdf (last access: 22
March 2018), 2005.

Franzén, F., Kinell, G., Walve, J., Elmgren, R., and Söderqvis, T.:
Participatory social-ecological modeling in eutrophication man-
agement: The case of Himmerfjärden, Sweden, Ecol. Soc., 16,
27, https://doi.org/10.5751/ES-04394-160427, 2011.

GM-W: Lake Eppalock Land and On-Water Management Plan,
Tatura, Victoria, 2013.

GM-W: Campaspe Basin – Goulburn Murray Water, available
at: https://www.g-mwater.com.au/water-resources/catchments/
gmwcatchments/campaspebasin (last access: 18 Decem-
ber 2017), 2017a.

GM-W: Lake Eppalock – Goulburn Murray Water, available at:
https://www.g-mwater.com.au/water-resources/catchments/
storages/campaspe/lakeeppalock (last access: 18 Decem-
ber 2017), 2017b.

Hughes, L., Steffen, W., Rice, M., and Pearce, A.: Feed-
ing a hungry nation: Climate change, food and farming
in Australia, Climate Council of Australia Limited, Syd-
ney, Australia, available at: https://www.climatecouncil.org.au/
uploads/7579c324216d1e76e8a50095aac45d66.pdf (last access:
26 February 2018), 2015.

Ivkovic, K. M., Croke, B. F. W., Kelly, R. A.: Overcoming the chal-
lenges of using a rainfall-runoff model to estimate the impacts of
groundwater extraction on low flows in an ephemeral stream, Hy-
drol. Res., 45, 58–72, https://doi.org/10.2166/nh.2013.204, 2014.

Jakeman, A. J. and Letcher, R. A.: Integrated assessment
and modelling: Features, principles and examples for catch-
ment management, Environ. Modell. Softw., 18, 491–501,
https://doi.org/10.1016/S1364-8152(03)00024-0, 2003.

Jakeman, A. J., Letcher, R. A., and Norton, J. P.: Ten
iterative steps in development and evaluation of envi-
ronmental models, Environ. Modell. Softw., 21, 602–614,
https://doi.org/10.1016/j.envsoft.2006.01.004, 2006.

Kraft, P., Multsch, S., Vaché, K. B., Frede, H.-G., and Breuer, L.:
Using Python as a coupling platform for integrated catchment
models, Adv. Geosci., 27, 51–56, https://doi.org/10.5194/adgeo-
27-51-2010, 2010.

Krueger, T., Page, T., Hubacek, K., Smith, L., and His-
cock, K.: The role of expert opinion in environmen-
tal modelling, Environ. Modell. Softw., 36, 4–18,
https://doi.org/10.1016/j.envsoft.2012.01.011, 2012.

Malard, J. J., Inam, A., Hassanzadeh, E., Adamowski, J., Tuy,
H. A., and Melgar-Quiñonez, H.: Development of a soft-
ware tool for rapid, reproducible, and stakeholder-friendly
dynamic coupling of system dynamics and physically-
based models, Environ. Modell. Softw., 96, 410–420,
https://doi.org/10.1016/J.ENVSOFT.2017.06.053, 2017.

McKay, J.: Water instititional reforms in Australia, Water Policy, 7,
35–52, https://doi.org/10.1080/02508069908692147, 2005.

MDBA: Sustainable Rivers Audit 2: The ecological health
of rivers in the Murray–Darling Basin at the end of
the Millennium Drought (2008–2010), Summary, avail-
able at: https://www.mdba.gov.au/sites/default/files/pubs/
SRA2-SUMMARY-FINAL_0.pdf (last access: 26 February
2018), 2012.

MDBA: Campaspe/Murray-Darling Basin Authority, available at:
https://www.mdba.gov.au/discover-basin/catchments/campaspe
(last access: 18 December 2017), 2017.

NCCMA: The North Central CMA Region Environmental Wa-
ter Management Plan for the Campaspe River System, avail-
able at: http://www.vewh.vic.gov.au/__data/assets/pdf_file/0004/
368698/Campaspe-River-EWMP-FINAL.pdf (last access: 26
February 2018), 2014a.

NCCMA: Campaspe River resource Guide, available at:
http://www.nccma.vic.gov.au/sites/default/files/publications/
campaspe_river_resource_guide.pdf (last access: 26 February
2018), 2014b.

Niswonger, R. G., Panday, S., and Ibaraki, M.: MODFLOW-NWT,
A Newton Formulation for MODFLOW-2005, in: Section A,
Groundwater; Book 6 Modeling Techniques (p. 44), available at:
https://pubs.usgs.gov/tm/tm6a37/pdf/tm6a37.pdf (last access: 26
February 2018), 2011.

NVIRP: Majority of Campaspe irrigators to exit permanently,
available at: http://www.g-mwater.com.au/downloads/gmw/
connections/Communication/Media/MediaReleases2010/
Majority_of_Campaspe_irrigators_to_exit_permanently.pdf
(last access: 26 February 2018), 2010.

NVIRP: NVIRP Annual Report 2010–2011, Northern Victoria Irri-
gation Renewal Project (NVIRP), Victoria, Australia, 2011.

Sletholt, M. T., Hannay, J. E., Pfahl, D., and Langtangen, H. P.:
What do we know about scientific software development’s agile
practices?, 24–36, https://doi.org/10.4324/9780203894644, Lon-
don, Routledge, 2012.

State of Victoria: NVIRP Stage 2 On Farm Project.pdf, State of
Victoria, Northern Victoria Irrigation Renewal Project: On Farm
Priority Project, available at: http://www.agriculture.gov.au/
SiteCollectionDocuments/water/vic-farm-project.pdf (last ac-
cess: 1 March 2018), 2011.

proc-iahs.net/379/1/2018/ Proc. IAHS, 379, 1–12, 2018



10 T. Iwanaga et al.: Development of an integrated model for the Campaspe catchment

6 Conclusion

Both model and software development best practices rec-
ommend working within an iterative cycle that moves the
project towards a continually (re)defined goal, informed by
stakeholders. Including stakeholders in the iterative develop-
ment of integrated models was found to be useful in ensur-
ing model validity, relevance, transparency and acceptabil-
ity. Participatory engagement acts as a peer review process
within each iteration of the model development cycle whilst
also fostering trust between all participants, modellers and
stakeholders alike.

Component-based development processes were found to
be complementary to the participatory modelling approach.
Throughout each iteration the implementation of the de-
scribed component models were influenced by stakeholder
knowledge and information. The compartmentalization of
models that collectively represent a system of systems disen-
tangles their implementation allowing specific and targeted
modifications based on stakeholder feedback. Such changes
then do not propagate throughout the model as a whole, al-
lowing modellers to progress through each iteration quicker
whilst simultaneously ensuring that the model development
process is transparent.
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compared to 22 % that additionally hold groundwater li-
cences. Groundwater use historically reach a maximum of
60 % of allocated volumes, although this has increased to
80 % in recent times (2016 water usage, reported in Ticehurst
and Curtis, 2017).

5.5 Farming

The farm component was developed with the aim of enabling
investigation into the effect of water policy and water avail-
ability on farm financial performance under variable climate
scenarios. Key attributes that are represented include the crop
– currently one of wheat, barley or canola and tomato – irri-
gation system, pumping systems and soil types. The farming
system is represented in a lumped manner with the study area
divided into 12 zones configured to represent a mix of appli-
cable surface and groundwater policy, water entitlements and
usual cropping practices.

The principal agricultural enterprise in the Lower Cam-
paspe is dairy farming with 55 % of land use devoted to
annual and perennial pastures, 70 % (i.e. 38.5 % of re-
ported farming area) of which is irrigated. Cereal cropping
amounted to 35.8 % of land use, although the majority of this
(68 %, i.e. ∼ 24 % of reported farming area) is dryland. Dairy
farming is to be represented in the model through the use of
an indicator crop to represent annual and perennial pasture
crops and discussions with local experts are ongoing to de-
termine how best to implement this.

Historically, the Campaspe region was an irrigation inten-
sive area however most irrigators (90 %, concentrated in the
middle of the study area) stopped irrigation practices in 2010
(NVIRP, 2010). This exit occurred during the millennium
drought period (2001–2009) during which irrigators’ water
allocations were significantly reduced (NCCMA, 2014a). Ir-
rigation is currently concentrated in the lower portion of the
catchment the northern area surrounding Echuca, with dry-
land cropping in the mid and upper areas. A return to ir-
rigation practices in the future remains a possibility due to
the network of accessible irrigation infrastructure modern-
ized under the Connections Project.

In the North Central region flood irrigation is the most
common irrigation system in use accounting for 99 % of irri-
gated area (Ash, 2006). Flood irrigation is said to be 50–80 %
water use efficient, meaning that 50–20 % of water applied to
the field is lost (Clemmens, 2000; Finger and Morris, 2005;
Tennakoon et al., 2013). Of those surveyed 77 % of respon-
dents reported having undertaken additional improvements
to flood irrigation such as laser grading and tail-water reuse,
increasing the water use efficiency. Flood irrigation was then
modelled as being 70 % water use efficiency based on this
information. Other improvements can be achieved through
the adoption of a piped system or investing in spray irriga-
tion which is said to be 80 % water use efficient (Clemmens,
2000; Finger and Morris, 2005).

Outside of the survey, further information was gained
through stakeholder engagement. It was highlighted, for ex-
ample, that the choice to invest in a more water efficient irri-
gation system depends on the soil type. As such, generating
a suitable representation of the soil textures in the modelled
farming zones becomes a necessity and acts as a constraint
to the choice of irrigation system adopted at each zone. It
was also initially assumed that the vast majority of pump-
ing systems in the area were diesel based rather than electric
due to the substantial capital costs involved in developing
the necessary infrastructure to operate electric pumps. This
assumption was also corrected with local knowledge – elec-
tric pumping is in reality quite common and is used over the
weekends due to off-peak electricity prices. The model will
be modified to incorporate this elicited information.

5.6 Ecology

Management decisions that affect the lower Campaspe
ecosystems flow on to the Murray River as the Campaspe
flows into the Murray. The local ecology has historically
been neglected due to over allocation of water resources for
agricultural purposes. Decline in riverine health have been
reported over the years including substantial decreases in
biodiversity (MDBA, 2012; NCCMA, 2014b). The Murray-
Darling Basin Plan includes provisions for increased envi-
ronmental flows to support ecosystem maintenance and re-
covery (Bowler, 2015; GM-W, 2013; Hughes et al., 2015),
and to meet these obligations up to 75 GL of water savings
through infrastructure improvements through the GM Water
Connections Project (formerly NVIRP) were intended for en-
vironmental purposes (NVIRP, 2011).

The local ecology along the Lower Campaspe River in-
clude communities of River Red Gum, a eucalyptus tree that
is considered iconic (NCCMA, 2014b), platypus colonies,
and two native fish populations: the Murray Cod and Golden
Perch. Conceptualization and design of the model incorpo-
rated feedback from ecology experts from the NCCMA and
the Australian Platypus Conservancy. Stakeholder feedback
in combination with prior ecological studies and data avail-
ability resulted in the development of methods to generate in-
dices that indicate the suitability of water flow for these flora
and fauna. These consist of three indices for the River Red
Gum which represent the suitability of groundwater avail-
ability and surface water flows for the maintenance and re-
generation of the iconic tree. The fish indices capture key
flow requirements as recommended in the Campaspe River
Environmental Water Management Plan (NCCMA, 2014a).
Indices developed for platypi indicate flow conditions that
sustain food supply and movement, breeding cycles, and the
avoidance of burrow flooding during the mating season.
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Figure 7. Groundwater model components and model area as well as points and interactions with other component models from the per-
spective of the groundwater model.

– Distributed rainfall (to be reduced through the rainfall
reduction parameter) and irrigation water from the Farm
model;

– Pumping volume from the Farm model (uniformly ap-
plied across pumps in the area);

– River stages from the Hydrology model

– After running each daily time-step, the model returns
the:

– Surface water-groundwater exchange along reaches of
the river consistent with the Hydrology model

– the average depth to groundwater for the Farm model

– depth to groundwater at key sites dictated by the Ecol-
ogy model

– groundwater head at trigger level bores as dictated by
the Policy model

Increases and decreases to pumping driven by the Farm
model were applied to relevant wells within each farm zone.
Surface water-groundwater responses lag behind the surface
water forcing from the Hydrology model due to the use of
a sequential coupling; it was assumed that a daily lag would
not create significant differences in model behaviour. Out-
puts from the groundwater model, while not precise at the
scale of local wells due to model resolution, were fit for pur-
pose for indicative average groundwater levels at points of
interest. In the case of the Ecology model, this is subject to
the most variability as the levels are near-stream where the
depth to groundwater table can change rapidly as it converges
to the river. For the Policy model the trigger bores are chosen

to be indicative of larger scale behaviour and hence the use
of the average head in cells that correspond with the trigger
bores is deemed adequate.

5.4 Policy

The current policy setting in the Campaspe is quite sophis-
ticated reflecting extensive water reforms which introduced
water trading, carryover, and environmental water provisions
(Alston and Whittenbury, 2011; McKay, 2005; Wheeler and
Cheeseman, 2013). The policy component of the integrated
model provides a representation of policies determining the
water allocation and carryover for entitlement holders (farm
and environment). Use of these policies as a scenario sup-
ports further investigation of the implications and viability,
as well as the opportunities, of the given policy condition(s)
in the context of climate variability. The design of the pol-
icy component was such that it would allow scenarios that
fit with current policies (e.g. increased groundwater use) but
also the capability to explore alternate policy futures (e.g.
conjunctive management of surface and groundwater, Man-
aged Aquifer Recharge, and inter-catchment transfers). The
latter include some of the conjunctive use opportunities ex-
plicitly identified with Campaspe stakeholders. For example,
groundwater and surface water are managed separately in the
current policy space. One option identified with Campaspe
stakeholders was the temporary relaxation of groundwater
restriction trigger levels during dry times when surface wa-
ter allocations are low, with compensatory actions to increase
recharge when climate conditions improve.

Within the current policy setting, groundwater use can
be increased as most irrigators surveyed in the region are
primarily reliant on surface water resources. Reported fig-
ures include 91 % of irrigators holding surface water licences
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Figure 6. Flow gauges in the lower Campaspe.

contribution to the quick flow component (uk) and a con-
tribution to the slow flow component (rk). This permits the
model to partition effective rainfall between the two compo-
nents based on the modelled catchment moisture status. The
unit hydrograph module comprises two exponentially decay-
ing stores arranged in parallel (a quick and a slow flow com-
ponent), modified from the original to take the inputs to each
store directly from the CMD module outputs.

An exponentially decaying store is also used to route the
flows between nodes (a lag-route approach, Croke et al.,
2006). In both the routing and the rainfall-streamflow mod-
els, the impact of losses from the river network are taken into
consideration using the approach of Ivkovic et al. (2014). The
rating module makes use of the rating curve data available at
most gauge sites (the exception is gauge 406218, where only
water level data is available).

5.3 Groundwater

The groundwater flow module is used to estimate the surface
water-groundwater exchanges along the Campaspe River
between flow gauges, and to provide information on the
groundwater levels at specific locations as well as groundwa-
ter levels averaged over larger areas. The groundwater flow

module interacts with the hydrology, farm, ecology and pol-
icy modules as detailed in Fig. 7.

The first stakeholder engagement workshop and subse-
quent communication with stakeholders (in particular, a lo-
cal hydrogeologist) led to the definition of the groundwater
model boundary, delineation of the hydrogeological units and
provision of input data for groundwater pumping as well as
observational head and chemistry data. Defining the model
boundaries through this engagement ensured that the area
covered as well as representation of hydrogeological units
was consistent with their interpretation of the system and
met the requirements for areas of interest. Furthermore the
boundary conditions used came out of this initial consulta-
tion, in particular the consideration of the Campaspe River
and smaller inflowing tributaries, the latter of which are not
represented in the groundwater model due to their ephemeral
nature and low flows.

The groundwater flow model of the Lower Campaspe Val-
ley region is a finite difference representation. The model was
constructed with Python scripts utilising Flopy (Bakker et
al., 2016), and uses MODFLOW NWT (Niswonger et al.,
2011). Representation of the hydrogeologic units (HGUs)
is based on rasters (100 m resolution) from the Victorian
Aquifer Framework (DSE, 2012). The model is made up of
7 layers, with a horizontal resolution of 1 km, and vertical
spacing of the model grid informed by the HGU rasters. The
5 km resolution was chosen for computational speed to avoid
the groundwater model becoming a computational bottleneck
for the integrated model. Some HGUs span multiple layers
where they are not overlain by other HGUs. There are 41 209
active cells within the model.

The groundwater model is driven by rainfall, river stage,
groundwater extraction via pumping wells and groundwater
head data via a series of boundary conditions shown in Fig. 7.
Recharge in the model is implemented in the top layer of
the model with the RCH package, and is calculated as a re-
duction of rainfall using a rainfall reduction parameter, and
as such evapotranspiration is not directly modelled. River
boundary conditions are implemented using the RIV pack-
age for the Campaspe River and Murray River. To allow out-
flow below the Murray River, through the subsurface in the
north of the catchment, a general head boundary condition is
implemented with the GHB package.

The model was calibrated using PEST (Doherty, 2016) to
groundwater head data by modifying the HGU properties
(i.e. hydraulic conductivity, specific yield and specific stor-
age) and also a rainfall reduction parameter, applied statically
from the period 1966–2015 and based on monthly stress pe-
riods. Initial conditions for the model were established by
running the model in steady-state using long-term average
rainfall and river stages.

As depicted in Fig. 7, the groundwater model is forced by:
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Figure 4. Growing season rainfall over the 1982–2015 growing
seasons. Median growing season (dashed black line) was found to
be 357.28 mm, below the usual growing season rainfall of 420 mm
(see Fig. 5 below).

In this section examples of the implications and influences
from stakeholder feedback on each of the component models
are given. The model continues to be developed in light of
findings described herein, and as such is not made publicly
available, although public release is intended. Additionally
the data comes from various sources and so possible issues
regarding intellectual property and data ownership will have
to be cleared before public availability is possible. Model de-
velopment utilizes version control which allows for the re-
lease of the model (in its current and future state) and requi-
site data at a later date.

5.1 Climate

Ticehurst and Curtis (2016) found that over 80 % of farm-
ers surveyed believed that the impact of drought and chang-
ing rainfall patterns were important or very important. This
finding in conjunction with the observed decrease in rainfall
(see Sect. 2.1.1) shows that it is necessary to consider the
impact of further climate variability. To this end (30 year)
historic and future climate data were sourced via Climate
Change in Australia (https://www.climatechangeinaustralia.
gov.au, CSIRO, 2017). These datasets are described as being
application ready. Long term (∼ 100 years) climate records
were developed through the use of interpolated historic rain-
fall and pan evapotranspiration data (see Vaze et al., 2011).
The recent decrease in rainfall is evident within a typical
growing season (defined as May to February). The median
in-season rainfall during 1982 to 2016 was found to be
357 mm (see Fig. 4), compared to the reported usual grow-
ing season rainfall of 400 to 500 mm (EcoDev, 2015) and as
indicated in the long term growing season rainfall records
(see Fig. 5).

Figure 5. Long term growing season rainfall. Median in-season
rainfall was found to be 420.45 mm (dashed black line).

5.2 Surface water

The surface water module estimates the flows and water lev-
els at selected nodes in the Campaspe Catchment. The nodes
have been selected based on the location of gauges with suit-
able data, taking into consideration the needs of the inte-
grated model (Fig. 6). As the focus of the integrated model
is the lower Campaspe Catchment (below Lake Eppalock),
the majority of the nodes are located in that region. To model
the surface water flows, this means having information on
releases and spills from Lake Eppalock, thereby requiring an
estimate of the inflows to the reservoir. The resulting nodes
are shown in Fig. 7. The surface water flows also depend on
interaction with the groundwater, requiring a comparison of
surface water levels with groundwater levels. This means that
the surface water module needs to estimate the surface wa-
ter levels at the nodes, and that this information is passed to
the groundwater model in order to estimate the infiltration
loss/baseflow contribution to surface water flow.

The surface water module has three components: a
rainfall-streamflow model, a routing module and a rating
curve module. Inputs required by the model are climate data
(rainfall and potential evaporation), as well as estimates of
the groundwater/surface water interactions (from the ground-
water module), releases from Lake Eppalock reservoir (from
the policy and the farm modules) and extractions from the
surface water flows (from the farm model).

The rainfall-streamflow model used here is a variant of
the IHACRES model, incorporating a non-linear loss mod-
ule which converts rainfall into effective rainfall (rainfall that
contributes to streamflow), and a unit hydrograph module
that represents the dynamics of the water moving through the
catchment (river network and landscape). The non-linear loss
module used is based on the CMD version of the non-linear
module (Croke and Jakeman, 2004), modified to produce two
inputs to the unit hydrograph module (Croke et al., 2015): a
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Figure 3. The interactions between component models and key model outputs. The dashed box around surface and groundwater models was
inserted to simplify the model diagram and is not intended to indicate a separate coupled model.

ous validation of model implementation and the adjustments
necessary to incorporate stakeholder feedback (Sletholt et al.,
2012). To this end a component-based approach was applied
for the implementation of the model, and so the development
process could be described as applying a component-based
participatory approach.

Component-based approaches compose a collection of
compartmentalized models coupled loosely through a com-
mon framework. Loose coupling is achieved using specif-
ically defined interfaces which handle data exchange and
refers to the fact that the connections, and thus the feedbacks,
between models are no longer “hardwired” to specific mod-
els. Malard et al. (2017) refers to the use of interfaces as a
“wrapper approach” wherein the individual component mod-
els are “wrapped” and interactions channelled through the
interfaces. Benefits of such an approach include the ability to
reuse or “swap” a given component model for another (either
new or pre-existing) as the need arises (de Kok et al., 2015).
Changes within a model that do not affect the interface (i.e.
the inputs and outputs) are safely abstracted and as such do
not propagate and affect other component models. Incorpora-
tion of stakeholder feedback then becomes less problematic
due to this model compartmentalization allowing model de-
velopers to focus on the modelling process instead of issues
that may arise from direct coupling. Expected behaviour can
then be verified through testing and comparisons against pre-
vious model outputs. As a consequence modellers are then
able to progress through the iterative loops at a faster pace.

4 Model framing

To support these water reforms Federal and State Govern-
ments invested heavily in a modernization program in 2007

(State of Victoria, 2011), what is now known as the Connec-
tions Project and managed by GM Water. This infrastructure
investment was described as the largest investment in irriga-
tion infrastructure by the Australian Government (a total of
AUD 1.1 Billion as reported in Bowler, 2015). A primary aim
of the Connections Project was to improve the efficiency of
water delivery and on-farm water use to meet sustainable wa-
ter use goals as defined in the national Murray-Darling Basin
Plan introduced in 2012 (Bowler, 2015).

Conjunctive use of water resources were identified by
Ticehurst and Curtis (2017) as one method of improving wa-
ter availability in the catchment. Here conjunctive water use
was broadly defined as the multi-use of water sourced from
both surface and groundwater for agricultural, recreational,
and environmental purposes.

5 Model components

Each component represents a system of interest which col-
lectively describes a system of systems. The developed inte-
grated model represents a sociohydrological-environmental
system including a farm model, surface water representing
the lower Campaspe River and tributaries, groundwater hy-
drology, and a water management policy model. A climate
component is also included which serves to provide the nec-
essary rainfall and evapotranspiration data at the requisite
spatial and temporal scales. The component models are cou-
pled through a common framework developed in the Python
programming language. Component models are not required
to be developed in the same language as the framework as
Python has robust language interoperability capabilities. The
interactions between component models through their inter-
faces are depicted in Fig. 3.
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pan evaporation is approximately 1700 mm. The main stor-
age in the basin is Lake Eppalock, which has a catchment
area of 2124 km2, a storage capacity of 304 GL, and is lo-
cated about 135 km from the catchment outlet at an elevation
of about 160 m AHD. A further 3 large storages are located
on the Coliban River (upstream of Lake Eppalock), with a to-
tal storage of 70 GL (BoM, 2017; GM-W, 2017a, b; MDBA,
2017).

2.3 Hydrogeology

The Campaspe region comprises the recent Coonambid-
gal Formation incised by the Campaspe River through the
Shepparton formation, Parilla/Loxton sands, Newer Volcanic
Basalts, with the primary productive aquifers of the re-
gion in the Calivil Formation and Renmark Group (collec-
tively known as the Deep Lead)which overlay the Palaeozoic
bedrock. The majority of the lower Campaspe consists of the
Shepparton formation and the Deep Lead. The Deep Lead
aquifers are the primary source of groundwater in the lower
Campaspe irrigation areas, in which the Shepparton Forma-
tion has low permeability and is not very transmissive. Fur-
ther details of the local hydrogeology may be found in Chiew
et al. (1995).

2.4 Stakeholders

The local water corporation, Goulburn-Murray Water (GM
Water), manages both surface and groundwater resources in
the Lower Campaspe. Management includes the operation
of the dam, water delivery infrastructure maintenance and
investment, and the water accounts and licences in the re-
gion. GM Water is additionally responsible for determining
the amount of water allocations – a percentage of water that
an irrigator is entitled to – during each irrigation season.

The Department of Economic Development, Jobs, Trans-
port and Resources (EcoDev) is a state level Government de-
partment that is interested in the water resource management
and policy aspects, as well as providing advice and assistance
to farmers regarding on-farm activities. The North Central
Catchment Authority (NCCMA) and an expert from the Aus-
tralian Platypus Conservancy were engaged for their input
and feedback on the ecological system. Farmers themselves
are an important stakeholder group to include as they will
be impacted by any policy and climatic changes as well as
being an important influencer of ecological and recreational
water availability. Recreational users of the reservoir at Lake
Eppalock were involved due to concerns that over-allocation
of water for agricultural purposes have, and will exacerbate,
negative impacts on recreational activities.

To gain further insights into the socio-agricultural system
Ticehurst and Curtis (2016, 2017) conducted a survey of irri-
gators during 2016. The survey gathered responses from 254
participants (of 754 surveys sent out) that were later deter-
mined to be representative of irrigators in the region. The

findings relevant to the model development process are re-
peated here, however readers are directed to Ticehurst and
Curtis (2016, 2017) for further detail on the survey process.

These stakeholder groups were all engaged with through a
series of workshops and discussions from late 2015 onwards.
The latest workshop was run in October 2017, and another
scheduled for March 2018. These stakeholder engagement
activities aided in the selection of scenarios which describe
plausible, and socially acceptable, options for changes in wa-
ter management. Examples of such scenarios include the in-
troduction of a managed aquifer recharge system to capture
dam overflows for storage in the aquifer for use in times of
water scarcity. Recharging the groundwater resource in this
manner increases the availability of groundwater as well as
reducing the impact of existing pumping levels.

3 Modelling process

The model development process followed a participatory
process in which multi-disciplinary practitioners engaged
with stakeholders. Through this process the model and its
purpose was collaboratively defined and developed. Stake-
holders play an additional important role in the develop-
ment of scenarios of interest and validating model scope and
behaviour (Krueger et al., 2012). Participatory engagement
elicited a key set of management objectives including holis-
tic management of water resources to improve crop yields,
reliability of water availability, and beneficial improvements
to environmental and socio-economic outcomes. Inclusion of
stakeholders in the design and development process addition-
ally fosters trust between stakeholders and modellers, and as
a consequence model results (Franzén et al., 2011).

Another perspective is that of a software developer, as
model implementations will largely be expressed in com-
puter code. It is perhaps of interest to note that both software
and model development best practices suggest an iterative
process and arrived at these processes seemingly indepen-
dently of each other. Sletholt et al. (2012) for example de-
tails and identifies software development practices that can
be found in the model development process that have direct
counterparts to software development practices.

A key point of interest is that iterative development is re-
garded as best practice in both model and software develop-
ment paradigms. From a model developers’ perspective con-
tinuous engagement with stakeholders has a hand in early
detection and correction of faulty assumptions (Jakeman et
al., 2006). Continuous exposure to the development process
and incorporating feedback can drive stakeholder acceptance
of the model by ensuring that the modelling process is trans-
parent and relevant (Chan et al., 2010; Voinov and Gaddis,
2008). Jakeman et al. (2006) suggest an iterative approach to
model development, where progress is reviewed at various
steps, and part of the process repeated if issues are found.
For software developers, iterative processes enable continu-
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Figure 1. Panel (a) depicts the Campaspe catchment in the Murray-Darling Basin (adapted from MDBA, 2017) while (b) shows the Cam-
paspe catchment proper with land use in the region.

Rochester (NCCMA, 2014b). A map indicating the catch-
ment location is shown in Fig. 1.

Climate

The lower Campaspe is reported to be a dry semi-arid area
which is evident in the historic rainfall records, with the me-
dian yearly rainfall being 434 mm (see Fig. 2). Two notable
dry periods are identifiable in the historic rainfall records for
the past 30 years which have influenced irrigators and wa-
ter management. The first is a severe drought that occurred
during 1982/1983 during which almost no rainfall occurred
during the growing season resulting in severe (wheat) crop
loss across eastern Australia (ABS, 1988; Arad and Evans,
1987; BoM, 2009). The second was the millennium drought,
described as the worst drought on record for southeast Aus-
tralia, defined as starting in 2001 with the drought eventually
broken in 2009 (Van Dijk et al., 2013).

Climate projections for Northern Victoria, of which the
Campaspe catchment is a part of, describe drier conditions
with rainfall expected to decrease compared to the historic
20-year average. Decreases in mean rainfall of 12–13 %
across south and east Australia compared to the 100-year av-
erage (1900–2000) have already been experienced within the
first decade of the new millennium (2001 to 2009, Van Dijk
et al., 2013).

Figure 2. Yearly rainfall in the Lower Campaspe study area. The
median amount was found to be 434 mm yr−1 (indicated by the
dashed black line).

2.2 Hydrology

The area of the Campaspe basin is 4179 km2, with a river
length of 220 km, and a mean annual streamflow volume of
352 GL. The elevation in the southern part of the basin is
around 600 m AHD (Australian Height Datum), with mean
annual rainfall up to 1000 mm, and estimated mean annual
pan evaporation of approximately 1300 mm. Near the catch-
ment outlet (elevation 98 m AHD), the mean annual rainfall
is approximately 430 mm, while the estimated mean annual
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1 Introduction

Effective, and holistic, water management is contingent on
understanding the stressors that affect water resources. Such
stressors may come from a variety of physical and social (an-
thropogenic) sources. In the field of water resource manage-
ment physical influences typically include the hydrology, ge-
ology, ecology/biology, and climatic processes. Social sys-
tems that influence and affect water management include
agricultural enterprises, water policies, and the social factors
that influence the acceptability of water use and management
practices. Due to the complexity and interconnected nature
of this system of systems, water resource managers and re-
searchers often turn to integrated models to assess potential
management actions within the specific context.

Managing such system of systems requires the consider-
ation of a wide range of factors across the interconnected
physical and social domains. Integrated Assessment (IA)
should not be conducted by individual disciplines in isola-
tion as the issues faced do not fall neatly into traditional aca-
demic disciplines. Each represented system may have differ-
ing problem frames which influence and affect each other
due to the interconnected nature of socio-enviro systems.
Therefore, the development of Integrated Assessment Mod-
els (IAM) should not be conducted by model developers
alone but in conjunction with experts and stakeholders so
that the specifics of the problem frame(s) are accounted for.
Collectively these problem frames make up a management
context, a term used here to refer to the physical properties,
the social elements and activities that have influence, and the
management scope and objectives of concern.

The lower Campaspe basin in the north-central region of
Victoria, Australia is an example of a highly interconnected
socio-enviro system. We describe herein an iterative inte-
grative process used to develop an Integrated Assessment
Model (IAM) suited for the specific management context.
Model development was continuously informed by stake-
holder and expert knowledge throughout the process from
initial conceptualization through to completion. As new in-
formation and knowledge became available and challenges
encountered, stakeholders and experts were re-engaged to
update the problem frames and model design; a beneficial
co-design process. Incorporation of feedback at each iterative
stage then helps to ensure that the model remains relevant for
its given purpose and to the stakeholders themselves.

The principal aim of the model is to inform stakeholders
of the impacts of a range of possible combinatory policy and
on-farm water management decisions under a variety of cli-
mate conditions. These collectively represent a set of pos-
sible “futures”. The model will be used in an exploratory
manner through which a multitude of such possible “futures”
are generated. The combination of factors that led to positive
(or at least effective compromises) and negative future condi-
tions can then be identified and communicated to stakehold-
ers through this exploratory process. Because the geophysi-

cal, geographical, and social elements are found in a range of
contexts, this iterative process is a generally applicable inte-
grative water management approach.

2 Management context

Defining the management context through systems analy-
sis with the aid of stakeholder knowledge is a crucial first
step in an integrated assessment process, and a key aspect
of Integrated Assessment Modelling (IAM, as in Jakeman
and Letcher, 2003). Kraft et al. (2010) argues the importance
of stakeholder involvement as incorporation of local domain
knowledge ensures that key features of the management con-
text are captured and subsequently represented in the model.
Stakeholders further represent an important source of local
knowledge which may in turn drive both information need
and data accessibility, as well as playing an important role in
validating model outputs (Krueger et al., 2012).

The involvement of stakeholders increases the trans-
parency of the development process as it is exposed for cri-
tique and review by stakeholders. Through this stakeholder
engagement process the scope and objectives of the model
can be iteratively developed and refined so that the final
model is suitable and relevant (and therefore useful) for the
end purpose and users (Jakeman and Letcher, 2003). The pro-
cess for gathering information and knowledge of the manage-
ment context and the subsequent influences and implications
on the model design and approach is described in later sec-
tions.

One motivation for this study was the adoption of the
Murray-Darling Basin Plan developed under the Australian
Government Water Act 2007. The Basin Plan defines envi-
ronmental objectives which includes increasing water avail-
ability for the environment. To this end the Basin Plan sets
Sustainable Diversion Limits, which will be applicable from
1 July 2019 for both ground and surface water (NCCMA,
2014a).

2.1 The Lower Campaspe

The Lower Campaspe catchment covers the northern por-
tion of the Campaspe catchment in North-Central Victoria,
an area that is approximately 150 km long and 25 km wide
(NCCMA, 2014b), and is itself a part of the Murray-Darling
Basin. The Campaspe River starts from the Great Divid-
ing Range in the south, flowing in a northerly direction into
Lake Eppalock from which the Lower Campaspe River be-
gins. The Lower Campaspe River then continues northwards
(downstream) into the Murray River which flows in a west-
erly direction. Population centres along the Lower Campaspe
River include (from south to north) Axedale, Barnadown, El-
more, Rochester, and Echuca. The Lower Campaspe River
itself is highly regulated by the operation of a dam at Lake
Eppalock, the Campaspe Weir and Siphon located north of
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Abstract. Management of water resources requires understanding of the hydrology and hydrogeology, as well
as the policy and human drivers and their impacts. This understanding requires relevant inputs from a wide
range of disciplines, which will vary depending on the specific case study. One approach to gain understanding
of the impact of climate and society on water resources is through the use of an integrated modelling process
that engages stakeholders and experts in specifics of problem framing, co-design of the underpinning conceptual
model, and discussion of the ensuing results. In this study, we have developed such an integrated modelling
process for the Campaspe basin in northern Victoria, Australia. The numerical model built has a number of
components:

– Node/link based surface water hydrology module based on the IHACRES rainfall-streamflow model

– Distributed groundwater model for the lower catchment (MODFLOW)

– Farm decision optimisation module (to determine irrigation requirements)

– Policy module (setting conditions on availability of water based on existing rules)

– Ecology module (determining the impacts of available streamflow on platypus, fish and river red gum trees)

The integrated model is component based and has been developed in Python, with the MODFLOW and surface
water hydrology model run in external programs, controlled by the master program (in Python). The integrated
model has been calibrated using historical data, with the intention of exploring the impact of various scenarios
(future climate scenarios, different policy options, water management options) on the water resources. The sce-
narios were selected based on workshops with, and a social survey of, stakeholders in the basin regarding what
would be socially acceptable and physically plausible options for changes in management. An example of such
a change is the introduction of a managed aquifer recharge system to capture dam overflows, and store at least
a portion of this in the aquifer, thereby increasing the groundwater resource as well as reducing the impact of
existing pumping levels.
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providing clarifications to technical details of the available API without 
which this work would not have been possible. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envsoft.2019.104588. 
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publications will have been removed (Fig. 13). Of particular note is the 
possible under-representation of articles on emulators and surrogate 
modeling within the Software corpora. Omitted publications were 
assumed to be irrelevant or that relevant issues were captured by the 
papers that remained in the desired corpora. For more information, see 
Notebook 4 "UASA Topic modeling". 

6. Conclusion and future directions 

The analysis presented here indicates that UA considerations are 
increasingly included in the published literature with a slight decrease in 
the reported use of OAT methods. The identified literature reflects 
greater attention paid to guidelines for the use of UA/SA over the past 
decade, itself perhaps indicating advances in the application of UA/SA. 
Greater interest in the use of UA/SA for rigorous model testing is 
apparent, although whether modelers embrace and adopt the suggested 
guidelines towards the treatment, assessment and analysis of UA/SA (e. 
g. as discussed in Eker et al., 2018; Saltelli et al., 2019) remains to be 
seen. 

The literature also suggests that a wide variety of software has 
become available in the past two decades, aimed at both non- 
programmatic audiences and for specific programming languages. The 
majority of these identified software packages does not support local 
OAT analyses, which may indicate a general move away from depending 
on local SA. More recently developed software packages that implement 
multiple methods with open source code and documentation, with little 
restriction (in terms of software licencing) to the end-user, are becoming 
the prevalent distribution format. 

While there is a variety of software tools available, the trend of 
publications on UA/SA tooling has remained largely flat. This trend may 
be due to the relative infancy of the available tools, or a perceived 
complexity in their application. For one, while many of the surveyed 
software provide usage examples and documentation, their use typically 
assumes 1) experience with the underlying programming language, or 2) 
intimate familiarity with the methods provided, their pros and cons and 
contextual suitability. Little guidance is available, aside from extensive 
reading lists. 

The indicated lack of uptake in this analysis may also be because 
software-specific publications have been largely filtered out from the 
corpora. These relevant publications may be concentrated within con-
ference proceedings (which were removed from the corpora) or other 
topic areas not included in the initial publication search. Publications 
that are application/method focused may not explicitly mention the 
software used in the abstract. For these reasons it is difficult to 
concretely conclude whether those involved in environmental modeling 
are embracing the available UA/SA software tools or if custom “home- 
grown” solutions are preferred, itself indicating perhaps a lack of 
awareness of the available software packages. 

That said, usability and user-friendliness were found to be a general 
issue. Users are expected to be adept and experienced enough to produce 
and interpret results themselves. Even in cases where visualization 
processes are provided, users may require a different approach for their 
analyses. In the case of novices, interpreting provided analyses requires 
first understanding a body of work usually provided in the form of a 
(often large) reading list of relevant papers. This may explain, in part, a 
preference for custom “home-grown” solutions where the developers 
write tools specific to their needs to avoid “adoption cost”; time needed 
to learn how to use an existing tool effectively. The complexity of 
existing tools, real or perceived, may contribute to the issue of (lack of) 
uptake. In cases where the perceived cost of adoption is high, the pro-
spective user may find it easier to apply OAT or otherwise implement 
their own custom solution to perform common UA/SA methods, which 
amounts to duplication of effort across the scientific community. 

This then raises the question of what constitutes a ‘thorough’ UA/SA 
package. In this survey, the most comprehensive software (R sensitivity, 
Simlab, and SALib) provide users with the widest assortment of UA/SA 

methods with (limited) visualization capability and test functions. These 
target languages prevalent in the sciences (R, Matlab, and Python 
respectively) that are supported by an active community, which may 
explain their longevity and/or popularity. The prevalence of open- 
source, community-led efforts evident in more recent software tools 
suggests that an open development culture is a prerequisite to wide-
spread adoption – perhaps an unremarkable observation due to the 
scientific context and focus of UA/SA research. 

Developers and maintainers of UA/SA tools could support and 
encourage wider application of GSA processes by moving towards 1) an 
open development process, 2) placing further attention on expanding 
documentation, preferably in an easily digestible form, and 3) 
improving usage guidelines and promoting user-centric interfaces and 
workflows. 

Point 1 is to encourage the sharing of knowledge and experience 
across the disciplines that rely on modeling, to leverage expertise and 
experience globally rather than siloing advances. On point 2, UA/SA 
software developers could further leverage the open-collaboration 
model and (re-)use explanations and examples from one another. Ex-
amples of both simple and complex workflows could be given (e.g. in a 
“cookbook” or “recipe” documentation style). Point 3 should not be 
taken to mean that all packages should provide a GUI. Rather, general- 
purpose UA/SA tools should have processes in place to prevent or limit 
unintentional or ill-informed analyses from occurring. A particular pain 
point is the ability to mix-and-match sampling and analysis methods 
regardless of whether it makes sense to do so. 

While UA/SA tools have largely addressed the three steps defined by 
Pianosi et al. (2015) (sample parameter space, run model, analyze re-
sults), the workflow - that is implicit or explicit steps in the use and 
application of the software - could be improved so that modelers are able 
to move from each step without issue. Recently developed packages 
indicate that such improvements to the workflow are being made, with 
attention to usability, open-source code, and tools for analyzing results. 
Researchers and modelers, particularly those new to UA/SA, need 
software designed with usability in mind. It is expected that such soft-
ware will support UA/SA in more areas and encourage rigorous and 
reliable UA/SA, which will in turn allow for more informed 
decision-making. 

Software availability 

Code and representative data used for this analysis can be found at 
https://github.com/frog7/uasa-trends (10.5281/zenodo.3406946). 

Software used to support analysis can be found at https://github. 
com/ConnectedSystems/wosis (10.5281/zenodo.3406947). 

Declaration of competing interest 

The second author has contributed usability and performance im-
provements to the SALib Python library. All other authors declare no 
potential sources of conflict. 

Acknowledgements 

The corresponding author (second in the author list) is supported 
through an Australian Government Research Training Program (AGRTP) 
Scholarship, and a top-up scholarship from the Hilda-John Endowment 
Fund. 

The authors would like to thank and acknowledge Joseph Guillaume, 
Barbara Robson, and the anonymous reviewers for their highly valued 
comments and suggestions. The use of work by Titipat Achakulvisut 
(author of the ‘wos_parser’ Python package, https://github.com/ 
titipata/wos_parser) and Enrico Bacis (author of the ‘WoS Client’ 
package, https://github.com/enricobacis/wos) is acknowledged. We 
would also thank and acknowledge Clarivate Analytics for providing 
access and use of the Web of Science database, and to their staff for 

D. Douglas-Smith et al.                                                                                                                                                                                                                        



Environmental Modelling and Software 124 (2020) 104588

16

novices, is an ongoing concern. While many sampling and analysis ap-
proaches are amenable to cross-use (e.g. a mix-and-match approach) 
there is often no limitation in the application of methods (within the 
packages) which safeguards a user against inappropriate and incom-
patible mixes, e.g. Sobol’ analysis on a Latin Hypercube sample. 

Efforts to address these issues and criticisms are evident in the 
various communities, however, with later packages often offering 
detailed documentation including usage examples and tutorials (see 
previous section). Well-known test functions, such as the Ishigami 
function (Ishigami and Homma, 1990), Sobol’ G-Function (Saltelli and 
Sobol, 1995), the example Lake Problem (Hadka et al., 2015) as well as 
case studies for research and educational purposes, are often included. 

PEST (Doherty, 2018), for example, provides a UA tutorial including 
two worked examples of hydrological models. Another example is SAFE 
(Pianosi et al., 2015), which, by providing commented code in workflow 
scripts, allows beginner users to implement UA/SA more easily and 
advanced users to improve their methodology. The packages in our 
survey did not appear to provide guidance through UA/SA theory 
outside of extensive reading lists, although it is acknowledged that this 
may be out of scope for those maintaining the tool. A lack of guidance as 
such may hinder uptake by practitioners of both the software and GSA in 
general. Generally, the available packages still operate on an under-
standing that users have appropriate background knowledge of or 
experience with UA/SA. Many of the packages identified in this review 
appear to have been abandoned: this perhaps indicates the importance 
of an active user community to share knowledge and update code. 

The corpora give evidence to newer methods that are in development 
and reflects a continued interest in improving UA/SA. Examples of more 
recently developed techniques are VARS and active subspaces (devel-
oped in 2016 and 2011 respectively). VARS (Variogram Analysis of 
Response Surfaces) uses variograms as a measure of sensitivity. A var-
iogram is a function describing the spatial dependence of, in the case of 
SA, the parameter space, that is, how much the variance in parameter 
values is dependent on the distance between parameters in parameter 
space. Variogram-related publications began in 2001,however, those 
specifically relating to the application of variograms to SA only appear 
from 2016. There are five publications relevant to variogram-based SA 
in the corpora, totaling 74 citations and the highest citation average is 
13 (Razavi and Gupta, 2016). 

The top-cited variogram paper (Razavi and Gupta, 2016) presents 
the method as a linkage between existing derivative- and variance-based 
GSA methods and demonstrates that the approach reduces computa-
tional cost. Over approximately 20 000 and 100 000 model runs, the 
VARS sensitivity estimates had less uncertainty than Sobol and Morris 
indices. These relatively new methods, though currently lacking cita-
tions, do appear to be methods with development potential due to, for 
example, current user interest and improvements to the efficiency and 
comprehensibility of UA/SA methods. 

Active subspaces is a dimension reduction technique that identifies 
directions in parameter space that have a greater influence on the model 
output. These directions are described as being "active" and their iden-
tification aids in reducing the dimensionality of a model by avoiding 
perturbations across inactive areas of parameter space, thereby reducing 
computational cost (Constantine et al., 2015). Through this method 
parameters of importance and their rankings can be obtained (Jefferson 
et al., 2015). Papers relating to active subspaces first appear in 2015, 
there are eight in total in the corpora. Citation analysis does not indicate 
particularly that this new method is being taken up quickly, total cita-
tions for all publications was 83, and the publication with the highest 
citation average had an average of 7.67 (Constantine et al., 2015). The 
top-cited active subspaces paper (Constantine et al., 2015) details an 
application of the method to numerical simulation, and an imple-
mentation may be found in the ‘Effective Quadratures’ package for Py-
thon (Seshadri and Parks, 2017) 

Another technique of interest is HDMR (High Dimensional Model 
Reduction): the companion paper (Ziehn and Tomlin, 2009) for the 

method and supporting software came through as a highly cited publi-
cation in this analysis (see Table 7). HDMR is an emulation method that 
improves variance-based SA methods, such as the Sobol’ method. Citing 
articles for Ziehn and Tomlin (2009) continue up to 2019 (identified 
through manual processes). In fact, 7 of the 32 returned publications in 
the corpora were published in 2017, indicating a continued interest in 
the method. In the corpora, the publication with the most citations has 
158 (Alış and Rabitz, 2001) and the highest citation average is 14 (Ziehn 
and Tomlin, 2009). 

Furthermore, alternative methods for handling uncertainty have 
been developed, especially to handle scenarios in which there is large 
uncertainty, but in which accurate predictions are necessary for future 
policy making. Software for these alternate methods is deemed out-of- 
scope for this study but for completeness sake, one such proposed 
approach is Exploratory Modeling and Analysis. Rather than simply 
minimizing uncertainty in an attempt to produce an accurate or precise 
prediction, uncertainty is treated as inevitable. Decision making pro-
cesses are guided through the exploration of possible outcomes gener-
ated through computational experiments and responses planned (Eker 
et al., 2018; Kwakkel and Pruyt, 2013). 

5. Limitations 

The bibliometric analysis presented here is limited by the scope of 
the WoS database, the specific search terms used, the initial time frame 
and the included fields of study (with the analysis focused on applica-
tions in environmental modeling). Search query results may also differ 
over time due to indexing artefacts with implications for the resulting 
trend and citation analysis. A bias towards open-source software liter-
ature may be perceived as these were the easiest to analyze. That said, it 
is not claimed that the analysis conducted herein uncovered all software 
packages currently in use or the full extent to which they are being used. 

A known issue is the lack of attributions, citations, and reporting of 
software used for research, making it difficult to find their mention, 
especially when the analysis relied on abstract text. Other software may 
not be referenced simply because their use is taken to be a fundamental 
part of the (programming) language ecosystem, for example, the R 
‘sensitivity’ package or ‘sci-kit learn’ (for Python). It was also difficult to 
search within the corpora for packages with names common to other 
applications (taking as a particularly difficult example, the R ‘sensitivity’ 
package). 

In our own process of sorting the generated database, decisions 
whilst manually sorting and choosing the software collection papers 
were subject to inherent bias – although this process was kept as 
transparent and objective as possible (see Notebook 5a “Finding soft-
ware packages by keyphrase extraction”). Another process which 
limited the generality of our findings was that of refining the search 
terms and results. Limiting the scope of the results was necessary to 
facilitate analysis of the most relevant publications. Iterative use of the 
topic model achieved this, however, it is entirely possible that relevant 

Fig. 13. Plot of the topic model filtering. Note the decrease in publications with 
each application, which aided in limiting the scope of results but also risked 
removing relevant publications. 
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Fig. 10. Absolute and relative trends of publications with OAT keywords. Although publications increase in absolute terms, relative to the corpora yearly publi-
cations with OAT keywords decrease over the timeframe. 

Fig. 11. Absolute and relative trends of publications with GSA keywords. Publications with GSA keywords increase over the timeframe both in absolute and 
relative terms. 

Fig. 12. Papers citing Saltelli and Annoni (2010) appear to be driving the uptick in publications with OAT-related keywords post-2010, possibly as authors give their 
reason(s) for not relying on OAT. 
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corpora and as identified by Saltelli et al. (2019). The detected increase 
in GSA papers may reflect the start of changing attitudes towards SA in 
recognition of the importance of global sensitivity analyses. Increased 
awareness in the past decade has led to the use and development of more 
efficient and comprehensive UA/SA techniques and approaches. 

Improved approaches put forth in the past decade attempt to 
enhance the computational efficiency of generating a global sensitivity 
measure (or range of measures as the case may be) from a single sample 
set, itself said to be more representative of the possible parameter space 
(e.g. Razavi et al., 2019). In particular there has been a renewed interest 
in GSA based on (statistical) design of experiment approaches, as these 
methods are capable of producing global sensitivity measures at an 

acceptable computational cost (Gan et al., 2014; Saltelli, 2017). Such 
approaches refer to methods that utilize a deterministic sample set, for 
example the aforementioned Sobol’, Latin Hypercube, and Morris 
methods (Saltelli, 2017). 

Despite the increased interest in GSA evidenced by the bibliometric 
analysis, local SA and OAT methods are still in widespread use, if any SA 
is conducted at all. Shin et al. (2013) for example, found that only 7% 
(11 of 164) of papers surveyed conducted any SA, of which five applied 
OAT. It is difficult to ascertain the full extent of OAT analysis through 
keyword analysis, as researchers applying this technique may not make 
explicit reference to this form of analysis. Possible reasons for the rela-
tively slow uptake of GSA methods are listed in Ferretti et al. (2016), 
including perceived complexity in the application of GSA. Modelers 
were characterized as being hesitant due to a lack of experience with 
GSA methods. We also find in the literature a prevalence of 
self-implemented UA/SA; that is, modelers using their own code in place 
of existing and often open-source software tools. Not using, or otherwise 
contributing to, readily available, widely used, and well-tested software 
represents a duplication of work. This can be somewhat alleviated by 
greater awareness of and access to the available software tools that 
simplify the application and use of such analyses. Those developing tools 
and methods, for their part, could strive to improve ease of use and 
lower the technical and conceptual barriers to uptake of their software. 

Pianosi et al. (2016) outline three principles of good practice for a 
sensitivity analysis package: 1) the ability to apply multiple sensitivity 
analyses to one sample, 2) provision of tools to assess and revise user 
choices, and 3) inclusion of visualization tools. Regarding point 1, early 
software releases tended to be platform, method, or model specific (see 
Table 4 for specific examples). In recent years the available software has 
been made for more general-purpose use, offering a more comprehen-
sive approach to UA/SA with multiple methods supported. The lack of 
collaborative development is also reportedly an issue, with researchers 
preferring to develop their own toolset and as a consequence siloing 
advances, at least in the short to medium term. Usability, especially for 

Fig. 8. The top five active journals publishing papers related to UA/SA frameworks. All journals have an increasing publication trend over the given timeframe.  

Fig. 9. Publication trend of papers with keywords relating to best practices. 
Notice the larger volume of publications in the years 2014–2017. 
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make use of such software). 

4.4.2. Recent developments 
Recent impactful publications in sensitivity analysis suggest a shift 

away from local sensitivity methods. Prior to 2010, ‘one-factor-at-a- 
time’ (OAT) local SA was the most prevalent practice in the literature 
(Saltelli and Annoni, 2010) with a later revisit indicating that while this 
was still the case for papers published in Science and Nature, GSA 
methods were gaining traction (Ferretti et al., 2016). A more recent 
bibliometric review conducted by Saltelli et al. (2019) comes to a similar 
conclusion across 19 subject areas in which modeling features heavily, 
although the growth of OAT-related publications is shown to signifi-
cantly out-pace GSA related publications. Within the presented corpora 
publications with OAT related keywords do decrease slightly over the 
past two decades (down roughly 1% compared to the entire corpora), 
with an uptick in the absolute number of publications post-2010 (see 

Fig. 10). 
Although OAT is said to be a common method (see for example Shin 

et al., 2013) it may not have featured heavily prior to 2010 due to 1) 
researchers not reporting OAT use, 2) modelers using custom imple-
mentations of OAT, and 3) the software surveyed in our analysis did not 
support OAT, which discourages modelers from using this method (i.e. 
they select from available methods). Analysis conducted here indicates 
an increase in reported GSA keywords post-2010 (Fig. 11) – after the 
publication of “How to avoid a perfunctory sensitivity analysis” (Saltelli 
and Annoni, 2010). This paper was identified as a highly cited publi-
cation in the initial corpora (Table 6 in the supplementary material), a 
key contribution being the demonstrated inefficacy of OAT analyses 
using a geometric proof. The uptick in publications with the OAT-related 
keywords appears to correlate with the number of papers citing the 
paper by Saltelli and Annoni (2010), shown in Fig. 12. This may 
contribute to the rise in publications with OAT related keywords in the 

Fig. 6. Publication trend by journal across the timeframe. All journals in the top 5 (by number of publications) saw an increase in publications related to the 
keywords used. 

Fig. 7. Publication trends of papers relating to application of UA/SA and frameworks (left) as well as those related to sensitivity analysis, and uncertainty analysis 
and quantification (right). While publications are increasing in absolute terms, relative to their respective corpora, works on uncertainty frameworks are increasing 
while SA related papers have decreased, indicating a shift in focus. 
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declined for SA (by 4.5%), while UA has increased (by 5%), which may 
indicate a gradual shift towards being more inclusive of uncertainty 
related matters in analyses as well as a general need for uncertainty 
guidelines in environmental modeling (see Notebook 4 "UASA topic 
modelling"). 

The five most active journals in the Frameworks sub-corpora were 
Structural and Multidisciplinary Optimization, Journal of Computa-
tional Physics, Environmental Modeling & Software, and Journal of 
Hydrology (see Fig. 8). The 10 most cited papers from across these top 
five journals came from Environmental Modeling & Software (2), 
Structural and Multidisciplinary Optimization (3), Journal of Hydrology 
(2), Journal of Computational Physics (1), and Computer Methods in 
Applied Mechanics and Engineering (2), and are detailed in Table 5 
under Supplementary Material. 

The top-cited “framework” related papers from these journals 
(Table 7) showcase a range of issues but particularly address the lack of 
uniformity in the UA/SA approaches used in their respective fields. 
These fields include:  

� environmental modeling – evaluating performance (Bennett et al., 
2013), improving confidence in model outcomes, and handling un-
certainty (Bennett et al., 2013; Kuczera et al., 2006; Refsgaard et al., 
2007), UA for hydrological (SWAT) models (Yang et al., 2008),  
� optimization – topology optimization (Sigmund and Maute, 2013), 

Finite Element Methods (Blatman and Sudret, 2011; Moens and 
Vandepitte, 2005), level set methods for structural topology 

optimization (van Dijk et al., 2013), high-dimensional computa-
tionally expensive black-box problems (Shan and Wang, 2010), and  
� scientific computing - handling uncertainty (Roy and Oberkampf, 

2011). 

Outlines of procedures, guidelines, comparisons of methods, and 
suggestions for future research resolve the issues raised in these papers. 
These papers are highly-cited, indicating that they have had an impact 
on the research community, at least within their respective fields. It 
should be noted here that existence of highly cited papers itself does not 
indicate widespread application of suggested good or best practice and 
should not be taken as evidence. The review conducted by Saltelli et al. 
(2019) concludes that there is a “worrying lack of standards and good 
practices”, although it is acknowledged that the review focuses on older 
papers and may not capture recent trends. Certainly awareness appears 
to have increased, if not adoption of practices. 

Similarly, a keyword search for “best practices” identified 132 papers 
across the surveyed period. By “best practices” we refer to practices in 
modeling and uncertainty management that promote transparency and 
reliability of results. The high citation counts of papers relating to 
frameworks (Table 7) and the growth in best practices publications in 
absolute terms (Fig. 9) suggest increasing interest in uncertainty man-
agement, particularly improving the reliability and effectiveness of UA/ 
SA. Whether the modelers take up the suggestions in these papers is yet 
to be seen. Modelers can be encouraged to follow guidelines for reliable 
and effective treatment of UA/SA if the available software implementing 
UA/SA is designed in accordance with these guidelines (and if modelers 

Fig. 5. Publication trends over 2000 to 2017. Journal of Hydrology contributed the most publications in the time frame (474, see top panel). Publications within the 
field have been occurring at an exponential rate (bottom panel). 
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non-commercial use and is open-source. There are capacities for paral-
lelization and reporting and visualization tools; its documentation 
consists of a manual. 

4.1.4. R statistical language 
The main SA package for the R language is the R ‘sensitivity’ pack-

age. Like Python, the R language is widely used in the sciences and so 
many of the tooling support interoperability with R (see the section on 
Python below, and Table 4). The R ‘sensitivity’ package supplies various 
SA and sampling methods. It offers loose coupling with models imple-
mented in other languages as well as in R. Test cases are supplied for 
research and comparison purposes. The package requires knowledge of 
R, which itself is portable between operating systems and freely avail-
able. A developer community exists and the available documentation 
consists of a reference manual. Since its initial release in 2006 more 
recently developed methods have been implemented and included in its 
latest release (in 2018). 

4.1.5. Python 
As with R, users of Python have a large assortment of options 

generally due to Python being a general-purpose language often used for 
interoperability across languages (see Table 4). The principal SA pack-
age developed in Python appears to be SALib (Sensitivity Analysis Li-
brary) which provides global sampling and analysis methods and is 
distributed under a free public license. Model runs can be invoked 
directly or separately ("offline"). SALib is most applicable to systems 
modeling and knowledge of Python is assumed. It is a freely available, 
open-source package, with a collaborative user community. SALib is 
well documented and well maintained: documentation includes an 
installation guide, basic usage guide, a complete module reference, and 
release notes; its latest release was 2018. SALib supports visualization of 
Morris results only, although this feature appears to be under- 
documented. A separate visualization tool is available for analysis of 
Sobol results called “savvy” (Hough et al., 2016), however this package 
was not examined in-depth. 

4.1.6. Java 
There appears to be limited SA packages implemented in Java, at 

least in the reviewed corpora. A response to this limitation is the MOUSE 
(Model Optimization, Uncertainty and SEnsitivity Analysis) package. 
This is an implementation of MCAT and OPTAS model calibration 
software for modelers using Java. It is indicative of the continued in-
fluence of the packages MCAT and OPTAS. Its first release was in 2014 
and was last updated in 2016. Although claiming to be free and open- 
source, we could not find relevant information to access the package. 

4.1.7. Julia 
MADS (Model Analysis & Decision Support) is an SA package 

available for the Julia programming language. The analyses it supports 
can be tightly- or loosely-coupled with an existing model. In the module 
documentation, extensive information is provided for all functions 
included in the main module ("Mads.jl"). The documentation details 
modules and examples and, although extensive, was found not to be 
user-friendly, with functions and methods often lacking meaningful 
descriptions. MADS is said to support use in High-Performance 
Computing (HPC) environments. It is a freely available open-source 
package with a collaborative user community. 

An inherent advantage of MADS is the relative youth of the Julia 
language, with v1.0 released in 2018. Due to its relative youth, it le-
verages lessons learnt in older programming languages and was devel-
oped with modern computational architecture in mind. This means that 
concurrent and parallel programs are relatively easy to develop in Julia 
(Bezanson et al., 2017) and it has had demonstrable success on HPC 
platforms (see for example Regier et al., 2019). The disadvantage of this 
youth, however, is that the user community – while growing quickly – is 
still relatively small compared to that of established languages. As such, 

the language ecosystem is undergoing continual development and may 
still be immature. 

4.2. Active use and development 

To gauge the level of support and active development occurring for 
each software tool, we attempted to identify websites, evidence of 
userbases, public code repositories, journal publications which specif-
ically mention the software tool, and other indications of activity. 
Through this process we found that many of the packages present in the 
literature are no longer under active development, although the code 
and software may still be available for use. 

A key issue in developing software for UA/SA is longevity. We find 
that those packages that are currently used and under active develop-
ment and maintenance have the advantages of being open source, well 
documented for transparency and ease of use, have an active user- 
community, and offer implementations of a range of UA/SA methods 
for general-purpose application as opposed to providing a specific 
method for a specific model. Packages that have fallen into disuse may 
still be useful with the caveat that there is no supportive community to 
rely on (for bug-fixes, troubleshooting, user-support, and so on). Table 3 
provides an overview of the available UA/SA methods in the surveyed 
packages, while details of the software can be found in Table 4. 

4.4. Bibliometric overview 

The initial corpora from WoS consisted of 11 718 publications from 
which journals deemed to be unrelated to the topic areas of interest (as 
specified by the search terms used), journals with less than three iden-
tified publications, and those without a valid DOI were removed. The 
final corpora consisted of 11 625 publications. Knowing that researchers 
build on prior work and given the exponential growth of published 
material (Bornmann and Mutz, 2015; Haddaway and Westgate, 2018), 
we assume in this analysis that the identified corpora is representative of 
the UA/SA field. Full details of this process can be found in Notebook 2 
“Create filtered corpora”. The number of publications in the environ-
mental UA/SA field have been increasing at an exponential rate 
(depicted in Fig. 5) with Journal of Hydrology having the most publi-
cations overall and experiencing the largest year-on-year gain within the 
analyzed time frame (Fig. 6). 

To facilitate analysis, the final corpora was broadly categorized into 
two topic sub-corpora – “Applications” and “Frameworks” – using the 
topic model. As a reminder, the final corpora represents a collection of 
UA/SA research. Publications focused on UA/SA frameworks and 
guidelines were placed into the “Frameworks” sub-corpora, while “Ap-
plications” included those taken to be focused on the application of UA/ 
SA methods. The topic model was iteratively applied and key phrases 
from top-cited papers were qualitatively examined to determine the 
focus of the publications. The specifics of the undertaken process can be 
seen in Notebook 4 "UASA topic modeling". 

A keyword search was applied within these topic corpora to sort 
publications further into those relevant to uncertainty quantification 
(UQ), UA, and SA. The resulting collections contained 1 940, 2 751, and 
1 360 publications, respectively. To distinguish between LSA and GSA 
methods, specific keywords were searched for in the combined corpora, 
including, for example, “local sensitivity”, “OAT”, “one-at-a-time” for 
local methods and “global sensitivity” and “GSA” to indicate global 
methods. In addition to these, newer SA methods identified through 
manual inspection of the corpora were also searched for, such as “active 
subspaces” and “variograms”. 

4.4.1. Trends and directions 
As suggested by the general publication trends (in Fig. 7), all topics 

(UA, SA, Frameworks, and Applications) saw large increases in the ab-
solute number of publications over the 2000–2017 timeframe. Within 
the same time period the proportional share of the filtered corpora has 

D. Douglas-Smith et al.                                                                                                                                                                                                                        



Environmental Modelling and Software 124 (2020) 104588

10

other tools for UQ, tools for statistical analysis, such as sampling and 
global SA. Global SA methods are supplied through a linkage with the R 
Sensitivity Package. Parallelization is supported. The package is user 
friendly and adaptable to various levels of computational experience. 
Collaboration amongst users is encouraged and users can contribute to 
code, with revision by the major developers. It is portable between 
operating systems and freely available for academic use, however 
documentation is not freely available. The software is well-maintained, 
with its latest release and update in 2018. 

SAFE (Sensitivity Analysis For Everyone) is compatible with the GNU 
Octave environment and a version implemented in R exists, making it 
the most openly accessible of all the surveyed Matlab packages. It runs 
on any operating system. The toolbox was designed to make global SA 
accessible to users with limited knowledge of global SA or Matlab, whilst 
also allowing more advanced users to explore, research, and better 

understand SA. Users are provided with various sampling methods, local 
and global SA methods, and a GUI (see Table 3). Although there appears 
to be no collaborative user community, user-developer interaction is 
possible via email. The software is freely available for academic use and 
is open source. Documentation includes the companion paper (Pianosi 
et al., 2015) and additional information provided in workflow scripts. 
There have been no recent releases, however the website is maintained 
(last update 2018). 

VARS-TOOL is also available in Cþþ and OSTRICH (a user- 
independent interface). It features off-line and on-line mode options 
for running models in any language or operating system. Numerous 
sampling and SA methods are supplied, including VARS. It is said to be 
user-friendly and accessible to various levels. It appears to operate as a 
command-line interface, without a GUI. Although recently developed, 
there is no collaborative community. The software is freely available for 

Table 4 (continued ) 

Name and 
Language 

First and 
Last 
Release 
(latest 
updatea) 

License Community Docs Indicated 
required 
expertise 

Related 
publication 

Link to source/ 
software 

Comments 

2013, 
2018 
(2018) 

Free public licence 
(MIT), open 
source. 

release 
notes 

Assumed 
knowledge of 
Python 

https://github. 
com/SALib/SA 
Lib 

Has some visualization 
methods chiefly for the 
Morris method 

MADS (Julia, 
C/Cþþ) 

2016, 
2018 
(2018) 

Free public licence 
(GPL), open 
source. 

User community Manual and 
examples 

Beginner to 
advanced 
functionality 

Various 
publications 
listed under 
https://mads. 
lanl. 
gov/#research 

https://github. 
com/madsjuli 
a/Mads.jl 

Supports 
parallelization 

JUPITER API 
(Fortran90) 

2006, 
2013 
(2016) 

Free and open 
source 

User-developer 
interaction 

Manual, 
examples  

http://water. 
usgs.gov/softwar 
e/JupiterApi  

Application 
Programming Interface 
to improve model 
analysis software 
development 
Supports 
parallelization 
Used to develop other 
tools, including 
UCODE (below) 

UCODE 
(Fortran90/ 
95, Perl) 

1998, 
2015 
(2016) 

Free and open 
source 

– Manual  Poeter and Hill 
(1999) 

https://igwmc. 
mines. 
edu/ucode/ 

Software appears to be 
abandoned but 
download still 
available 

MOUSE (Java) 2014, 
2016 

Free and open 
source 

–   Ascough II et al. 
(2015)  

Affiliated webpage 
unavailable 
Software not under 
active development but 
is being maintained 
Reportedly has a GUI 

GLUE (R, 
Matlab) 

1992, 
2013 
(2016) 

Free for academic 
use, open source 

– Manual and 
examples  

Beven and Binley 
(1992) 

http://www. 
uncertain-futu 
re.org.uk/?page 
_id¼131 

Method implemented 
in software developed 
by creators (R) and 
users (Matlab) with 
implementations found 
in other packages 

SWAT (Fortran) 2000, 
2018 
(2019) 

Free public 
licence, open 
source 

User community, 
user-developer 
interaction, 
workshops/ 
conferences 

Manual May be difficult 
for beginners 

https://swat. 
tamu.edu/soft 
ware/ 

https://swat. 
tamu.edu/softw 
are/plus/ 

Externally developed 
tools/interfaces 
developed to 
implement e.g. SA, GUI 

OSTRICH 
(standalone) 

2017 Free and open 
source 

User community 
for hydrologists 

Manual, 
examples  

Matott (2017) http://www. 
eng.buffalo. 
edu/~lsma 
tott/Ostrich 
/OstrichMain. 
html 

Supports 
parallelization  

a Latest update refers to last identified date in which documentation or code was released. Documentation refers to user/technical manuals, publications specifically 
on the software or other. 
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Table 4 
Summary details (specifications, usability) of some available software of interest. Dash (� ) indicates the information could not be found.  

Name and 
Language 

First and 
Last 
Release 
(latest 
updatea) 

License Community Docs Indicated 
required 
expertise 

Related 
publication 

Link to source/ 
software 

Comments 

SimLab 
(Matlab) 

1985, 
2008 
(2016) 

Freely available 
for academic use, 
End User free 
license. 

– Manual and 
examples 

Professional 
tool for model 
developers, 
scientists, and 
professionals 

JRC (2015) https://ec.eu 
ropa.eu/jrc 
/en/sa 
mo/simlab 

Development and 
simulation tool for UA/ 
SA 
No GUI. 

MCAT (Matlab) 2001 
(2007) 

Free and open 
source 

– Manual and 
examples  

Wagener and 
Kollat (2007) 

Unofficial 
GitHub page htt 
ps://github. 
com/ICH 
ydro/MCAT 

Monte Carlo Analysis 
Toolbox 
GUI is available 

GUI-HDMR 
(Matlab) 

2008 Freely available 
for academic use, 
but not open 
source. 

– Manual  Ziehn and Tomlin 
(2009) 

http://www. 
gui-hdmr.de/ 

Software does not 
appear to be actively 
developed but still 
available and in use 
GUI is available 

UQ Lab (Matlab 
with R 
plugin) 

2014, 
2018 
(2018) 

Free for academic 
use. Content 
management 
system is licensed, 
scientific modules 
are open source. 

User 
collaboration 
encouraged, users 
can contribute to 
code with 
revision by 
developers 

Manuals, 
examples, 
release 
notes. 

Beginner to 
advanced 
functionality 

Marelli and 
Sudret (2014) 

https://www. 
uqlab.com/dow 
nload 

Tagline states “make 
uncertainty 
quantification 
available for anybody, 
in the field of applied 
science and 
engineering” 
Plugin for R Sensitivity 
package available 
Supports parallelized 
analysis. 
Has a GUI 

SAFE (Matlab/ 
R) 

2015, 
2015 
(2018) 

Freely available 
for academic use, 
open source. 

No user 
community, 
easily adapted to 
personal use 

Pianosi 
et al., 
workflow 
scripts 

Beginner to 
advanced 
functionality 

Pianosi et al. 
(2015) 

https://www. 
safetoolbox. 
info/register-fo 
r-download/ 

Designed for users with 
limited global SA/ 
Matlab experience 
Has various GUIs 
available 

VARS-TOOL 
(Matlab, 
Cþþ, 
Python, and 
built into 
OSTRICH) 

2016, 
2018 
(2018) 

Free for non- 
commercial use. 

– Manual Beginner to 
advanced 
functionality 

Razavi et al. 
(2019) 

http://vars 
-tool.com 

Supports 
parallelization 

Dakota (C/ 
Cþþ, 
Fortran77/ 
Fortran90) 

1994, 
2018 
(2018) 

Freely available 
for academic use, 
open source with 
various levels of 
user interaction. 
GNU LGPL from 
version 5.0. 

User mailing list 
and user- 
developer 
interaction. 

Manual and 
examples 

For users 
experienced 
with UA/SA 

Adams et al. 
(2010) 

https://dakota. 
sandia.gov/co 
ntent/getting 
-dakota-source 
-code 

Toolkit for 
optimization, 
experimental design, 
and UA/SA 
Supports 
parallelization 
Has a GUI 
Linkages with Python, 
Matlab, and Scilab 
available 

PSUADE (Cþþ) 2013, 
2018 
(2018) 

Free public license, 
open source, LGPL. 

User community Manual Said to be 
beginner 
friendly 

Gan et al. (2014) https://github. 
com/LLNL 
/psuade 
https://comput 
ation.llnl.gov/p 
rojects/psuade 
/software 

Supports 
parallelization 

PEST (C/Cþþ, 
Fortran) 

2003, 
2019 
(2019) 

Free User-developer 
interaction, 
training courses 

Manual, 
tutorial  

Doherty (2018) http://www. 
pesthomepage. 
org/Down 
loads.php 

Supports 
parallelization 
Linkages with Python 
available 

R – Sensitivity 
package 

2006, 
2018 
(2018) 

Free public licence 
(GPL-2), open 
source. 

Developer 
community. 

Manual Assumes 
knowledge of R 

Iooss et al. (2018) https://CRAN. 
R-project.org/p 
ackage¼se 
nsitivity  

SALib (Python) User community Manual, 
examples, 

Herman and 
Usher (2017) 

(continued on next page) 
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source. A user community exists, including mailing lists and interaction 
with developers. Documentation includes user manuals, examples, and 
release notes. Dakota is well maintained, its most recent release and 
webpage update being in 2018. It is an example of software that has kept 
up to date with the latest trends in UA/SA and software implementation. 

PSUADE (Problem Solving environment for Uncertainty Analysis and 
Design Exploration) can link to simulation code in any language. It 
provides users with 14 sampling methods and 12 SA methods, both local 
and global SA. It was developed for large complex systems models and 
has been applied to various fields. The software has a free public license 
and is open source. A collaborative user community exists. The software 
and documentation (a user manual) are available for web download. The 
package is well maintained, with its latest release and update in 2018. 

PEST (Parameter EStimation Toolkit) is designed primarily for model 
calibration. Originally released in 2003, and with its most recent release 
in 2019 it has remained up to date with the latest research in environ-
mental modeling. The current package provides parameter estimation 
and uncertainty analysis, including Monte Carlo analysis, and has par-
allelization capabilities. The software is designed for complex environ-
mental models, and other models. Models written in C, Cþþ, Fortran, 
and Python have interoperable interfaces available. It is free, although 
the license does not appear to be specified, and well-documented for 
ease of use. Developer-user interaction is encouraged, and training 
courses are offered. 

4.1.3. Matlab 
Identified packages of interest written in Matlab are Simlab, MCAT, 

GUI-HDMR, UQLab, SAFE, and VARS-TOOL. 
SimLab is a package for Monte Carlo-based SA, written in Matlab and 

supplied by the Joint Research Centre. Initially released in 1985, its 
latest release was 2008 and its associated webpage was last updated in 
2016. It provides Monte Carlo and other random sampling methods, test 

functions for educational purposes, and GSA (correlation-, regression-, 
and variance-based). The SA follows a loosely-coupled approach 
requiring only the model output to be fed in. It is freely available for 
academic use and open source. No user community appears to exist. The 
documentation consists of a reference manual and the software is 
available for web download. 

MCAT (Monte Carlo Analysis Toolbox) implements Monte Carlo SA. 
Its first release was 2001 and a companion paper, highlighting the 
importance of best practices in SA, was released in 2007. However, no 
further research appears to have been conducted since this time and 
links to software download provided in the companion paper have 
expired. This package is of interest as an example of software tooling 
designed to promote modeling SA best practices. The software provides 
implementations of UA/SA methods, including regional SA, Monte Carlo 
analysis, and GLUE. A GUI was developed for it in 2007. The package is 
free and open source, and documentation includes a manual and ex-
amples. No user community appears to exist, however, there is an un-
official GitHub page (see Table 4). 

GUI-HDMR (Graphical User Interface-High Dimensional Model 
Representation) provides HDMR, a variance-based SA method, which 
the developers advertise as an alternative to other contemporary SA 
methods. The user must supply an appropriate sample of the model 
output (there is a complementary package, RS-HDMR [Random 
Sampling-HDMR] for this purpose). Users have the choice of using a GUI 
or a script-based interface. The software is reportedly user-friendly and 
has been applied to various fields. It is freely available for academic use, 
but not open source. The software and user documentation are available 
for web download. Although the related publication is highly cited, this 
software appears to be abandoned, having its first and last release in 
2008. A lack of user community and implementation of a single SA 
method could be a cause for this. 

UQLab (Uncertainty Quantification Laboratory) provides, among 

Table 3 
Comparison table of available UA/SA methods in the surveyed packages.  

Namea (Language) MC LHC Morris DGSM Sobol’ FAST RSA Regression/ 
Correlation SA 

Other 

SimLab (Matlab)  ✔ ✔  ✔ ✔  ✔  

MCAT (Matlab)     ✔   ✔ GLUE and many others (UA, parameter 
estimation) 

GUI-HDMR (Matlab)     ✔   ✔ HDMR Emulation 

UQ Lab (Matlab with R plugin)   ✔  ✔   ✔ Bayesian Inversion, Kriging, Support Vector 
Machines, and more 

SAFE (Matlab/R)   ✔  ✔ ✔ ✔  Dynamic Identifiability Analysis, PAWN 

VARS-TOOL (Matlab, Cþþ, Python, 
and built into OSTRICH)  

✔ ✔  ✔  ✔  STAR-VARS, Generalized Global Sensitivity 
Matrix 

Dakota (C/Cþþ, 
Fortran77/Fortran90) 

✔ ✔ ✔  ✔    Supports emulation and many other UA/SA 
methods 

PSUADE (Cþþ) ✔ ✔ ✔   ✔   Fractional Factorial, Central Composite, 
Probabilistic methods, and others 

PEST/PESTþþ (C/Cþþ, Fortran) ✔  ✔  ✔     

R Sensitivity (R) ✔ ✔ ✔ ✔ ✔ ✔   DELSA, Kriging, many other variations available 

SALib (Python)  ✔ ✔ ✔ ✔ ✔   Delta Moment Independent Measure, Fractional 
Factorial, Finite Difference 

MADS (Julia, C/Cþþ) ✔ ✔   ✔ ✔   Kriging, Bayesian Information Gap Decision 
Theory, Support Vector Regression 

GANetXL (Excel)         Single- and multi-objective genetic algorithm 

UCODE (Fortran90/95, Perl)        ✔  

MOUSE (Java)   ✔   ✔ ✔  GLUE 

GLUE (R, Matlab)         GLUE 

OSTRICH (standalone)        ✔ GLUE, user defined evaluations also possible  

a As documentation can lag behind releases, software may include implementations of methods not listed in the table (at time of writing). 
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first case, beginner users may not use software that requires significant 
learning time for effective use, especially when no clear user guide, 
examples to draw from, or community to engage with exists. In the latter 
case, modelers should be made aware of the available software that can 
reduce the time required to conduct UA/SA and promote better practices 
in UA/SA. 

The software evident in the literature range from those specific to a 
field, general-purpose packages, to custom-made code. Fields such as 
hydrology, climate, chemistry, and more general environmental 
modeling and engineering used field-specific packages. A complete list 
of reviewed software publications and their related software packages 
can be found in Notebook 5a “Finding software packages by keyphrase 
extraction”. The most common analysis method provided by UA/SA 
software was found to be Sobol’ with the R sensitivity package providing 
the widest mix of methods (see Table 3). Surveyed software tools typi-
cally did not provide OAT analysis, perhaps due to its simplicity or a sign 
of its decline. Publication of software related papers is relatively stable, 
with a proportional spike in 2007 (Fig. 3). 

Software for the development of emulators did not feature heavily 
within the Software corpora although they are present, the HDMR 
method being one example (described later on). Software to develop 
emulators include ChaosPy (Feinberg and Langtangen, 2015), the 
PRISM Uncertainty Quantification framework (Hunt et al., 2015), 
GTApprox (Belyaev et al., 2016) and UQ-PyL (Wang et al., 2016). A 
collection of functions presented as a Matlab toolbox is also introduced 
in Vu-Bac et al. (2016). All of these with the exception of Vu-Bac et al. 
(2016) were developed in the Python programming language. Applica-
tion of Artificial Neural Networks and similar approaches did appear in 
the corpora but is not a topic of focus here. 

As aforementioned, current trends have shown an increased interest 
in best practices. Three SA packages, released within the past five years, 
reflect these changing attitudes: PSUADE (Gan et al., 2014), SAFE 
(Pianosi et al., 2015), and VARS-TOOL (Razavi et al., 2019). PSUADE (a 
Problem Solving Environment for Uncertainty Analysis and Design 
Exploration) provides users with implementations of UQ methods, 
including sampling techniques and SA methods (both local and global). 
The package has had general application to various modeling scenarios. 
SAFE (Sensitivity Analysis For Everybody) provides users with imple-
mentations of global SA methods, with the ability to perform multiple 
SAs, robustness assessment, and convergence analysis without further 
model runs. As reflected in its name, this package was designed to allow 
global SA to be accessible to a more general audience. 

The most recently released package in the survey, VARS-TOOL, 
provides implementations of sampling techniques and global SA 
methods, including derivative-, variance-, and variogram-based, which 
can all be performed from a single sample. The variogram approach to 
SA reportedly links both local and global approaches. 

4.1. Survey of packages in common programming languages 

Brief descriptions of software found in the corpora are provided here, 
categorized by their implementation language. Some packages may be 
listed more than once as various implementations may exist, or inter-
operability between languages is supported. We decided to categorize 
the packages based on the implementation languages as most packages 
are not standalone tools with user interfaces ready to be used and are 
often provided as a library to be incorporated programmatically. Indi-
cating the implementation language also allows readers to identify 
packages in a familiar language for potential adoption. Very few pack-
ages were found to provide a Graphical User Interface (GUI) so some 
amount of programming ability and experience is the baseline expec-
tation. In the vast majority of cases, users are expected to have a passing 
familiarity with the UA/SA methods being applied as very little pro-
tection against improper use is provided (a further brief discussion is in 
the Recent developments section). Table 3 and 4 provide summary 
overviews of the software and packages. 

4.1.1. Fortran 
Fortran was one of the earliest programming languages available and 

arguably still dominates the scientific programming landscape. Fortran 
modules from the surveyed literature are JUPITER API and UCODE. 
There is also a Fortran repository of UA/SA functions supported by the 
Joint Research Centre (Pianosi et al., 2015). The JUPITER API (Joint 
Universal Parameter IdenTification and Evaluation of Reliability 
Application Programming Interface) attempts to provide a standard set 
of programmatic functions for developing UA/SA software and serves as 
the underlying “engine” for other UA/SA packages (UCODE 2005/2014 
were developed on top of this API). The provided modules are developed 
in Fortran-90 and support parallelization and local (derivative) sensi-
tivity analysis. JUPITER API was first released in 2006 and its latest 
release was 2013. Its affiliated webpage was last updated in 2016, 
suggesting an active community. It is provided freely and under an 
open-source license with a user manual and examples of applications. 

First released in 1998, UCODE (Universal inverse CODE) was 
developed in Fortran90, Fortran95, and Perl. It originally implemented 
inverse modeling methods, and by its first revision (2005) consisted of 
post-processing modules for (and not limited to) SA, calibration, and UA. 
The second revision (2014) included MCMC in the UA module and made 
the platform more compatible with models developed in Matlab or using 
a GUI. This can be viewed as a response to changing trends in model 
development, particularly the proliferation of Matlab-based models. 
User documentation is available for download. Although the software is 
still available for download, its development has ceased. 

Table 2 
Example of key phrases identified and extracted by Wosis compared with the RAKE method provided in the ’rake-nltk’ package. 
The original abstract was taken from Roos et al. (2015). Both RAKE and Wosis approaches were limited to a minimum of 3 words 
per phrase. Identified phrases are ordered by score and do not follow the original paragraph structure.  

Wosis RAKE 

We propose a novel formal approach to prior sensitivity analysis, 
which is fast and accurate. 
Other formal approaches to prior sensitivity analysis suffer from 
a lack of popularity in practice, mainly due to their high 
computational cost and absence of software implementation. 
Despite its importance, informal approaches to prior sensitivity 
analysis are currently used. 
This is especially true for Bayesian hierarchical models, where 
interpretability of the parameters within deeper layers in the 
hierarchy becomes challenging. 
They require repetitive re-fits of the model with ad-hoc modified 
base prior parameter values. 

hoc modified base prior parameter values 
parameters within deeper layers 
identifiability issues may imply 
prior sensitivity examination plays 
detect high prior sensitivities 
prior sensitivity analysis suffer 
parametrized Bayesian hierarchical models 
prior sensitivity analysis 
bayesian hierarchical models 
quantifies sensitivity without high computational cost 
applied bayesian analyses 
novel formal approach 
hierarchy becomes challenging  

D. Douglas-Smith et al.                                                                                                                                                                                                                        



Environmental Modelling and Software 124 (2020) 104588

5

purpose. 

4. Results: UA/SA packages 

Of particular interest to this paper were the trends of software 
packages implementing UA/SA methods and these are discussed here. 
The final corpora was broadly categorized into two topics – “Applica-
tions” and “Frameworks” using the topic model described in the 
“Method” section. Publications focused on UA/SA frameworks and 
guidelines were placed into the “Frameworks” sub-corpora, while “Ap-
plications” included those taken to be focused on the application of UA/ 
SA methods. From each of these a keyword search was applied to 
identify publications related to model sensitivity, optimization, uncer-
tainty quantification, or toolboxes, in order to build a sub-corpora 
related to the software. 

Manually sorting the identified publications with the aid of the 
automated key phrase extraction tool reduced the corpora to 193 papers 
(referred to as the “Software corpora”, see Notebook 5c “Software 
packages analysis”). Papers were regarded as relevant if they: included 
direct reference to UA/SA or optimization software packages; were 

theory, review, or framework papers that recommended software 
implementation to a given field; or referred to other methods and 
packages of interest to expert opinion. Further detail and a general 
bibliometric overview are provided in a later subsection. 

There does not appear to be a strong correlation between the Ap-
plications and Software corpora (Fig. 2). The Software corpora has a 
stable publication trend relative to those focusing on applications over 
the surveyed timeframe. A spike in publications in 2007 proportional to 
the full final corpora can be seen (Fig. 3). While publications on the 
software for UA/SA have been increasing (see Fig. 4) the trend relative 
to the Applications corpora and the full corpora could be indicative of 1) 
a general ambivalence towards reporting use, or development of, gen-
eral UA/SA software, 2) a common set of UA/SA software, 3) a reliance 
on self-coded analysis software, or 4) increased tendency to release 
software in a directly citable manner, e.g. with an attached DOI which 
the WoS database does not include but this is considered unlikely 
however in the authors’ opinion. 

The slow uptake of software packages, relative to the Applications 
corpora, could also be due to 1) a lack of documentation for beginner 
users and 2) a lack of awareness of available software packages. In the 

Fig. 1. The hybrid bibliometric analysis process. Identification and subsequent analysis of the final corpora followed an iterative process through which publications 
were progressively filtered to arrive at a relevant subset. 

D. Douglas-Smith et al.                                                                                                                                                                                                                        



Environmental Modelling and Software 124 (2020) 104588

4

semi-autonomous process of topic identification, keyword search, and 
subsequent manual analysis of the publications with the aid of key 
phrase extraction. Topic modeling (briefly described in Section 3.2) was 
used to aid in identifying a collection of papers relevant to uncertainty 
and sensitivity analysis and their overarching focus, be it an application 
of or guiding frameworks for UA/SA. The publication and citation trends 
within these topic areas were then analyzed. Additional topic modeling, 
complemented by a keyword search process, was used to identify papers 
related to the use of UA/SA software. These were manually combed 
through with the aid of an automated key phrase identifier that helped 
to reduce the amount of text to be examined. A subset of these papers 
were investigated for mention of software tools and packages. The 
general search and analysis approach is depicted in Fig. 1, with further 
detail on topic modeling and key phrase identification provided within 
this section. 

3.1. Initial search 

The initial corpora for the analysis was identified by specifying the 
search phrase (with search fields bolded): TS¼("sensitivity analysis" OR 
"uncertainty analysis" OR "uncertainty quantification" OR "uncertainty 
propagation" OR "local sensitivity analysis" OR "LSA" OR "one-at-a-time" 
OR "exploratory modeling" OR "OAT" OR "global sensitivity analysis" OR 
"GSA" OR "all-at-a-time" OR "AAT") AND WC¼("ENVIRONMENTAL 
SCIENCES" OR "WATER RESOURCES" OR "ENGINEERING ENVIRON-
MENTAL" OR "INTERDISCIPLINARY APPLICATIONS"). This returns 
publications that use at least one of the specified terms (those listed for 
the “TS” field) within the title, abstract, or author supplied keywords for 
publications in the the WoS defined subject areas; specified for the “WC” 
field. The raw search string is supplied for transparency and can be used 
to obtain the corpora from WoS. 

Only English language publications between 2000 and 2017 were 
considered for this study, with the ending year selected as the data 
request occurred in December of 2018. The approach taken at the time 
was to include full year datasets only. The final search phrase applied 
with the specified time frame reduced the number of matches from over 
500 000 to 11 718 publications. The number of results obtained through 
the unrestricted search were far too many to comprehensively review, at 
least in a timely manner. The initial corpora for this study (of 11 718 
publications) were then further constrained through the process depic-
ted in Fig. 1 and is described in more detail below. 

3.2. Topic identification 

A key focus in this study is the software tools and packages available 
to support UA/SA processes, the methods they implement, and the 
trends of these. To this end, topic modeling was applied to constrain the 
corpora to relevant publications for further consideration. Topic models 
attempt to cluster texts into similar or related topics based on commonly 
occurring words and can aid in identifying new and emerging fields 
whilst also reducing the likelihood of bias and the required hours for a 
systematic review (Achakulvisut et al., 2016; Westgate et al., 2018). 
Topic modeling has been applied before to reduce the time and diffi-
culties encountered when conducting systematic reviews (Westgate and 
Lindenmayer, 2017), however their use is still relatively limited and 
perhaps underutilized. Although software is available to aid in these 
bibliometric approaches, currently no single software package provides 
all necessary functionality to conduct end-to-end systematic mapping – 
the classification of articles based on their contents – of research liter-
ature from data collection through to summarization and visualization. 
Arguably the conjunctive application of systematic mapping and bib-
liometric analysis is still in its infancy (as evidenced by Nakagawa et al., 
2018). 

Topics are identified by the common co-occurrence of semantics 
within a discipline. For example, “sensitivity” in the context of SA would 
conceptually be expected to appear in texts containing words such as 

“analysis”, “uncertainty”, and “modeling”. The term “sensitivity” may 
also appear in relation to physical/psychological response to stimuli, in 
which case the term will appear alongside terms associated with the 
medical and therapy fields. Topics can be identified and represented 
through their common semantics. The topic modeling approach pro-
vided within Wosis – Non-negative Matrix Factorization (NMF) – is 
implemented with the scikit-learn Python package (Pedregosa et al., 
2011). The approach allows publications to be assigned to one or more 
topics (Arora et al., 2012) and has been shown to be appropriate for 
collections of short texts (Chen et al., 2019). This process was com-
plemented with a traditional keyword search to help identify publica-
tions related to specific subjects. 

Tokens, meaning specific words or terms, for topic modeling con-
sisted of the text found in the document titles, abstracts, and keywords. 
The top 1000 tokens found within the corpora based on Term 
Frequency-Inverse Document Frequency (TF-IDF) rankings were 
selected for topic modeling. TF-IDF is a common ranking method used in 
text mining (Beel et al., 2016). A high TF-IDF score indicates that the 
word token has a high frequency within specific document(s), but a low 
number of occurrences within the entire corpora. Weighting the score in 
such a manner has the effect of filtering out commonly used tokens 
which may not have high semantic importance. 

3.3. Key phrase identification 

Once a topic area is identified, the resulting sub-corpora can be 
further constrained through automated key phrase identification. The 
approach summarizes text, aiding reviewers to identify irrelevant pub-
lications by reducing the amount of text for manual review. The 
implemented approach attempts to identify these phrases of interest by 
scoring sentences based on their similarity with other sentences 
throughout the abstract text. 

To elaborate, each sentence (si) is compared with other sentences in 
the abstract (sy), which are initially filtered based on the presence of a 
root token which is taken to be the token that appears in the middle of si. 
This root token selection approach is used in Rabby et al. (2018) for its 
simplicity and computational efficiency. The similarity between si and sy 

is then scored based on the ratio of the intersection of the two sentences. 
Sentences with three or less tokens (i.e. words, numbers, or other 
counted by splitting the text on individual spaces) are ignored. 

The approach assumes that important features of the publication, 
such as its key findings, will be repeated throughout the considered 
fields (title, abstract, and author-supplied keywords). These may, for 
example, be introduced or alluded to, framed and the implications dis-
cussed. The implemented approach is therefore dependent on the ab-
stract length, with longer texts preferred. Poor performance can be 
expected for very short abstracts (e.g. 3 sentences or less) and these were 
ignored for the purpose of this study. Comparisons with an established 
key phrase identification approach, RAKE: Rapid Automatic Keyword 
Extraction (Rose et al., 2010), implemented through the rake-nltk Py-
thon package – indicate that the above approach produces, subjectively, 
key phrases that were more useful for the purpose of this study 
(see Table 2). 

3.4. Citation and trend analysis 

Citation analysis indicates the papers being referred to by other pa-
pers within the corpora as well as the overall number of citations the 
given publication has received, the assumption here being that im-
pactful papers are more likely to be cited. The number of citations is then 
used to indicate papers that are of high importance to the subject at 
hand. Both the total number of citations and the average citations since 
publication were used in the analysis. Publication trends within topic 
areas aided in identifying the general focus and direction taken by the 
research community. Plotted publication trends were used for this 
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help constrain model complexity which in turn eases the computational 
cost of model evaluations, for example to facilitate uncertainty analysis 
and the development of surrogate models. 

In recent years a wide variety of software tools to support UA/SA 
processes have become available that make such analyses more acces-
sible to modelers. To gain an overview of the available methods and 
tools, we applied a hybrid bibliometric approach using publications 
from the Web of Science database. While reviews of sensitivity analysis 
practice have been published (see for example Ferretti et al., 2016; 
Saltelli et al., 2019) and comparisons between UA/SA methods con-
ducted (for example Gan et al., 2014; Sun et al., 2012), to our knowledge 
there does not appear to be an overview of the available UA/SA tools 
currently in use across different platforms and programming languages. 
This paper follows on from and is distinguished from existing reviews 
(such as Matott et al., 2009; Refsgaard et al., 2007) as it surveys UA/SA 
in environmental modeling, with a specific focus on SA. We then provide 
information on the available tools, as revealed through the bibliometric 
analysis and expert knowledge, including implemented UA/SA methods, 
programming language, and software features. The aim here is then to 
provide 1) a brief introduction to the field of UA/SA and its relevance to 
environmental modeling for those new to the field, 2) an overview of 
UA/SA research trends, and 3) a guide to the development trends of 
UA/SA tools, their availability, and relevance. 

2. Key UA/SA terminologies and methods 

Often the first hurdle for those new to a research area is to grasp the 
multitude of acronyms and terms used. In this section we briefly outline 
some common terminology, UA/SA methods, and relevant publications 
for further reference. These are provided here to contextualize the 
analysis and discussion later in this paper. The information provided in 
this section is not exhaustive. Interested readers are directed to Norton 
(2015) for a more thorough introduction to UA/SA, the descriptions of 
sensitivity analysis methods in Pianosi et al. (2016), the citations in 
Table 1, and the citations in (Bennett et al., 2013, p. 3). 

Pianosi et al. (2015) identify three stages in a sensitivity analysis: 
selecting a sample of input values from the variability space, running a 
model evaluation against these input values, and applying a sensitivity 
analysis method to the input/output samples to compute sensitivity 
indices, i.e. values which indicate each parameter’s sensitivity. For more 
information about the calculations for various sensitivity indices, see 
Norton (2015). Here, the variability space refers to all possible combi-
nations of values that can be assigned to a model’s input parameter set. 
By running the model with the values sampled from the variability space 
and taking note of the resultant outputs, analyses can be conducted to 
calculate the influence that a specific input, or set of inputs, may have, i. 
e. their sensitivities. The focus of this paper is on providing an overview 
of tools that aid in conducting these analyses. 

Methods to select the sample of input values are often characterized 
as being either ‘local’ or ‘global’. Global methods (GSA) consider all 
dimensions of a model “in one grand exercise” (Leamer, 1985), achieved 
by varying all parameter values at the same time. GSA methods are 
themselves commonly categorized as being statistical, derivative, or 
variance based. Statistical methods use statistical analysis of the 
parameter space as a measure of sensitivity (Pianosi et al., 2016). 
Derivative-based methods provide indices which characterize the 
distributional properties of partial derivatives (Razavi et al., 2019). 
Variance-based approaches determine how different factors contribute 
to model variance by analyzing and decomposing the variance in model 
outputs (Razavi et al., 2019). For brevity, a full exploration of these 
methods is not provided here, but a brief overview, with references to 
relevant papers, is given in Table 1. 

The strength of GSA methods is that they provide a more robust 
depiction of model uncertainty by comprehensively accounting for 
parameter interactions (Saltelli and Annoni, 2010). Such approaches 
assume a random distribution of output values in the parameter space 

and that such a distribution is plausible. GSA methods can also be 
computationally expensive to perform as the parameter space being 
explored can be very large. Sampling methods (‘schemes’) are used to 
aid in limiting the number of model runs involved whilst adequately 
representing the parameter space. The computational cost of applying 
GSA methods may explain, at least in part, why their use is relatively 
uncommon compared to their local counterparts. 

Local SA methods (LSA) are anchored around a particular point in 
the parameter space with analysis involving comparisons against a 
known ‘baseline’ output (Razavi and Gupta, 2015). The simplest, most 
naïve, and most common, method of SA is one-at-a-time (OAT). As the 
name suggests, this approach involves changing the value of a single 
parameter factor at a time (referred to as ‘perturbing’) whilst keeping all 
other parameters constant at their nominal values. This approach could 
be described as taking samples along a single dimension with the 
changes to the output then attributed to the factor that was modified. 
There are different approaches to how much the parameter value is 
perturbed but often a proportional increment is used – e.g. increase or 
decrease a parameter by 10% of the nominal value up to and including a 
given bound (Razavi and Gupta, 2015). 

Other LSA methods examine the partial derivatives of output with 
respect to each input parameter. These are computed at one point in the 
sample space to determine sensitivity indices. The simplicity of the 
procedure is advantageous, as well as being computationally inexpen-
sive for first order derivatives as they often do not require a formal 
sampling approach. Monte Carlo (MC) – a simple random sampling – is 
commonly used, although it offers a limited representation of the total 
parameter space (Gan et al., 2014). The downside is that LSA only 
provides a robust indication of sensitivity for linear or additive models 
(Saltelli and Annoni, 2010): they do not account for parameter in-
teractions and become computationally expensive when higher order 
and non-linear effects are considered. To resolve this issue several other 
sampling approaches have been developed and applied. Given each 
method and approach have their pros and cons, multiple methods could 
be applied to obtain complementary results �a la ensemble analysis (Sagi 
and Rokach, 2018) and should be considered where appropriate (Sun 
et al., 2012). Brief descriptions of commonly employed methods are 
given in Table 1. Methods are taken to be “common” where they are 
indicated to be so in recent review papers (specifically, Gan et al., 2014; 
Pianosi et al., 2016), the references found within these, and those found 
within the identified corpora (detailed in the next section). 

3. Method: The hybrid bibliometric approach 

To conduct this bibliometric review a collection of publications (the 
‘corpora’) was gathered from Clarivate Analytics’ Web of Science (WoS) 
database using the available web-based Application Programming 
Interface (API). Use of the API enabled programmatic access to the 
publication data and metadata including titles, abstract text, author- 
supplied keywords, and DOIs. Data was retrieved with the use of 
Wosis (Web of Science Analysis), a Python package developed to 
simplify the process of querying the WoS database and aid in data 
analysis and visualization (Iwanaga and Douglas-Smith, 2019). Publi-
cations in the resulting corpora were taken to represent the field of 
uncertainty and sensitivity analysis in the overarching field of envi-
ronmental modeling. 

To ensure as much transparency as possible, much of the data 
collection and subsequent analysis was conducted programmatically in 
the Python programming language. The complete dataset cannot be 
made available as it is subject to Clarivate Analytics’ license terms. 
Representative datasets are provided instead, along with the code 
developed for the analysis; these can be viewed as a collection of Jupyter 
Notebooks and associated files at https://github.com/frog7/uasa-trends 
(Douglas-Smith and Iwanaga, 2019). Names of specific notebooks will 
be referred to throughout this text where further detail can be found. 

The corpora was iteratively and incrementally refined through a 
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development of better monitoring strategies and experiment design, for 
example indicating the priority and amount of data to be collected 
(Saltelli and Tarantola, 2002). The practice of SA can also help to 

constrain the parameter space by identifying parameters that may be 
‘insensitive’ or ‘inactive’, having little to no effect on model results, at 
least for the purpose of the modeling. Identifying such parameters can 

Table 1 
Descriptions of common UA/SA sampling and analysis techniques and key texts. Qualitative assessment and indications of sampling requirements are provided. Where 
indicated, p refers to the number of parameters and N the number of parameter sets.  

Name Abbreviation Description More information 
One-at-a-time SA OAT Each parameter is perturbed from its baseline point. May also be known as 

variations of the name such as one-factor-at-a-time, one-variable-at-a-time, 
etc. 
Required number of model evaluations range from pþ 1 to ðN� pÞ þ 1 where 
p is the number of parameters and N is the number of desired perturbations.  

Czitrom (1999) 

Derivative-based SA – Family of methods that take partial derivatives of each input parameter with 
respect to the output. 

(Helton, 1993; Norton, 2015) 

Variance-based SA – Family of methods that attempt to map statistical properties of the output 
distribution to the inputs used – how variance in the inputs explains variance 
in the outputs. Variance-based approaches may require an exponentially 
increasing number of N samples with increasing p to obtain reliable results (e. 
g. Razavi and Gupta, 2016).  

(Norton, 2015; Pianosi et al., 2015) 

Monte Carlo sampling MC Random sampling: statistically independent samples of the parameter space. 
Used for variance-based SA. 

(Fedra, 1983; Metropolis and Ulam, 1949) 

Latin Hypercube 
sampling 

LHS The range of each parameter in the parameter space is partitioned into N 
equal-probability divisions. One sample is taken from each of the N 
partitions, generating N samples per parameter, and a sample from each set of 
N samples is chosen for each parameter. The process is repeated to obtain the 
desired number of samples (Norton, 2015).  

McKay et al. (1979) 

Importance/stratified 
sampling 

– Estimate the probability density of the parameters, usually uniform or 
Gaussian, and determine the importance of resulting outcomes in order to 
define regions in the parameter space. Each region is given an equal quota of 
randomly distributed samples. Used for variance-based GSA. 

Castaings et al. (2012) 

Morris method Morris An elementary effects method, derivative-based GSA. Ranks parameters by 
influence on output and non-linearity. Each parameter is stepped along 
trajectories. The starting points are random and uniformly distributed. The 
parameters are perturbed once in succession along the trajectory, in random 
order. The resulting sample consists of the changes in model output caused by 
each parameter’s perturbation (Norton, 2015).  
Several variations have been proposed (Pianosi et al., 2016) and convergence 
of sensitivity indices are said to occur with a relatively small number of model 
evaluations and so is commonly used for factor screening (Gan et al., 2014;  
Sun et al., 2012). It requires Nðpþ1Þmodel evaluations, where typically N �
p or less (Norton, 2015)  

(Campolongo et al., 2011; Morris, 1991) 

Derivative-based Global 
Sensitivity Measure 

DGSM Derivative-based GSA. Sensitivity indices are computed by taking the integral 
over the function domain of the square of the partial derivatives of each 
factor with respect to the function (Sobol and Kucherenko, 2009). 
The method is described as being effective at screening parameters for 
high-dimensional models with low sample sizes (Becker et al., 2018). 

Sobol and Kucherenko (2009) 

Sobol’ method Sobol’ Variance-based GSA. An MC-based method: analyzes how the variability of a 
parameter or combination of parameters influences the variability of the 
output. 

Sobol (1993) 

Fourier Amplitude 
Sensitivity Test 

FAST Variance-based GSA. By estimating the output by a sum of sinusoids, each 
parameter becomes a function of a chosen variable ranging from � π to π. 
Rather than computing the variance and mean of the output as multiple 
integrals, these now become a single integral with respect to the chosen 
variable. Variations include eFAST and Random Balance Design (RBD).  

FAST: (Cukier et al., 1973) eFAST: (Saltelli et al., 1999;  
Wang et al., 2013) 
RBD: (Tarantola et al., 2006) 

Distributed Evaluation 
of Local Sensitivity 

DELSA Derivative- and variance-based GSA. An elementary effects method. DELSA is 
a multiple starts perturbation method in which squared finite differences are 
the metric of sensitivity. DELSA is said to be able to obtain the full 
distribution of sensitivities at a lower cost compared to the Sobol’ method (i. 
e. a comparatively lower N).  

Rakovec et al. (2014) 

Regression- and 
correlation-based SA 

– Statistical-based GSA. The sensitivity metric is the regression/correlation 
coefficient between the input parameters and output after Monte Carlo 
sampling. 

(Iman and Helton, 1988), (Saltelli and Marivoet, 1990) 

Regional SA RSA Statistical-based GSA. A binary split of the input parameters from a Monte 
Carlo sample is determined by whether the resulting output respective to an 
input sample exhibit required behaviors. A cumulative distribution function 
is applied to the non-behavioral input samples as a metric of sensitivity. Said 
to have low computational requirements (Sun et al., 2012). 

(Spear and Hornberger, 1980; Young et al., 1978) 

Generalized Likelihood 
Uncertainty Estimate 

GLUE Model results are given as probability distributions of possible outcomes. 
Assesses how accurate these model results are as a representation of 
uncertainty. 

Beven and Binley (1992) 

Emulators – A simplified model is fit to a sample in order to give a general indication of 
parameter sensitivity. 

(Crestaux et al., 2009; Oakley and O’Hagan, 2004;  
Oladyshkin and Nowak, 2012; Ratto and Pagano, 2010;  
Storlie and Helton, 2008)  
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A B S T R A C T   

Uncertainty and sensitivity analysis (UA/SA) aid in assessing whether model complexity is warranted and under 
what conditions. To support these analyses a variety of software tools have been developed to provide UA/SA 
methods and approaches in a more accessible manner. This paper applies a hybrid bibliometric approach using 
11 625 publications sourced from the Web of Science database to identify software packages for UA/SA used 
within the environmental sciences and to synthesize evidence of general research trends and directions. Use of 
local sensitivity approaches was determined to be prevalent, although adoption of global sensitivity analysis 
approaches is increasing. We find that interest in uncertainty management is also increasing, particularly in 
improving the reliability and effectiveness of UA/SA. Although available software is typically open-source and 
freely available, uptake of software tools is apparently slow or their use is otherwise under-reported. Longevity is 
also an issue, with many of the identified software appearing to be unmaintained. Improving the general us-
ability and accessibility of UA/SA tools may help to increase software longevity and the awareness and adoption 
of purpose-appropriate methods. Usability should be improved so as to lower the "cost of adoption" of incor-
porating the software in the modelling workflow. An overview of available software is provided to aid modelers 
in choosing an appropriate software tool for their purposes. Code and representative data used for this analysis 
can be found at https://github.com/frog7/uasa-trends (10.5281/zenodo.3406946).   

1. Introduction 

Computational modeling has become a key activity in many areas of 
research. In the environmental sciences the amount of available 
computational power and speed has led to the development of envi-
ronmental models with ever-increasing level of detail and complexity. In 
this context complexity is reflected by the number of parameters a model 
incorporates as inputs. These parameters may also be referred to as 
‘parameter factors’, ‘factors’ or simply ‘inputs’ in the literature (Norton, 
2015). Increasing the number of parameters allows for a more detailed 
representation of the investigated system while also increasing compu-
tational cost and model complexity at an exponential rate. Increased 
detail (and thus complexity) may reduce the identifiability of parame-
ters - the ability to apportion model results to specific parameter values – 
but is not always justified or necessary with respect to the aims of the 
modeling exercise. 

Increased complexity has led modelers to better appreciate the issue 
of model identifiability (Guillaume et al., 2019) and to recognize the 

importance of understanding the contribution of model inputs with 
respect to model performance and purpose. Uncertainty and Sensitivity 
Analysis (UA/SA) refer to the methods and approaches used to help 
researchers better understand the relative importance of each parameter 
factor within a given problem context. Put simply, “[S]ensitivity anal-
ysis assesses how variations in input parameters, model parameters or 
boundary conditions affect the model output” (Bennett et al., 2013). 
With these approaches, it is possible to better understand how sensitive 
model results are to parameter factors and how uncertain the model 
results are (Saltelli et al., 2019; Saltelli and Annoni, 2010). Individual 
parameter factors may influence one or more outputs and could 
(conditionally) affect the importance of other factors; referred to as 
parameter interaction. The practice of analyzing uncertainty and 
sensitivity is now considered standard modeling practice. The interested 
reader is directed to (Bennett et al., 2013; Norton, 2015; Pianosi et al., 
2016; Razavi and Gupta, 2015) for introductory overviews and further 
information. 

Understanding the relative ‘sensitivity’ of parameters can aid in the 
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such as for environmental modelling. Consideration across these multiple perspectives can lower 

or avoid barriers that preclude successful management of model complexity, validity, and 

uncertainty. The bulk of the thesis revolves around a case study conducted in the Lower Campaspe 

catchment in North-Central Victoria, Australia. The case study serves as a springboard from 

which ideas and their implications are explored to clear a path towards holistic socio-

environmental systems modelling. 

The pathway taken represented as a sequence of publications is depicted in Figure 1. Not all 

publications depicted in this figure are included in this thesis but it serves to showcase the 

development of ideas and their inter-relation. Publications related to this thesis are marked with 

their respective chapter number. The primary modelling themes of each chapter are also outlined 

in Figure 2. 

1.4 Thesis Outline 

The structure of the thesis is as follows. In Chapter 2 the current state of uncertainty and 

sensitivity analysis (UA/SA) as applied to environmental research is explored through a hybrid 

bibliometric approach. The primary theme of the chapter are the approaches and methods for 

uncertainty and sensitivity analysis within the environmental sciences, with a focus on the 

software available to conduct such analyses.  

A key contribution of Chapter 2 are descriptions of the current state of available UA/SA 

tooling for common programming environments used in the sciences, and an overview of needed 

improvements in terms of usability and accessibility to further increase uptake of such tooling. 

Common terms used in UA/SA research are described and defined therein. The chapter was 

published in the journal Environmental Modelling and Software as a review paper. 

Chapter 3 describes the participatory development process undertaken for an IEM for the 

investigation of possible water management futures in the Lower Campaspe basin of North-

Central Victoria, Australia. The model, then undergoing development was designed to examine 

the influence of hypothetical conjunctive water use policies and a changing climate to future water 

security, farm productivity, and the consequent impact on recreational and ecological outcomes. 

The chapter was published as a refereed conference paper in the Proceedings of the International 

Association of Hydrological Sciences (PIAHS) and serves to provide context for the following 

chapter. 

Chapter 4 expands on the previous chapter with the application of the IEM through an 

exploratory scenario modelling approach. The paper details the choices made in the technical 

implementation and subsequent application of the model as well as the findings from the 

modelling and its management implications. The paper further details the complexities 

encountered in the development of an expansive IEM and associated model, system, and scenario 

uncertainties. The paper was published as a research article in the Journal of Hydrology: Regional 
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