51,447 research outputs found

    Rainbow Connection Number and Connected Dominating Sets

    Full text link
    Rainbow connection number rc(G) of a connected graph G is the minimum number of colours needed to colour the edges of G, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we show that for every connected graph G, with minimum degree at least 2, the rainbow connection number is upper bounded by {\gamma}_c(G) + 2, where {\gamma}_c(G) is the connected domination number of G. Bounds of the form diameter(G) \leq rc(G) \leq diameter(G) + c, 1 \leq c \leq 4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, AT-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G) \leq 3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds. An extension of this idea to two-step dominating sets is used to show that for every connected graph on n vertices with minimum degree {\delta}, the rainbow connection number is upper bounded by 3n/({\delta} + 1) + 3. This solves an open problem of Schiermeyer (2009), improving the previously best known bound of 20n/{\delta} by Krivelevich and Yuster (2010). Moreover, this bound is seen to be tight up to additive factors by a construction of Caro et al. (2008).Comment: 14 page

    Total Domishold Graphs: a Generalization of Threshold Graphs, with Connections to Threshold Hypergraphs

    Full text link
    A total dominating set in a graph is a set of vertices such that every vertex of the graph has a neighbor in the set. We introduce and study graphs that admit non-negative real weights associated to their vertices such that a set of vertices is a total dominating set if and only if the sum of the corresponding weights exceeds a certain threshold. We show that these graphs, which we call total domishold graphs, form a non-hereditary class of graphs properly containing the classes of threshold graphs and the complements of domishold graphs, and are closely related to threshold Boolean functions and threshold hypergraphs. We present a polynomial time recognition algorithm of total domishold graphs, and characterize graphs in which the above property holds in a hereditary sense. Our characterization is obtained by studying a new family of hypergraphs, defined similarly as the Sperner hypergraphs, which may be of independent interest.Comment: 19 pages, 1 figur

    Human Rights and Biopolitics between Sovereign Power, Domination and Genealogies

    Get PDF
    In Homo Sacer Agamben proposes a vision of politics as biopolitics since its Greek origins. While this new awareness becomes the conceptual domain in which re-interpret some political categories, at the same time it shows how sovereign power, in this biopolitical perspective, reduces individual human beings to mere life and makes every kind of right, included human rights, a screen hiding what reveals to be a tyranny. For a possible way out of this dead end we can look at the Foucauldian reading of power as domination. In this article we will try to show how Foucauldian replacement of sovereignty with domination is rooted in a vision of history to Nietzsche\u2019s genealogies, and that seems having interesting contacts with some concepts of Benjamin, in particular the idea of reactivation of apparently exhausted historical lines. Waiting for further studies about the compatibility of domination with human rights, this article suggests that the historico-philosophical tools Foucault uses to oppose domination to sovereign power can be used to set human rights free from the dead end the sovereign vision constrains them. A comparison between the Foucauldian and the Agambenian reading of Hobbes will be used to better illustrate the differences among the two perspectives

    The Price of Connectivity for Vertex Cover

    Full text link
    The vertex cover number of a graph is the minimum number of vertices that are needed to cover all edges. When those vertices are further required to induce a connected subgraph, the corresponding number is called the connected vertex cover number, and is always greater or equal to the vertex cover number. Connected vertex covers are found in many applications, and the relationship between those two graph invariants is therefore a natural question to investigate. For that purpose, we introduce the {\em Price of Connectivity}, defined as the ratio between the two vertex cover numbers. We prove that the price of connectivity is at most 2 for arbitrary graphs. We further consider graph classes in which the price of connectivity of every induced subgraph is bounded by some real number tt. We obtain forbidden induced subgraph characterizations for every real value t3/2t \leq 3/2. We also investigate critical graphs for this property, namely, graphs whose price of connectivity is strictly greater than that of any proper induced subgraph. Those are the only graphs that can appear in a forbidden subgraph characterization for the hereditary property of having a price of connectivity at most tt. In particular, we completely characterize the critical graphs that are also chordal. Finally, we also consider the question of computing the price of connectivity of a given graph. Unsurprisingly, the decision version of this question is NP-hard. In fact, we show that it is even complete for the class Θ2P=PNP[log]\Theta_2^P = P^{NP[\log]}, the class of decision problems that can be solved in polynomial time, provided we can make O(logn)O(\log n) queries to an NP-oracle. This paves the way for a thorough investigation of the complexity of problems involving ratios of graph invariants.Comment: 19 pages, 8 figure

    Disagreement percolation for Gibbs ball models

    Get PDF
    We generalise disagreement percolation to Gibbs point processes of balls with varying radii. This allows to establish the uniqueness of the Gibbs measure and exponential decay of pair correlations in the low activity regime by comparison with a sub-critical Boolean model. Applications to the Continuum Random Cluster model and the Quermass-interaction model are presented. At the core of our proof lies an explicit dependent thinning from a Poisson point process to a dominated Gibbs point process.Comment: 23 pages, 0 figure Correction, from the published version, of the proof of Section

    The zero forcing polynomial of a graph

    Full text link
    Zero forcing is an iterative graph coloring process, where given a set of initially colored vertices, a colored vertex with a single uncolored neighbor causes that neighbor to become colored. A zero forcing set is a set of initially colored vertices which causes the entire graph to eventually become colored. In this paper, we study the counting problem associated with zero forcing. We introduce the zero forcing polynomial of a graph GG of order nn as the polynomial Z(G;x)=i=1nz(G;i)xi\mathcal{Z}(G;x)=\sum_{i=1}^n z(G;i) x^i, where z(G;i)z(G;i) is the number of zero forcing sets of GG of size ii. We characterize the extremal coefficients of Z(G;x)\mathcal{Z}(G;x), derive closed form expressions for the zero forcing polynomials of several families of graphs, and explore various structural properties of Z(G;x)\mathcal{Z}(G;x), including multiplicativity, unimodality, and uniqueness.Comment: 23 page
    corecore