13,718 research outputs found

    Bartering integer commodities with exogenous prices

    Get PDF
    The analysis of markets with indivisible goods and fixed exogenous prices has played an important role in economic models, especially in relation to wage rigidity and unemployment. This research report provides a mathematical and computational details associated to the mathematical programming based approaches proposed by Nasini et al. (accepted 2014) to study pure exchange economies where discrete amounts of commodities are exchanged at fixed prices. Barter processes, consisting in sequences of elementary reallocations of couple of commodities among couples of agents, are formalized as local searches converging to equilibrium allocations. A direct application of the analyzed processes in the context of computational economics is provided, along with a Java implementation of the approaches described in this research report.Comment: 30 pages, 5 sections, 10 figures, 3 table

    Part I. The Cosmological Vacuum from a Topological Perspective

    Full text link
    This article examines how the physical presence of field energy and particulate matter can be interpreted in terms of the topological properties of space-time. The theory is developed in terms of vector and matrix equations of exterior differential systems, which are not constrained by tensor diffeomorphic equivalences. The first postulate defines the field properties (a vector space continuum) of the Cosmological Vacuum in terms of matrices of basis functions that map exact differentials into neighborhoods of exterior differential 1-forms (potentials). The second postulate requires that the field equations must satisfy the First Law of Thermodynamics dynamically created in terms of the Lie differential with respect to a process direction field acting on the exterior differential forms that encode the thermodynamic system. The vector space of infinitesimals need not be global and its compliment is used to define particle properties as topological defects embedded in the field vector space. The potentials, as exterior differential 1-forms, are not (necessarily) uniquely integrable: the fibers can be twisted, leading to possible Chiral matrix arrays of certain 3-forms defined as Topological Torsion and Topological Spin. A significant result demonstrates how the coefficients of Affine Torsion are related to the concept of Field excitations (mass and charge); another demonstrates how thermodynamic evolution can describe the emergence of topological defects in the physical vacuum.Comment: 70 pages, 5 figure

    Hypoconstrained Jammed Packings of Nonspherical Hard Particles: Ellipses and Ellipsoids

    Full text link
    Continuing on recent computational and experimental work on jammed packings of hard ellipsoids [Donev et al., Science, vol. 303, 990-993] we consider jamming in packings of smooth strictly convex nonspherical hard particles. We explain why the isocounting conjecture, which states that for large disordered jammed packings the average contact number per particle is twice the number of degrees of freedom per particle (\bar{Z}=2d_{f}), does not apply to nonspherical particles. We develop first- and second-order conditions for jamming, and demonstrate that packings of nonspherical particles can be jammed even though they are hypoconstrained (\bar{Z}<2d_{f}). We apply an algorithm using these conditions to computer-generated hypoconstrained ellipsoid and ellipse packings and demonstrate that our algorithm does produce jammed packings, even close to the sphere point. We also consider packings that are nearly jammed and draw connections to packings of deformable (but stiff) particles. Finally, we consider the jamming conditions for nearly spherical particles and explain quantitatively the behavior we observe in the vicinity of the sphere point.Comment: 33 pages, third revisio

    Geometric origin of mechanical properties of granular materials

    Full text link
    Some remarkable generic properties, related to isostaticity and potential energy minimization, of equilibrium configurations of assemblies of rigid, frictionless grains are studied. Isostaticity -the uniqueness of the forces, once the list of contacts is known- is established in a quite general context, and the important distinction between isostatic problems under given external loads and isostatic (rigid) structures is presented. Complete rigidity is only guaranteed, on stability grounds, in the case of spherical cohesionless grains. Otherwise, the network of contacts might deform elastically in response to load increments, even though grains are rigid. This sets an uuper bound on the contact coordination number. The approximation of small displacements (ASD) allows to draw analogies with other model systems studied in statistical mechanics, such as minimum paths on a lattice. It also entails the uniqueness of the equilibrium state (the list of contacts itself is geometrically determined) for cohesionless grains, and thus the absence of plastic dissipation. Plasticity and hysteresis are due to the lack of such uniqueness and may stem, apart from intergranular friction, from small, but finite, rearrangements, in which the system jumps between two distinct potential energy minima, or from bounded tensile contact forces. The response to load increments is discussed. On the basis of past numerical studies, we argue that, if the ASD is valid, the macroscopic displacement field is the solution to an elliptic boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and minor errors correcte

    Variational Inequality Approach to Stochastic Nash Equilibrium Problems with an Application to Cournot Oligopoly

    Full text link
    In this note we investigate stochastic Nash equilibrium problems by means of monotone variational inequalities in probabilistic Lebesgue spaces. We apply our approach to a class of oligopolistic market equilibrium problems where the data are known through their probability distributions.Comment: 19 pages, 2 table

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v
    corecore