16,764 research outputs found

    Matter coupling in partially constrained vielbein formulation of massive gravity

    Get PDF
    We consider a consistent linear effective vielbein matter coupling without introducing the Boulware-Deser ghost in ghost-free massive gravity. This is achieved in the partially constrained vielbein formulation. We first introduce the formalism and prove the absence of ghost at all scales. As next we investigate the cosmological application of this coupling in this new formulation. We show that even if the background evolution accords with the metric formulation, the perturbations display important different features in the partially constrained vielbein formulation. We study the cosmological perturbations of the two branches of solutions separately. The tensor perturbations coincide with those in the metric formulation. Concerning the vector and scalar perturbations, the requirement of absence of ghost and gradient instabilities yields slightly different allowed parameter space.Comment: 25 page

    Negative mode problem in false vacuum decay with gravity

    Full text link
    There is a single negative mode in the spectrum of small perturbations about the tunneling solutions describing a metastable vacuum decay in flat spacetime. This mode is needed for consistent description of decay processes. When gravity is included the situation is more complicated. An approach based on elimination of scalar field perturbations shows no negative mode, whereas the recent approach based on elimination of gravitational perturbations indicates presence of a negative mode. In this contribution we analyse and compare the present approaches to the negative mode problem in false vacuum decay with gravity.Comment: 8 pages, 1 eps figure, Talk given at Constrained Dynamics and Quantum Gravity 99, Villasimius, (Sardinia, Italy), September 14-18, 1999. To apper in the Proceedings. After this contribution was essentially completed, further progress in investigation of negative mode problem was made. The results are summarized in the revised version of gr-qc/000104

    Viability of vector-tensor theories of gravity

    Full text link
    We present a detailed study of the viability of general vector-tensor theories of gravity in the presence of an arbitrary temporal background vector field. We find that there are six different classes of theories which are indistinguishable from General Relativity by means of local gravity experiments. We study the propagation speeds of scalar, vector and tensor perturbations and obtain the conditions for classical stability of those models. We compute the energy density of the different modes and find the conditions for the absence of ghosts in the quantum theory. We conclude that the only theories which can pass all the viability conditions for arbitrary values of the background vector field are not only those of the pure Maxwell type, but also Maxwell theories supplemented with a (Lorentz type) gauge fixing term.Comment: 13 pages, 2 figures, 1 table. Final version to appear in JCA

    Relative Entropy Relaxations for Signomial Optimization

    Full text link
    Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non-convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of the optimal value of SPs. This sequence of lower bounds is computed by solving increasingly larger-sized relative entropy optimization problems, which are convex programs specified in terms of linear and relative entropy functions. Our approach relies crucially on the observation that the relative entropy function -- by virtue of its joint convexity with respect to both arguments -- provides a convex parametrization of certain sets of globally nonnegative signomials with efficiently computable nonnegativity certificates via the arithmetic-geometric-mean inequality. By appealing to representation theorems from real algebraic geometry, we show that our sequences of lower bounds converge to the global optima for broad classes of SPs. Finally, we also demonstrate the effectiveness of our methods via numerical experiments

    Invariant Set Theory: Violating Measurement Independence without Fine Tuning, Conspiracy, Constraints on Free Will or Retrocausality

    Full text link
    Invariant Set (IS) theory is a locally causal ontic theory of physics based on the Cosmological Invariant Set postulate that the universe UU can be considered a deterministic dynamical system evolving precisely on a (suitably constructed) fractal dynamically invariant set in UU's state space. IS theory violates the Bell inequalities by violating Measurement Independence. Despite this, IS theory is not fine tuned, is not conspiratorial, does not constrain experimenter free will and does not invoke retrocausality. The reasons behind these claims are discussed in this paper. These arise from properties not found in conventional ontic models: the invariant set has zero measure in its Euclidean embedding space, has Cantor Set structure homeomorphic to the p-adic integers (p0p \ggg 0) and is non-computable. In particular, it is shown that the p-adic metric encapulates the physics of the Cosmological Invariant Set postulate, and provides the technical means to demonstrate no fine tuning or conspiracy. Quantum theory can be viewed as the singular limit of IS theory when when pp is set equal to infinity. Since it is based around a top-down constraint from cosmology, IS theory suggests that gravitational and quantum physics will be unified by a gravitational theory of the quantum, rather than a quantum theory of gravity. Some implications arising from such a perspective are discussed.Comment: In Proceedings QPL 2015, arXiv:1511.0118
    corecore