2 research outputs found

    A tactile sensing and feedback system for tumor localization

    Get PDF

    Haptic assessment of tissue stiffness in locating and identifying gynaecological cancer in human tissue

    Get PDF
    Gynaecological surgeons are not able to gather adequate tissue feedback during minimal access surgery for cancer treatment. This can result in failure to locate tumour boundaries and to ensure these are completely resected within tumour-free resection margins. Surgeons achieve significantly better surgical and oncological outcomes if they can identify the precise location of a gynaecological tumour. Indeed, the true nature of tumour, whether benign or cancerous, is often not known prior to surgery. If more details were available in relation to the characteristics that differentiate gynaecological cancer in tumours, this would enable more accurate diagnosis and help in the planning of surgery. HYPOTHESIS: Haptic technology has the potential to enhance the surgeon’s degree of perception during minimal access surgery. Alteration in tissue stiffness in gynaecological tumours, thought to be associated with the accelerated multiplication of cancer cells, should allow their location to be identified and help in determining the likelihood of malignancy. METHOD: Setting: (i) Guy's & St Thomas' Hospital (ii) Dept of Informatics (King's College London).Permission from the National Research Ethics Committee and Research & Development (R&D) approval were sought from the National Health Service. The Phantom Omni, capable of 3D motion tracking, attached to a nano-17 force sensor, was used to capture real-time position data and force data. Uniaxial indentation palpation behaviour was used. The indentation depth was calculated using the displacement of the probe from the surface to the deepest point for each contact. The tissue stiffness (TS) was then calculated.The haptic probe was tested first on silicone models with embedded nodules mimicking tumour(s). This was followed by assessing TS ex-vivo using a haptic probe on fresh human gynaecological organs that had been removed in surgery. Tissue stiffness maps were generated in real time using the haptic device by converting stiffness values into RGB values. Surgeons also manually palpated and recorded the site of the tumour. Histology was used as the gold standard for location and cancer diagnosis. Manual palpation and haptic data were compared for accuracy on tumour location. The tissue stiffness calculated by the haptic probe was compared in cancer and control specimens. Several data analysis techniques were applied to derive results.CONTRIBUTIONS: Haptic indentation probe was tested for the first time on fresh human gynaecological organs to locate cancer in a clinical setting. We are the first one to evaluate the accuracy of cancer diagnosis in human gynaecological organs with a force sensing haptic indentation probe measuring tissue stiffness
    corecore