21,807 research outputs found

    Systematic Verification of the Modal Logic Cube in Isabelle/HOL

    Get PDF
    We present an automated verification of the well-known modal logic cube in Isabelle/HOL, in which we prove the inclusion relations between the cube's logics using automated reasoning tools. Prior work addresses this problem but without restriction to the modal logic cube, and using encodings in first-order logic in combination with first-order automated theorem provers. In contrast, our solution is more elegant, transparent and effective. It employs an embedding of quantified modal logic in classical higher-order logic. Automated reasoning tools, such as Sledgehammer with LEO-II, Satallax and CVC4, Metis and Nitpick, are employed to achieve full automation. Though successful, the experiments also motivate some technical improvements in the Isabelle/HOL tool.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Theory and Techniques for Synthesizing a Family of Graph Algorithms

    Full text link
    Although Breadth-First Search (BFS) has several advantages over Depth-First Search (DFS) its prohibitive space requirements have meant that algorithm designers often pass it over in favor of DFS. To address this shortcoming, we introduce a theory of Efficient BFS (EBFS) along with a simple recursive program schema for carrying out the search. The theory is based on dominance relations, a long standing technique from the field of search algorithms. We show how the theory can be used to systematically derive solutions to two graph algorithms, namely the Single Source Shortest Path problem and the Minimum Spanning Tree problem. The solutions are found by making small systematic changes to the derivation, revealing the connections between the two problems which are often obscured in textbook presentations of them.Comment: In Proceedings SYNT 2012, arXiv:1207.055

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Computer Science and Metaphysics: A Cross-Fertilization

    Full text link
    Computational philosophy is the use of mechanized computational techniques to unearth philosophical insights that are either difficult or impossible to find using traditional philosophical methods. Computational metaphysics is computational philosophy with a focus on metaphysics. In this paper, we (a) develop results in modal metaphysics whose discovery was computer assisted, and (b) conclude that these results work not only to the obvious benefit of philosophy but also, less obviously, to the benefit of computer science, since the new computational techniques that led to these results may be more broadly applicable within computer science. The paper includes a description of our background methodology and how it evolved, and a discussion of our new results.Comment: 39 pages, 3 figure
    • …
    corecore