250,358 research outputs found

    A DESIGN FRAMEWORK FOR SUSTAINABLE INFRASTRUCTURE

    Get PDF
    Aristotle theorized, \u27The whole is more than the sum of its parts.\u27 Design engineers often overlook this simple philosophy. We employ a reductionist approach when designing the built environment: engineering solutions for the individual parts rather than the system as a whole, creating and exacerbating problems in the process. A whole system, interdisciplinary approach that considers the interrelatedness of global issues is increasingly recognized as essential to finding truly sustainable engineering solutions (NSB, 2007). However, both the precise nature of this whole systems approach, and the best ways to incorporate it in engineering education remain undefined. To address this gap in knowledge, this research: (1) methodically reviewed the literature to define and unify the general principles of whole systems design; and (2) used the literature to develop a conceptual framework for whole systems design for sustainable infrastructure. A systematic literature review guided by a predefined protocol used 13 search terms spanning the engineering, architecture, and planning disciplines to identify components of the whole systems framework. Sources identified in the literature review fell under five primary categories: sustainable development; architecture, planning, and urban design; engineering, environmental management and business; and systems thinking. Principles were extracted from the resources, empirically coded, and organized into a framework using concept mapping. The resulting framework was organized into three overarching categories: design processes, design principles, and design methods, with a total of 20 principles, or components of whole systems design. It combines the theories, perspectives, and practices of multiple design disciplines and experts making it germane for applications of design ranging from the microscopic level of a chemical, to the macroscopic level of a city, for example. Organizing the literature surrounding whole systems design aids in building consensus around the defining elements and sets the stage for future research on the subject

    Quality of Web Mashups: A Systematic Mapping Study

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-04244-2_8Web mashups are a new generation of applications based on the composition of ready-to-use, heterogeneous components. They are gaining momentum thanks to their lightweight composition approach, which represents a new opportunity for companies to leverage on past investments in SOA, Web services, and public APIs. Although several studies are emerging in order to address mashup development, no systematic mapping studies have been reported on how quality issues are being addressed. This paper reports a systematic mapping study on which and how the quality of Web mashups has been addressed and how the product quality-aware approaches have been defined and validated. The aim of this study is to provide a background in which to appropriately develop future research activities. A total of 38 research papers have been included from an initial set of 187 papers. Our results provided some findings regarding how the most relevant product quality characteristics have been addressed in different artifacts and stages of the development process. They have also been useful to detect some research gaps, such as the need of more controlled experiments and more quality-aware mashup development proposals for other characteristics which being important for the Web domain have been neglected such as Usability and ReliabilityThis work is funded by the MULTIPLE project (TIN2009-13838), the Senescyt program (scholarships 2011), and the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering - TEE Project.Cedillo Orellana, IP.; Fernández Martínez, A.; Insfrán Pelozo, CE.; Abrahao Gonzales, SM. (2013). Quality of Web Mashups: A Systematic Mapping Study. En Current Trends in Web Engineering. Springer. 66-78. https://doi.org/10.1007/978-3-319-04244-2_8S6678Alkhalifa, E.: The Future of Enterprise Mashups. Business Insights. E-Strategies for Resource Management Systems (2009)Beemer, B., Gregg, D.: Mashups: A Literature Review and Classification Framework. Future Internet 1, 59–87 (2009)Cappiello, C., Daniel, F., Matera, M.: A Quality Model for Mashup Components. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 236–250. Springer, Heidelberg (2009)Cappiello, C., Daniel, F., Matera, M., Pautasso, C.: Information Quality in Mashups. IEEE Internet Computing 14(4), 32–40 (2010)Cappiello, C., Matera, M., Picozzi, M., Daniel, F., Fernandez, A.: Quality-Aware Mashup Composition: Issues, Techniques and Tools. In: 8th International Conference on the Quality of Information and Communications Technology (QUATIC 2012), pp. 10–19 (2012)Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn. International Thompson 1996, pp. I–XII, 1–638 (1996) ISBN 978-1-85032-275-7Fernandez, A., Insfran, E., Abrahão, S.: Usability evaluation methods for the web: A systematic mapping study. Information and Software Technology 53(8), 789–817 (2011)Garousi, V., Mesbah, A., Betin-Can, A., Mirshokraie, S.: A systematic mapping study of web application testing. Information and Software Technology 55(8), 1374–1396 (2013)Grammel, L., Storey, M.-A.: A survey of mashup development environments. In: Chignell, M., Cordy, J., Ng, J., Yesha, Y. (eds.) The Smart Internet. LNCS, vol. 6400, pp. 137–151. Springer, Heidelberg (2010)Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 708–721. Springer, Heidelberg (2008)ISO/IEC: ISO/IEC 25010 Systems and software engineering. Systems and software Quality Requirements and Evaluation (SQuaRE). System and software quality models (2011)Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in Software Engineering. Version 2.3, ESBE Technical Report, Keele University, UK (2007)Mendes, E.: A systematic review on the Web engineering research. In: International Symposium on Empirical Software Engineering (ISESE 2005), pp. 498–507 (2005)OrangeLabs: State of the Art in Mashup tools, SocEDA project, pp. 1–59 (2011)Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: 12th International Conference on Evaluation and Assessment in Software Engineering (EASE), pp. 68–77 (2008)Raza, M., Hussain, F.K., Chang, E.: A methodology for quality-based mashup of data sources. In: 10th International Conference on Information Integration and Web-based Applications & Services (iiWAS 2008), pp. 528–533 (2008)Saeed, A.: A Quality-based Framework for Leveraging the Process of Mashup Component Selection (2009), https://gupea.ub.gu.se/handle/2077/21953Sharma, A., Hellmann, T.D., Maurer, F.: Testing of Web Services - A Systematic Mapping. In: 8th World Congress on Services (SERVICES 2012), pp. 346–352 (2012

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Ontology-driven conceptual modeling: A'systematic literature mapping and review

    Get PDF
    All rights reserved. Ontology-driven conceptual modeling (ODCM) is still a relatively new research domain in the field of information systems and there is still much discussion on how the research in ODCM should be performed and what the focus of this research should be. Therefore, this article aims to critically survey the existing literature in order to assess the kind of research that has been performed over the years, analyze the nature of the research contributions and establish its current state of the art by positioning, evaluating and interpreting relevant research to date that is related to ODCM. To understand and identify any gaps and research opportunities, our literature study is composed of both a systematic mapping study and a systematic review study. The mapping study aims at structuring and classifying the area that is being investigated in order to give a general overview of the research that has been performed in the field. A review study on the other hand is a more thorough and rigorous inquiry and provides recommendations based on the strength of the found evidence. Our results indicate that there are several research gaps that should be addressed and we further composed several research opportunities that are possible areas for future research

    Safety-Critical Systems and Agile Development: A Mapping Study

    Full text link
    In the last decades, agile methods had a huge impact on how software is developed. In many cases, this has led to significant benefits, such as quality and speed of software deliveries to customers. However, safety-critical systems have widely been dismissed from benefiting from agile methods. Products that include safety critical aspects are therefore faced with a situation in which the development of safety-critical parts can significantly limit the potential speed-up through agile methods, for the full product, but also in the non-safety critical parts. For such products, the ability to develop safety-critical software in an agile way will generate a competitive advantage. In order to enable future research in this important area, we present in this paper a mapping of the current state of practice based on {a mixed method approach}. Starting from a workshop with experts from six large Swedish product development companies we develop a lens for our analysis. We then present a systematic mapping study on safety-critical systems and agile development through this lens in order to map potential benefits, challenges, and solution candidates for guiding future research.Comment: Accepted at Euromicro Conf. on Software Engineering and Advanced Applications 2018, Prague, Czech Republi

    A Review on Software Architectures for Heterogeneous Platforms

    Full text link
    The increasing demands for computing performance have been a reality regardless of the requirements for smaller and more energy efficient devices. Throughout the years, the strategy adopted by industry was to increase the robustness of a single processor by increasing its clock frequency and mounting more transistors so more calculations could be executed. However, it is known that the physical limits of such processors are being reached, and one way to fulfill such increasing computing demands has been to adopt a strategy based on heterogeneous computing, i.e., using a heterogeneous platform containing more than one type of processor. This way, different types of tasks can be executed by processors that are specialized in them. Heterogeneous computing, however, poses a number of challenges to software engineering, especially in the architecture and deployment phases. In this paper, we conduct an empirical study that aims at discovering the state-of-the-art in software architecture for heterogeneous computing, with focus on deployment. We conduct a systematic mapping study that retrieved 28 studies, which were critically assessed to obtain an overview of the research field. We identified gaps and trends that can be used by both researchers and practitioners as guides to further investigate the topic
    corecore