
Citation: Choi, Y.; Pessoa, M.V.P.;

Bonnema, G.M. Perspectives on

Modeling Energy and Mobility

Transitions for Stakeholders: A Dutch

Case. World Electr. Veh. J. 2023, 14,

178. https://doi.org/10.3390/

wevj14070178

Academic Editor: Joeri Van Mierlo

Received: 30 April 2023

Revised: 16 June 2023

Accepted: 24 June 2023

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Perspectives on Modeling Energy and Mobility Transitions for
Stakeholders: A Dutch Case
Younjung Choi * , Marcus Vinicius Pereira Pessoa and G. Maarten Bonnema

Systems Engineering and Multidisciplinary Design, Department of Design, Production, and Management,
Faculty of Engineering Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands;
m.v.pereirapessoa@utwente.nl (M.V.P.P.); g.m.bonnema@utwente.nl (G.M.B.)
* Correspondence: y.choi@utwente.nl; Tel.: +31-53-4891878

Abstract: We address the value of engaging stakeholders in energy and mobility transitions by
using models. As a communication medium, models can facilitate the collaborative exploration of
a future between modeling researchers and stakeholders. Developing models to engage stakeholders
requires an understanding of state-of-the-art models and the usability of models from the stakeholder
perspective. We employ mixed methods in our research. We present the overview of models that
have been proposed to make sense of the transitions in the scientific literature through a systematic
literature mapping (n = 105). We interviewed 10 stakeholders based in The Netherlands to elaborate
on use cases in which models can benefit stakeholders in practice and the characteristics of usable
models. We conclude our research by elaborating on two challenges of model design that modeling
research can consider to engage stakeholders. First, we argue that understanding the epistemic
requirements of both modeling researchers and stakeholders that models can simultaneously meet
is crucial (e.g., questions addressed using models and assumptions). Second, we seek technical
solutions for producing models in a time-wise manner and developing interfaces that allow models
distant in formalism and represented phenomena to communicate in tandem. Our research creates
awareness of the model design aspect by considering its usability.

Keywords: energy transition; sustainable mobility; modeling; transition models; stakeholder
engagement; learning; usability of transition models; epistemic requirement; model integration

1. Introduction

Achieving sustainable energy and mobility systems requires stakeholder decisions
to be made and actions to be taken over time [1–4]. Accordingly, various models with
different formalisms and represented phenomena have been introduced to support these
heterogeneous decision-making processes. These include policymaking frameworks that
articulate relationships between policies and their environmental impacts [5], energy audit
models that explore industrial measures for improving energy efficiency [6–8], and quan-
titative models that simulate future scenarios to enhance policymaking consistency and
validate underlying theories [9,10].

1.1. Engaging Stakeholders in the Transitions by Using Models

Engaging stakeholders is recognized as a crucial element for achieving societal
transformation [11–13]. Models can serve as a valuable medium for collaborative research
between stakeholders and researchers about systems transitions. However, it is vital to
investigate how adaptable models are for engagement [9].

Researchers working on energy or mobility system modeling have focused on en-
hancing modeling practices by better representing transitioning systems. This involves
understanding modeling methodologies [14–17], the characteristics of systems (e.g., techno-
economic details, heterogeneity of actors, emergent behaviors, dynamics of transition
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scenarios) [17–20], and geographic, temporal, and sectoral resolutions [19,20]. Despite this
progress, research on the usability aspect of models from the stakeholder perspective is still
in its early stages.

Recent studies have addressed concerns regarding the usability of models from the
stakeholder perspective. First, the studies highlighted the need for models to better repre-
sent human behavioral aspects (e.g., cultural dimensions) and balance price policies (e.g.,
regulatory policies) with non-price policies (e.g., public awareness) [21,22]. Second, the
studies revealed that improving the comprehensibility of models through visual aids and
instructions could enhance their usability [22,23]. Third, they showed that transparent
communication regarding involved assumptions, databases, and modeling frameworks
could also improve model usage [21–24]. Last, the articles emphasized the applicability
of models in specific use cases, such as integrating energy models into transport planning
and using them for policymaking and collaboration between municipalities [22,23].

Modeling is an epistemic activity that helps us understand complex
phenomena [25,26]. In energy and mobility transitions, engaging stakeholders through
modeling can support decision-making and facilitate collaborative learning between re-
searchers and stakeholders [27–29]. However, we must broaden our understanding of two
aspects. First, we must understand models that are diverse in formalism in the represented
phenomena relevant to the transitions. By understanding the diversity of models and each
modeling approach’s strength(s), researchers can employ suitable modeling methods by
balancing the use context in practice and the research environment. Second, we need to
consider characteristics that can ensure the usability and effective use of models in practice.

Muratori et al. [30] reviewed approximately 30 models that were developed to project
the future of integrated energy and mobility systems and categorized the models by spe-
cific purposes (e.g., models for estimating vehicle choices). However, as stakeholders’
needs may exceed these categories, we expanded our exploration of models in our re-
search. While the usability of models from a stakeholder perspective has mainly been
discussed for energy system models, we incorporated user perspective knowledge to
identify common stakeholder perspectives for future research. We consider that doing so
would help researchers to better understand the needs and viewpoints of stakeholders and
thereby develop more valuable and relevant models for exploring integrated energy and
mobility systems.

1.2. Research Questions

To address the knowledge gap, we investigated the following research question:

“What are the key considerations and approaches for effectively engaging stakeholders in
energy and mobility transitions using models?”

To this end, we answered three sub-research questions. The sub-research questions
and the associated research aims and objectives are presented in Table 1.

Demarcation

Our research aims to support energy and mobility system transitions in The Nether-
lands. Therefore, we focused our interviews on practitioners working in the Dutch energy
and mobility sectors.
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Table 1. Research questions, objectives, and methods.

RsQ1 RsQ2 RsQ3

Research
question

“What models have been proposed in the
scientific literature to understand energy

and mobility transitions?”

“What traits of models are supportive
of stakeholder engagement?”

“How can models be designed to
engage stakeholders in the transitions

effectively?”

Aim

Providing state-of-the-art models
used for understanding the

transitions, which can support
modeling researchers to employ

models and modeling approaches
that are suitable for

engaging stakeholders

Providing knowledge about
model usability, which can
enhance the effectiveness of
stakeholder engagement by

using models

Providing insights to bridge the
gap between available models

and stakeholders’ needs, which
can support modeling researchers

to design models for
effective engagements

Research
objective

Identifying state-of-the-art models
presented in scientific literature
considering forms, represented

phenomena, and utilities

Identifying traits of models that
can enhance their usability from

the stakeholder perspective

Identifying approaches for the
model design

Method Systematic literature mapping Stakeholder interview Synthesis

Section Section 2 Section 3 Section 4

1.3. Research Methodology

This paper utilized a three-step methodology (Table 1). First, a systematic literature
mapping was conducted to review models in the scientific literature that pertained to energy
and mobility transitions, thereby addressing RsQ1 in Section 2. Second, stakeholders from
the local and regional government, businesses, and innovation management involved in
energy and mobility transitions were interviewed to gather ideas for use cases of models in
practice and the traits of usable models necessary to answer RsQ2 in Section 3. Third, the
reviewed models were evaluated from the stakeholder perspective to determine how to
design models that better engage stakeholders. Finally, the evaluation and reflection results
were synthesized to answer RsQ3 in Sections 3 and 4.

2. Models for Understanding the Transitions

In this section, we explain the methodology used for the literature mapping in
Section 2.1 and present six grouped models we reviewed in detail in Section 2.2.

2.1. Method: Systematic Literature Mapping

We utilized systematic literature mapping techniques described in systems engineer-
ing, software engineering, and environmental management research papers [31–33].

2.1.1. Literature Acquisition Procedure

To acquire the scientific literature that presented the models in question, we used
the PICO search tool to determine keywords and specify a search query [33–36]. Our
population of interest was scientific articles, while our intervention involved producing
models for decision support and simulation to explain or predict the transition phenomena.
We did not make comparisons or aim to favor any one model. Our search string was
“(model OR simulation OR ‘decision support system’) AND (mobility OR transport OR
vehicle) AND (‘energy transition’ OR decarbonization OR sustainab*),” which we applied
to Scopus and Web of Science databases for articles published from 2016 to 2021. We only
gathered scientific papers whose titles involved the search string. We retrieved 215 articles
but only used 105 that met our inclusion criteria of being written in English and having free
full-text availability. We excluded papers such as conference summaries and those whose
titles merely included homonyms of our search terms (e.g., suspended solids transport).
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2.1.2. Literature Mapping Protocol

We used an iterative process to map the retrieved literature due to the diversity of the
reviewed models and their potential uses. We initially attempted deductive reasoning using
existing frameworks (e.g., the Transition Management framework presented by [3]) by
assuming that models would be used for governance activities, such as vision development.
The results of this approach were of limited value, as not all models were designed for
governance activities. We then tried to develop a new framework, but the deterministic
process was unsuitable for identifying the various models. Ultimately, we used inductive
reasoning and divided the literature into qualitative and quantitative models based on their
primary functions and utilities (e.g., system articulation and sustainable business models)
(Figure 1). We further categorized the models based on their representations, as explained
in Section 2.2.
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Figure 1. The literature mapping protocol.

2.2. Results

The literature mapping informed the following six types of models:

• Qualitative articulation models (Section 2.2.1);
• Sustainable business models (Section 2.2.2);
• Mathematical models (Section 2.2.3);
• Simulations (Section 2.2.4);
• Decision-making models (Section 2.2.5); and
• Multi-objective optimizations (Section 2.2.6).

Table 2 represents the main functions of six types of models and answerable question(s)
by utilizing the models.
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Table 2. Categorized models.

Model Main Function(s) Answerable Question(s) by Utilizing the
Models *

Qualitative articulation
models (n = 22)

Sharing both cutting-edge and
underexplored knowledge

What are the functions and responsibilities of the
stakeholders engaged in transitioning the urban

freight transport system?

Sustainable business
models (n = 18)

Suggesting viable business models that align with
sustainability in the field of mobility

What are the strategies for managing electric
vehicles at the end of their lifespan?

Mathematical models
(n = 23)

Depicting human attitudes and behaviors
What methods can be used to forecast the

adoption behavior of emerging technologies
and services?

Depicting the performance of
an organizational activity

How can we evaluate the effectiveness of
a policymaking tool?

Depicting the effects of an organizational activity
What methods can be used to measure the
environmental sustainability of an urban

mobility design?

Simulations (n = 24)

Anticipating the future of the area by
comprehending alterations in human conduct,

technological advancement, market trends, and
policy execution

How does implementing an international policy
target affect a national economy?

Examining the interaction of a hypothetically
designed system with existing systems

through analysis

What materials are appropriate for
manufacturing batteries for electric vehicles?

Assessing the influence of decision-making
principles employed by practitioners

How can sustainable mobility transition
scenarios be effectively generated?

Decision-making
models (n = 6)

Developing decision-making criteria for a mobility
system maintenance or development project

How are the decision-making criteria shared and
applied in regional end-of-life

vehicle management?

Multi-objective
optimizations (n = 12)

Optimizing the operation of a dynamic system while
balancing multiple objectives

How can a logistics company determine the most
efficient route for its vehicle?

* We formulated the questions by only reviewing the literature that was presented as examples. Thus, the capability
of each type of model is not limited to answering the written questions.

2.2.1. Qualitative Articulation Models

The initial literature group introduced qualitative articulation models that visually and
descriptively presented concepts and knowledge relevant to energy and mobility transitions
(Table 3). The literature mainly offered these qualitative articulation models to increase
stakeholder awareness and understanding of lesser-known expertise and contribute to
field-specific academic research practice.

2.2.2. Sustainable Business Models

The second literature group identified the enablers of implementing sustainable busi-
ness models in the mobility sector through business modeling (Table 4).
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Table 3. Knowledge disseminated through qualitative articulation models.

Shared Knowledge through the Qualitative Articulation Models Reviewed Articles

Strategies for sustainable transportation planning (process), including modeling approaches (n = 9) [37–45]

The functions and responsibilities of stakeholders involved in transitioning an urban freight
transport system (n = 1) [46]

Urban spatial planning aimed at addressing mobility issues such as traffic congestion (n = 2) [47,48]

Technical solutions for adapting an urban transportation system to fit the unique characteristics of
a city, such as a tourism-based economy (n = 2) [49,50]

The current state of academic knowledge and practices related to emerging research topics, such as
end-of-life vehicle management and modeling techniques for electric vehicle batteries (n = 8) [51–58]

Table 4. Knowledge disseminated through the sustainable business models.

Shared Knowledge through the Sustainable Business Models Reviewed Articles

Factors that facilitate sustainable urban mobility, such as the endorsement of celebrities (n = 4) [59–62]

Ways to promote shared vehicle usage, such as offering user incentives (n = 3) [63–65]

Ways to facilitate the management of end-of-life electric vehicles and batteries, such as fostering
cross-sectoral collaboration (n = 3) [66–68]

Revising business models to suit local contexts and mobility-related industries, such as biofuel
transportation, while ensuring sustainability (n = 8) [67,69–75]

2.2.3. Mathematical Models

The third literature group consisted of mathematical models representing the critical
phenomena relevant to transitioning energy and mobility systems in mathematical equa-
tions. These models allowed authors to contribute niche knowledge about the phenomena
and communicate with stakeholders such as policymakers, urban and traffic planners,
designers, and private businesses. Generally, the models represented human behavior and
attitude, organizational activity performance, and the impact of organizational activity
(Table 5).

Table 5. Phenomena represented in mathematical models.

Displayed Phenomena Reviewed Articles

Human attitude and
behavior (n = 10)

Phenomena related to the choice of travel mode, such as the influence of social
norms, emotions, and expert opinions [76–79]

Emerging technology and service adoption by capturing decision-making
episodes and consumer knowledge, particularly in the context of

electric vehicles
[80–84]

Developing trust in emerging mobility concepts [85]

The performance of
organizational activity

(n = 5)

The effectiveness of a decision support system or a policymaking tool

[86–90]Other possible factors that could impact the performance of sectoral mobility
practices, including aspects such as organizational innovation, that may not be

commonly considered or well-known

The effects of
organizational
activity (n = 8)

The environmental sustainability of technological solutions, such as urban
mobility designs and electric vehicles [91–93]

The economic impact of last-mile delivery and sectoral transportation activities
when redesigning logistics chains [94,95]

The sustainability of urban mobility through an integrated
assessment approach [96–98]
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2.2.4. Simulations

The fourth literature group focused on simulating mathematical models to achieve
three objectives: Projecting the future of a locale, analyzing hypothetically designed sys-
tems, and testing practitioners’ decision-making principles (Table 6). The simulation
results were then used to provide recommendations for policymaking and business prac-
tices based on changes in human behaviors, technology development, market dynamics,
and policy implementation.

Table 6. Objectives of simulation contents.

Objectives of Simulations Simulation Contents Reviewed Articles

Anticipating the future of the area by
comprehending alterations in human
conduct, technological advancement,

market trends, and policy execution (n = 11)

The evaluation of the effectiveness of implementing
international policies, such as the EU’s decarbonization
target, concerning future economic and technological

mobility advancements

[99,100]

The effects of applying international policies on the
economies of individual nations [101,102]

Examining the sustainability of a city through the lens of
demographic changes, land use, travel behaviors, and

technological advancements
[103–105]

The influence of social media on public perception of
sustainable mobility [106]

The evolution of the mobility sector due to drivers such as
advances in Information and Communication Technology

(ICT) and changes in user behavior
[107–109]

Examining the interaction of a
hypothetically designed system with

existing systems through analysis (n = 9)

Investigating potential materials for the production of
electric vehicle batteries and other vehicle components
Examining sustainable practices for operating shared
autonomous vehicles and developing charging and

swapping stations

[110–115]

The effectiveness of a connected vehicle system, taking into
account factors such as safety, vehicle diversity, and

technology market readiness
[116,117]

The impact of user incentives on the performance of
a bike-sharing system [118]

Assessing the influence of decision-making principles employed by practitioners (n = 4) (e.g., principles
applied to vehicle routing problem-solving and sustainable mobility scenario generation) [119–122]

2.2.5. Decision-Making Models

In transportation projects, stakeholders such as citizens, local governments, and
academics may have varying expert knowledge and preferences. Therefore, the authors
used modeling techniques to capture stakeholders’ priorities. This approach aimed to
develop decision-making criteria models that are coherent and reflect the priorities of all
stakeholders. The authors applied this modeling technique to transportation development
projects and end-of-life vehicle management [123–128].

2.2.6. Multi-Objective Optimizations

The transportation sector is constantly changing due to the adoption of new technolo-
gies, such as electric vehicles, and the integration of electricity and gas systems. As a result,
the system performance evaluation model is evolving, emphasizing societal impacts such as
greenhouse gas emissions. Stakeholders, including logistics and transport providers, urban
planners, supply chain managers, transport infrastructure managers, and policymakers,
must decide on the best strategy for operating dynamic systems that address multiple
objectives, including cost efficiency and environmental impact. To support multi-objective
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consideration, the authors formulated mathematical equations to describe operational
systems, such as the supply chain, and the operation’s objectives, such as profitability, to
determine the optimal solution (Table 7).

Table 7. Multi-objective problems addressed by the reviewed operation research.

Stakeholders Operation Problem Reviewed Articles

Logistic and transport service providers Multi-objective vehicle routing objectives are the amount of
energy consumed, the quality of a transported good, etc. [129–134]

Transportation infrastructure managers

Managing a transportation infrastructure considering
emergent problems due to rapid urbanization or energy

transition and attempting to fulfill objectives such as cost
minimization and environmental friendliness

[135–139]

We examined six distinct types of models that varied in their forms, representing
phenomena, and utilities. In the next section, we discuss how to design such models to
engage stakeholders in the transition process effectively.

3. Stakeholder Perspective on the Usability of Models

This section addresses our second and third research questions: “What traits of models
are supportive of stakeholder engagement?” and “How can models be designed to engage
stakeholders in the transitions effectively?” We conducted semi-structured interviews with
practitioners in the Dutch energy and mobility sectors to gain insight into the stakeholder
perspective on model usability. Section 3.1 provides a description of our interview method-
ology. Section 3.2 examines use cases in which models can be beneficial in practice and
discusses the traits of usable models addressed by the interviewees.

3.1. Method

We utilized a qualitative research method involving semi-structured interviews to
gain a stakeholder perspective on model usability. The interviews comprised four parts, as
shown in Table 8. Our goal was to gain insight into tasks the interviewees perform so that
we can understand the circumstances in which energy and mobility transition models can
be helpful in practice. We also gained insight into the interviewees’ perspectives on the
strengths and weaknesses of models.

3.1.1. Data Collection

We used quota sampling to select interviewees with diverse perspectives from provin-
cial and municipal levels of government and industry (Table 9). We invited 10 practitioners
who were accessible to the authors and willing to participate in the research using con-
venience sampling rather than a randomized group of people [140]. The interviewees
had diverse types of experience from relevant stakeholder groups in energy and mobility
transitions, representing the government, the power grid operation, and the industry that
provides energy and mobility solutions. The areas of expertise ranged from energy and
electric vehicle charging infrastructure, sustainability, and mobility program management
to supporting policymaking. Each interview lasted about one hour, and all sessions took
place online from February 2022 to April 2022 due to COVID-19 complications. During
the discussions, the practitioners shared their experiences of using models and outputs for
policy planning, communicating with stakeholders, and gaining a better understanding of
the development of products and business models. In addition, they provided thoughts
on improving the utility of energy and mobility transition models. All interviews were
conducted in English, recorded, transcribed, and anonymized.
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Table 8. Semi-structured interview protocol applied in this research.

Interview Part Objectives Asked Questions/Activities per Part

Introduction
Letting interviewees acclimatize to the
interviewer’s research project and the

objectives of interview

A short presentation on the research
background and research interest in

understanding how to produce models
for stakeholders and supportive

user scenarios

Understanding interviewees and
supportive models to them from multiple

perspectives: Working organizations,
conducting tasks in the organizations,

and individual voices on the transitions

Understanding the tasks conducted by
interviewees in their organizations

Q1: “What are your usual tasks in
your organization?”

Q2: “Can you explain the energy and
transport transition projects you are

responsible for?”

Exploring the circumstances in which
interviewees make complex decisions

wherein energy and mobility transition
models can potentially be useful

Q3: “What kinds of decisions do you
(have to) make about energy and

transport transitions?”
Q4: “Do you experience any dilemmas

during such decision-making processes?”

Understanding strategies for designing
useful models from user experience

Understanding whether interviewees are
directly engaged in using models

Q5: “When working on energy and
transport transition projects, have you or

your organization ever used computer
software/tools/games?”

Q5-1-1 (if the answer to Q5 was “Yes.”):
“What software/tools/games did

you use?”

Understanding the effectiveness of using
models and/or content generated

from models

Q5-1-2: “What support did you receive?”
Q5-1-3: “What were the strengths and

weaknesses of the
software/tools/games?”

Finalization Concluding interviews A statement of gratitude for participating
into the interview

Table 9. The information on the interviewees based in The Netherlands.

Sector Job Description Number of Interviewees

Provincial government
Regional energy network system design

Stakeholder communication for regional energy system planning
Regional electric vehicle charging infrastructure management

3

Municipal government Local sustainability program guidance
Local sustainable mobility program management 2

Knowledge management Power grid management 1

Business

Electric vehicle technology development
Electric vehicle charging infrastructure

Flexibility solution development
Sustainability solution development

4

3.1.2. Data Analysis

To analyze the data gathered from the interviews, we utilized the ATLAS.ti tool and
adopted the QUAGOL qualitative data analysis approach [141]. We used Vivo coding to
gain an overview of the interviews and summarize the main content. Then, we collected the
most frequently occurring keywords in each interview and employed keyword searching
to obtain the results [142]. Table 10 presents a summary of the interview results.
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Table 10. A summary of the interview results.

Discussed Content Summary

Tasks performed by the
interviewees, which could be
supported by using models

(Q1 to Q4): Section 3.2.1

Governmental officers:

• Identifying synergies and dilemmas that would be emerged as a result of multiple local
initiatives by industry and government sectors (e.g., unexpectedly high cost for acquiring an
overarching system, such as the electricity grid and its upkeep)

• Managing regional electric mobility infrastructure to achieve local and national
governments objectives simultaneously

Knowledge management (power grid):

• Developing the proof of concept of a technical solution in the context of
customer engagement

Businesses

• Supporting product design for the transitions in the context of engineering optimization
and communication

• Exploring future circumstances in which products will be sold (e.g., customer preference)
and the consequences of introducing products to a future market (e.g., the number of
required public charging stations)

• Asset management: Electric charging stations

The interviewees’ experience
with models (Q5)

Interacting with models directly or only utilizing the outputs of models: Models were generated
by either internal employees (e.g., engineers, data analysts) or external personnel (e.g.,
universities, consultants)

Functions of the models
used (Q5-1-1):

Sections 3.2.1 and 3.2.2

Governmental officers:

• Presenting locations that require existing electric charging stations to be updated.
• Indicating traffic flows and predicting electric charging demands
• Estimating the number of electric charging stations demanded in future

Knowledge management (power grid):

• Estimating the impacts on the power grid and computing the effects of applying diverse
smart charging profiles

Businesses:

• Supporting the product design (e.g., optimization)
• Estimating the carbon footprint
• Optimizing flexibility solutions

Strengths of the models
used (Q5-1-2):

Sections 3.2.1 and 3.2.2

• Presenting the status of electric charger usage: Supporting the creation of new
business opportunities

• Easy-to-change parameters
• Possibility of using in-house data
• Enabling the exploration of the impacts of flexibility solutions by applying diverse scenarios
• Supporting decisions over the number of electric charging stations, which helps

communication between stakeholders (e.g., provincial and municipal governments, and
charging point operators)

Weaknesses of the models
used (Q5-1-3): Section 3.2.2

• Limited representation of the real world (e.g., a lack of realistic illustration of
human behaviors)

• Transparency of models (e.g., codes, assumptions)
• Unnecessarily detailed information (e.g., indicating lots of correlations)
• Extensive development processes
• Less comprehensive definition of a key concept (e.g., mobility)
• Lack of compliance between Dutch and European systems
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3.2. Results

The interviews yielded two types of results. First, in Section 3.2.1, we discuss two use
cases where stakeholders can be supported by using models. Second, in Section 3.2.2, we
explore the characteristics of models that are essential for effective usage.

3.2.1. Use Cases of Models Supportive to Practitioners

We identified two situations where stakeholders could effectively use models to under-
stand energy and mobility transitions in practice. The first situation is when organizations
use models to gain insight into future energy and mobility systems, such as understanding
the customer segment of a future mobility market. The second situation is when stakehold-
ers collaboratively design local and regional infrastructure across sectors, such as provinces,
municipalities, industries, and civic groups.

Organizational Learning to Understand Future Systems

The interviews revealed three specific examples of organizational learning. First, mod-
els that indicate the state of organizational progress in the transitions could offer valuable
information. For instance, practitioners in electric vehicle charging innovation development
and marketing communications discussed the evaluation of flexibility solutions for pre-
venting grid congestion and ensuring the sustainability of product delivery and employee
mobility patterns. A consultant experienced in flexibility solutions stressed the importance
of identifying the societal values provided by the solutions, such as energy independence:
“If you work on models, the models should also integrate external costs that are indirect
effects of benefit”.

Second, the governmental officers indicated a preference for models that can sup-
port the design of energy and mobility infrastructure. We found that designing models
while considering the different responsibilities of local and regional governments is crucial.
Models that can simulate the adaptation strategies of local energy and mobility infrastruc-
ture in accordance with future projections (e.g., the trend of electric vehicle purchasing)
and regulations (e.g., the EU’s zero-emission policies) appear to be relevant to the local
government level, according to a municipality officer: “As a city, [. . . ] we don’t have
any influences about car manufacturers. [. . . ] How are we coping with the grid capacity
shortage? How are we combining it with the other mobility transition programs?” On the
other hand, models that can present changes in regional energy infrastructure potentially
made by such local initiatives and industries would be helpful for regional governments.
A regional energy infrastructure planner highlighted the challenge of assessing proposals
for developing energy supply systems that could accommodate renewable energy parks
and electric vehicles. The proposals submitted by companies responsible for designing and
implementing these systems often presented the best-case scenarios from the companies’
point of view. However, as a province, it was crucial to consider the values associated
with these system development solutions from the public’s perspective, including factors
such as land use, environmental impact, and potential effects on energy prices resulting
from their implementation. Such reflections required a thorough review of alternatives, but
generating other options and comparing them to the company’s solutions was limited due
to the lack of resources, such as a “design tool” as mentioned by the interviewee.

Third, the interviewees highlighted models that allow stakeholders to spot future busi-
ness opportunities. For example, a government charging infrastructure practitioner noted
that models providing the expected demand for electric vehicle charging points, capacity,
and installation locations could facilitate tendering between municipalities and charging
point operators. An industry practitioner in charging point management emphasized the
usefulness of a model that can help identify potential business cases required in the near
future. This proactive approach aims to prevent user disappointment resulting from the
current lack of available charging poles at charging stations due to limited availability.
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Collaborative Infrastructure Design with a Diverse Set of Stakeholders

The interviewees revealed that models could also support the collaborative design
of regional energy systems among heterogeneous stakeholder groups. A provincial of-
ficer mentioned that planning a regional energy system change was challenging due to
inadequate communication between government and industry. To deliver the energy to
end-users, the province had to understand the type of energy required by the industry
ahead of time. According to the officer in question, there was a different understanding
between the types of energy carriers (e.g., hydrogen, green gas, electricity) to be provided
to the industrial area and the kind of energy (e.g., electricity, heat) required by the indus-
trial processes such as production. However, communication was hindered due to the
confidentiality of future industry plans. To address this, a provincial government officer
devised an idea to set up a “task force” that included a diverse range of stakeholders.
Using models, stakeholders could test their energy supply and demand plans and receive
feedback. Doing so could help to avoid mismatches between supply and demand and
identify better energy-sourcing options.

Models for Organizational Learning and Collaborative Infrastructure Design

Both use cases discussed earlier could be supported using computational simulations.
This is because the use cases involve predicting the future of the business environment and
regional infrastructure, analyzing the impacts of business solutions on multiple scales, and
testing the implications of various choices. These are the primary functions of simulation
(Section 2.2.4). In addition, developing sustainable business models is crucial to facilitate
changes in business practices.

Collaborative infrastructure design would demand decision-making models and
optimizations, as the collaborative process involves multiple stakeholders from different
sectors who may not hold homogenous decision-making criteria. Therefore, decision-
making modeling can help structure the shared decision-making process (Section 2.2.5).
Furthermore, since the collaborative process is participatory, exploring optimum design
decisions that meet diverse requirements served by optimizations is an essential activity
(Section 2.2.6).

Developing the models discussed above, including sustainable business models,
decision-making models, simulations, and optimizations, would ultimately require
a detailed articulation of the systems on which the models are founded (Section 2.2.1).
Additionally, transforming qualitative expressions into mathematical formulas is critical for
computational prediction and optimization (Section 2.2.3). Finally, it follows that applying
a range of diverse models while considering their interconnectedness would be crucial to
allow modeling researchers to produce models for effective engagement (Figure 2).

In addition, we consider that the term “model” risks creating confusion when engaging
stakeholders because some people lack modeling knowledge. We noted that interviewees
used atypical terms, such as “digital twin”. A municipal officer said: “Working with
a model-based [. . . ] or an agent-based model is really abstract for me or vague”.
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3.2.2. Supportive Traits of Models to Engage Stakeholders

Based on the interviews, we found that models with specific characteristics could be
better used. These uses include:

• Considering stakeholder perspectives while selecting phenomena to be modeled,
including key concepts and assumptions;

• Providing insights into the near future within a short amount of time;
• Conveying balanced information involving reliability and usability;
• Ensuring transparent communication of involved assumptions; and
• Enabling communication between other models.

To evaluate the six grouped models in Section 2.2 in terms of these characteristics, we
created Table 11.

Table 11. Assessing the degree to which the reviewed models possess the essential traits to
engage stakeholders.

Required Traits
of Models

Considering Stakeholder
Perspectives While

Selecting Phenomena

Providing
a Near-Future Projection

Balancing Reliability
against Usability, and

Communicating
Assumptions
Transparently

Enabling Real-Time
Communication
between Models

Qualitative
articulation models - - N -

Sustainable
business models •• - N -

Mathematical models - # N •
Simulations - # N •

Decision-making models •• - N -

Multi-objective
optimizations - - N #

Rating scale

(-) We barely observed models providing the feature.
(#) We observed a few models that partially provide the feature.

(•) We observed less than half of the models providing the feature.
(••) We observed more than half of the models providing the feature.

(N) The examination required subjective judgment.
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Considering Stakeholder Perspectives While Selecting Phenomena to Be Modeled

Perspectives may differ between the modeling researchers who create the models and
the stakeholders who utilize them for energy transitions. This can result in differences in
the phenomena the two groups consider and the interpretation of concepts, including their
reasoning procedures. To ensure that models are adopted and used appropriately, it is
crucial to represent relevant phenomena for researchers and stakeholders. For example,
modeled city traffic may be incomplete if pedestrian and passenger behaviors are not
considered from the perspective of municipal government officers. Additionally, the
interpretation of a concept can vary among researchers and stakeholders. For instance,
an energy solution business practitioner found an oversimplified definition of “mobility”
in a model for quantifying a carbon footprint that considered an equivalence between
commuting via personal vehicles and public transportation.

We examined whether the models reviewed in this study incorporated the perspectives
of model users. Sustainable business models were produced by considering stakehold-
ers’ interests through qualitative research, such as organizing workshops to co-create
locally adapted business models [70,71,73,74] (Section 2.2.2). Decision-making models
captured stakeholders’ decision-making procedures using customized research methods
such as the Fuzzy Analytic Hierarchy and Interval Analytic Hierarchy Processes [125–127]
(Section 2.2.5). In some mathematical models, stakeholders appeared to be involved as
research subjects whose behaviors were observed and measured rather than direct perspec-
tive providers. However, most models did not significantly engage stakeholders in the
model production process.

Providing Insights into the near Future within a Short Amount of Time

We determined the importance of quickly producing models that project the near
future. For example, an interviewee responsible for electric vehicle charging infrastructure
stressed the need for prompt future projections (one to three years) to facilitate electric
vehicle charging point tendering. A power grid management practitioner also indicated:
“I think 2040, 2050 is far ahead, far in the future. We already, or at least certain areas,
need outcome”. Thus, the interviewee in question recommended that model producers
communicate results iteratively and not wait until the modeling is complete: “I am also
open to more or less giving a quicker indication. [. . . ] for five days with an accuracy
degree [. . . ] then first you have an indication and [. . . ] then you do some more in-depth
analysis [. . . ]”.

The articles reviewed in Sections 2.2.1–2.2.4 showcased various modeling approaches
for future predictions. Simulations were primarily utilized for long-term future projections
spanning decades, such as exploring the consequences of international policy targets on na-
tional economies by specific years such as 2030 and 2050 [99–102]. However, there was a lack
of modeling methods that could provide near-future projections in a cost-efficient manner.

Conveying Balanced Information between Reliability and Usability

We noted that models could be designed to better focus on presenting the essential
information primarily by balancing reliability and usability rather than providing overly
detailed results. For example, a provincial officer warned against getting bogged down in
detail by recalling a model that outlined an intensely frequent prediction of the amount of
energy generated: “I don’t need from all these companies on the minutes [. . . ] but I need to
have an idea about what they use on the everyday level. [. . . ] You have to be reliable but
not on the very detail”.

An objective evaluation concerning whether models succeeded at balancing between
reliability and usability was challenging to achieve because the evaluation appeared to rely
on the subjective judgment of a stakeholder adopting models depending on the context of
model usage, personal preference, etc.
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Attaching Transparent Communication of Involved Assumptions

The interviews highlighted the importance of a clear description of the assumptions
made when constructing models to increase their credibility. An interviewee working
for a new product design research team used metaphorical expressions, namely “white
box” and a “grey box”, and discussed the transparency of model elements (e.g., codes).
In addition, a provincial officer recalled a modeling result in 2019 that projected that the
demand for electric vehicle fast charging stations in 2025 would be 5000, but in 2021 the
projected demand for 2025 had increased to 6000. The officer emphasized the importance of
communicating assumptions such as parameter settings to ensure the reliability of modeling
results. However, it was challenging to evaluate objectively whether the communication of
assumptions was transparent.

Enabling Communication between Other Models

During stakeholder interviews, it was suggested that artifacts capable of letting distant
models at different geographical scales and with different content communicate with each
other, preferably in real-time, would be beneficial. For example, a municipal civil servant
mentioned integrating models representing electric vehicle charging demand, grid capacity,
and traffic into a single, high-level model: “Well, we’re combining these models. [. . . ] they
put it in our heads, and we hope to say wise words. That’s how we do it at this moment”.
Likewise, a practitioner from an energy flexibility solution business preferred a model that
could communicate the impacts of intertwined system changes in national and European
energy systems (e.g., standardization).

Similar concepts of integrated models were also found in the literature, such as
frameworks for assessing the sustainability of urban mobility by involving multiple
models [39,43–45]. Mathematical models and simulations were also used to understand the
relationships between long-term policy targets and national economic and technological
systems [96,98,104,117]. However, the technical measures needed to enable the interfaces
were barely discussed.

4. Discussion

Stakeholders’ decision-making affects the transitions of energy and mobility systems.
Modeling research has developed models to support these decisions. Effective use of
models by stakeholders requires access to the models and an understanding of the char-
acteristics of models that could enhance usability. Understanding the various types of
models that exist allows us to employ suitable modeling approaches tailored to use con-
texts. In addition, understanding the essential characteristics of usable models is crucial
for effective utilization. We add to the understanding of both aspects by addressing the
last sub-research question, “How can models be designed to engage stakeholders in the
transitions effectively”?

4.1. Interpretations and Implications
4.1.1. The Models Covering the Transitions in the Representations

The overview of six grouped models representing energy and mobility transitions
revealed that authors developed and used them for different epistemic purposes (e.g., dis-
seminating cutting-edge knowledge to stakeholders and translating complex phenomena
into mathematical formulas). It may be the case that the models will effectively address
specific questions they are designed for. We, therefore, consider understanding the epis-
temic objectives and requirements of stakeholders to be an essential aspect of a preparation
stage. For instance, decision-making models would primarily suit situations where hetero-
geneous stakeholder groups must make shared decisions. On the other hand, extensive
computational simulations might not be the best tool for stakeholders needing only a brief
overview of emerging technologies and adoption behavior research.

This epistemology aspect did not appear to be widely addressed in the transition
modeling research. To engage stakeholders effectively, it appears to be crucial to diagnose
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the questions that need to be answered and to design models that meet the requirements for
epistemic activities. To achieve this, exploring how to determine the requirements based on
an understanding of inquiry in the context of transitions and how to relate the requirements
to selecting appropriate modeling approaches can be helpful.

4.1.2. Approaches for Designing the Models for Effective Stakeholder Engagement

To ensure that stakeholders use models effectively, we interviewed Dutch stakeholders
who had experience using models to make decisions. We highlighted two issues to be
addressed in order to contribute to effective transition model design. The first issue is
representing shared phenomena between modeling researchers and stakeholders while
simultaneously acknowledging potentially different epistemic requirements (Section 4.1.1).
The second issue is implementing technical measures to produce models cost-efficiently
and developing interface artifacts that can make models communicate simultaneously.
These two problems are distinct yet related.

We regard the first issue in transition model design as needing a mechanism to facilitate
the formulation of shared perception about the state of transitions between modeling
researchers and stakeholders and the elaboration of epistemic requirements. We saw the
diversity of phenomena represented in the models in Section 2.2. The transitions of such
diverse phenomena already amplify the complexity of transition modeling. Conceiving
the transitions necessitates individuals to make assumptions, hypotheses, etc. (Section 3.2).
If modeling researchers are unaware of this heterogeneity, their models may not be easily
accepted by stakeholders. The mechanism can be realized as a form of pre-communication
in an early stage of model development.

It could involve illustrating explored phenomena by using models and contemplating
the epistemic purposes and requirements of both researchers and stakeholders, which can
then support the identification of utilizable types of models (Section 2.2). Transparent
and credible models may be produced by outlining models that have the potential to be
developed and explaining the cognitive processes involved in the analysis of transitions.
During this process, modeling researchers may also communicate the scientific theories and
methods used for transcribing the phenomena into mathematical formulas and quantifica-
tion (Section 4.1.2). In addition, we observed the difficulty of examining some factors of
model usability (e.g., balanced reliability and usability) (Section 3.2.2). Modeling research
may benefit from tools that measure model usability. Nevertheless, we acknowledge that
the concepts discussed here must be rigorously examined scientifically and articulated to
avoid encouraging speculation.

Regarding the second problem of model design, providing technical solutions for
producing future predictions cost-efficiently and developing interfaces between distant
models, the research does not provide sufficient evidence to offer specific recommendations
for addressing this problem. However, one suggestion may involve experts from other
disciplines collaborating with modeling researchers to improve productivity and streamline
the interface development process.

4.2. Limitations of the Research and Suggestions for Future Research

In this section, we discuss research limitations and suggest future research
directions accordingly.

4.2.1. Systematic Literature Mapping: The Limited Scope of the Reviewed Scientific
Literature and Subjectivity Intervention in the Mapping Mechanism

Our research aimed to offer an impartial survey of existing models by utilizing an
iterative mapping approach and reviewing a broad range of scientific literature. Our
approach sought to avoid bias toward specific models or scientific disciplines. Nevertheless,
we suggest using diverse keywords when formulating search strings to better reflect
the diversity of scientific disciplines and associated themes in transition research (e.g.,
energy justice) (Section 2.1). Additionally, we encountered challenges during the literature
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mapping process due to our literature categorization approach and taxonomy of models.
The associated semantic issues appeared to impact how we identified and analyzed the
models (e.g., simulations as design space explorations versus technical system models). As
a result, we recommend mapping literature using multiple perspectives more effectively to
determine the progress of modeling research and its utility.

4.2.2. Stakeholder Interview: Limited Generalizability

Our exploratory research for understanding model usability from the stakeholder
perspective is valuable in raising awareness among the scientific community. Through the
interviews, we found that using models can benefit stakeholders’ learning about transitions
concerning their organizational performance and collaborative infrastructure design. As
discussed in Section 3.2.2, our research acknowledges the characteristics of usable models
articulated by the previous study (Section 1.1). Nonetheless, our sample size of 10 practi-
tioners from the Dutch energy and mobility sectors may limit the generalizability of our
findings (Section 3.1). Moreover, we faced challenges in harmonizing our interviewees’
diverse needs and use cases. Thus, we strongly suggest continuing the model user re-
search beyond exploratory research and expanding model usability by employing rigorous
scientific approaches.

4.2.3. The need to Validate the Findings with Modeling Researchers

In summary, our research aimed to facilitate stakeholder engagement by using models
and support modeling researchers’ modeling practices for engagement, as presented in
Table 1. However, we recognize that our research findings were not validated by other mod-
eling researchers, limiting our evaluation’s objectivity. Therefore, we recommend further
research to investigate the perspective of modeling researchers on engaging stakeholders
in their modeling practice. We can develop a more balanced and effective engagement
practice by considering both parties’ viewpoints.

5. Conclusions

This research aimed to understand the key considerations and approaches for effec-
tively engaging stakeholders in energy and mobility transitions using models. We answer
our sub-research questions and the main research question as follows.

RsQ1: “What models have been proposed in the scientific literature to understand energy and
mobility transitions?” In total, we explored six types of models through systematic literature
mapping: Qualitative articulation models, sustainable business models, mathematical
models, simulations, decision-making models, and multi-objective optimizations. Each type
of model held a set of unique forms, functions, and questions to be answered. Moreover,
the purpose of presenting each type of model differed (e.g., increasing stakeholder topic
awareness by using qualitative articulation models versus providing recommendations to
policymaking through simulating futures).

RsQ2: “What traits of models are supportive of stakeholder engagement?” From our inter-
views, we identified two instances in which models can be useful for stakeholders. First, we
consider that models can support internal organizational learning. Stakeholders can adjust
models to help them understand the progress being made by organizational solutions
toward achieving transitions, (re)design local and regional infrastructure adaptable to local
transition initiatives and national targets, and find business opportunities (e.g., installing
electric charging stations). Second, models can facilitate collaborative infrastructure design
across sectors and governments and mediate conversation. The scientific rigor of a model
is undoubtedly crucial. To engage stakeholders, the usability of a model also appears to
be an essential concern. We thereby identified five strategies: Considering stakeholders’
perspectives when selecting phenomena to be modeled, providing near-future projections,
balancing the reliability and usability of a model, transparent communication concerning
assumptions, and enabling communication between models.
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RsQ3: “How can models be designed to engage stakeholders in the transitions effectively?”
Designing models that engage stakeholders effectively can be initiated by understanding
their needs and the use contexts. Stakeholders’ needs and use contexts vary, such as the
required completeness and forms: Some stakeholders would require models to facilitate
complex future scenario simulations, while others would better appreciate the acquisition
of straightforward information. Involving stakeholders in the early process of model
development and articulating epistemic requirements, as well as suitable forms of models,
can be useful in ensuring effective model design.

Regarding the main research question, “What are the key considerations and ap-
proaches for effectively engaging stakeholders in energy and mobility transitions using
models?”, we would first stress the importance of pre-communication with stakeholders
at the early stage of model development. Communicating the collaboratively explored
phenomena transparently by using models and revealing the associated thought processes
of both researchers and stakeholders (e.g., through assumptions or hypotheses) appears
to be essential. Furthermore, modeling researchers may cooperate with researchers or
practitioners in other disciplines to enhance a model’s productivity or develop interface
artifacts that enable models to communicate better and generate coherent results.

Future research can increase the understanding of diverse models by reviewing
broader scientific disciplines relevant to the transitions and applying multiple modes
of observing models. We look forward to continuing the investigation into the model us-
ability aspect by interacting with stakeholders that are more diverse and larger in number.
Finally, understanding the perspective of modeling researchers is essential to maintain
the viability of stakeholder engagement. Thus, we suggest examining the challenges that
the modeling researchers may experience concerning the expansion of modeling research
practice toward engagement.

Our essential scientific contribution is to provide the perspective of model design to
engage stakeholders in the transitions by using models. Regarding the research outcomes,
we will further investigate the pre-communication concept that may facilitate the acquisi-
tion of both epistemic requirements of modeling researchers and stakeholders and a shared
transition perception mechanism as part of the model design process. First, we should
rigorously examine the validity of the concept of pre-communication.
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