91,669 research outputs found

    Automatic domain ontology extraction for context-sensitive opinion mining

    Get PDF
    Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline

    Motion Switching with Sensory and Instruction Signals by designing Dynamical Systems using Deep Neural Network

    Full text link
    To ensure that a robot is able to accomplish an extensive range of tasks, it is necessary to achieve a flexible combination of multiple behaviors. This is because the design of task motions suited to each situation would become increasingly difficult as the number of situations and the types of tasks performed by them increase. To handle the switching and combination of multiple behaviors, we propose a method to design dynamical systems based on point attractors that accept (i) "instruction signals" for instruction-driven switching. We incorporate the (ii) "instruction phase" to form a point attractor and divide the target task into multiple subtasks. By forming an instruction phase that consists of point attractors, the model embeds a subtask in the form of trajectory dynamics that can be manipulated using sensory and instruction signals. Our model comprises two deep neural networks: a convolutional autoencoder and a multiple time-scale recurrent neural network. In this study, we apply the proposed method to manipulate soft materials. To evaluate our model, we design a cloth-folding task that consists of four subtasks and three patterns of instruction signals, which indicate the direction of motion. The results depict that the robot can perform the required task by combining subtasks based on sensory and instruction signals. And, our model determined the relations among these signals using its internal dynamics.Comment: 8 pages, 6 figures, accepted for publication in RA-L. An accompanied video is available at this https://youtu.be/a73KFtOOB5

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home
    • …
    corecore