1,869 research outputs found

    Learning to Extract Motion from Videos in Convolutional Neural Networks

    Full text link
    This paper shows how to extract dense optical flow from videos with a convolutional neural network (CNN). The proposed model constitutes a potential building block for deeper architectures to allow using motion without resorting to an external algorithm, \eg for recognition in videos. We derive our network architecture from signal processing principles to provide desired invariances to image contrast, phase and texture. We constrain weights within the network to enforce strict rotation invariance and substantially reduce the number of parameters to learn. We demonstrate end-to-end training on only 8 sequences of the Middlebury dataset, orders of magnitude less than competing CNN-based motion estimation methods, and obtain comparable performance to classical methods on the Middlebury benchmark. Importantly, our method outputs a distributed representation of motion that allows representing multiple, transparent motions, and dynamic textures. Our contributions on network design and rotation invariance offer insights nonspecific to motion estimation

    Flow-Guided Feature Aggregation for Video Object Detection

    Full text link
    Extending state-of-the-art object detectors from image to video is challenging. The accuracy of detection suffers from degenerated object appearances in videos, e.g., motion blur, video defocus, rare poses, etc. Existing work attempts to exploit temporal information on box level, but such methods are not trained end-to-end. We present flow-guided feature aggregation, an accurate and end-to-end learning framework for video object detection. It leverages temporal coherence on feature level instead. It improves the per-frame features by aggregation of nearby features along the motion paths, and thus improves the video recognition accuracy. Our method significantly improves upon strong single-frame baselines in ImageNet VID, especially for more challenging fast moving objects. Our framework is principled, and on par with the best engineered systems winning the ImageNet VID challenges 2016, without additional bells-and-whistles. The proposed method, together with Deep Feature Flow, powered the winning entry of ImageNet VID challenges 2017. The code is available at https://github.com/msracver/Flow-Guided-Feature-Aggregation

    Photometric Depth Super-Resolution

    Full text link
    This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equall
    • …
    corecore