4,021 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Verifying Real-Time Systems using Explicit-time Description Methods

    Get PDF
    Timed model checking has been extensively researched in recent years. Many new formalisms with time extensions and tools based on them have been presented. On the other hand, Explicit-Time Description Methods aim to verify real-time systems with general untimed model checkers. Lamport presented an explicit-time description method using a clock-ticking process (Tick) to simulate the passage of time together with a group of global variables for time requirements. This paper proposes a new explicit-time description method with no reliance on global variables. Instead, it uses rendezvous synchronization steps between the Tick process and each system process to simulate time. This new method achieves better modularity and facilitates usage of more complex timing constraints. The two explicit-time description methods are implemented in DIVINE, a well-known distributed-memory model checker. Preliminary experiment results show that our new method, with better modularity, is comparable to Lamport's method with respect to time and memory efficiency

    Model checking embedded system designs

    Get PDF
    We survey the basic principles behind the application of model checking to controller verification and synthesis. A promising development is the area of guided model checking, in which the state space search strategy of the model checking algorithm can be influenced to visit more interesting sets of states first. In particular, we discuss how model checking can be combined with heuristic cost functions to guide search strategies. Finally, we list a number of current research developments, especially in the area of reachability analysis for optimal control and related issues

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Indefinite waitings in MIRELA systems

    Get PDF
    MIRELA is a high-level language and a rapid prototyping framework dedicated to systems where virtual and digital objects coexist in the same environment and interact in real time. Its semantics is given in the form of networks of timed automata, which can be checked using symbolic methods. This paper shows how to detect various kinds of indefinite waitings in the components of such systems. The method is experimented using the PRISM model checker.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Conformance Verification of Normative Specifications using C-O Diagrams

    Full text link
    C-O Diagrams have been introduced as a means to have a visual representation of normative texts and electronic contracts, where it is possible to represent the obligations, permissions and prohibitions of the different signatories, as well as what are the penalties in case of not fulfillment of their obligations and prohibitions. In such diagrams we are also able to represent absolute and relative timing constrains. In this paper we consider a formal semantics for C-O Diagrams based on a network of timed automata and we present several relations to check the consistency of a contract in terms of realizability, to analyze whether an implementation satisfies the requirements defined on its contract, and to compare several implementations using the executed permissions as criteria.Comment: In Proceedings FLACOS 2012, arXiv:1209.169

    Verifying collision avoidance behaviours for unmanned surface vehicles using probabilistic model checking

    Get PDF
    Collision avoidance is an essential safety requirement for unmanned surface vehicles (USVs). Normally, its practical verification is non-trivial, due to the stochastic behaviours of both the USVs and the intruders. This paper presents the probabilistic timed automata (PTAs) based formalism for three collision avoidance behaviours of USVs in uncertain dynamic environments, which are associated with the crossing situation in COLREGs. Steering right, acceleration, and deceleration are considered potential evasive manoeuvres. The state-of-the-art prism model checker is applied to analyse the underlying models. This work provides a framework and practical application of the probabilistic model checking for decision making in collision avoidance for USVs
    corecore