20 research outputs found

    Degeneration of four wave mixing in 500 m step index two mode fiber

    Get PDF
    Four wave mixing (FWM) in two-mode fiber was experimentally demonstrated at 24.7 dBm of output Erbium doped fiber amplifier (EDFA). The 0.5 km two mode fiber in laser cavity enhances the performance of four wave mixing by suppressing the homogenous broadening effect in erbium-doped fiber and perform a stable oscillation. At output EDFA approaches to 24.7 dBm, FWM is generated and the increasing of output EDFA induced the optical signal to noise ratio (OSNR) of all laser peaks

    Identifying Unnatural Variation in Precision Rotational Part Manufacturing

    Get PDF
    In the manufacturing industry, it is well known that in-process variation is a major contributor to poor quality products. In order to fabricate a precise part, the source of unnatural variation (UV) needed to be properly identified, monitored and controlled while the process is running. In relation to this issue, this study aims to identify the error root causes of UV in bivariate process associated with statistical process control (SPC) chart patterns. In research methodology, in-process variation in manufacturing roller head component was discussed systematically based on real product of roller head, computer aided design (CAD) and statistical process control (SPC) chart patterns. Initially, the CAD software was used to model a precise rotational part, and to analyse the cause of UV. Then, the programming software was used to generate the artificial SPC data streams based on an established mathematical model. Data generation also involved linear correlation between two dependent variables (bivariate). The outcome of this study would be helpful for industrial practitioners as a database when applying SPC for monitoring bivariate process

    Recognition of Concurrent Control Chart Patterns in Autocorrelated Processes Using Support Vector Machine

    Get PDF
    Control chart pattern recognition (CCPR) is an important issue in statistical process control because unnatural control chart patterns (CCPs) exhibited on control charts can be associated with specific causes that adversely affect the manufacturing processes. In recent years, many machine learning techniques have been successfully applied to CCPR. However, such existing research for CCPR has mostly been developed for identification of basic CCPs (Shift Patterns, Trend Patterns, Cyclic Pattern and Systematic Pattern). Little attention has been given to the identification of concurrent CCPs (two or more basic CCPs occurring simultaneously) which are commonly encountered in practical manufacturing processes. In addition, these existing researches also assume the process data are independently and identically distributed which may not be appropriate for certain manufacturing processes. This study proposes a support vector machine (SVM) approach to identify concurrent CCPsfor a multivariate process with autocorrelated observations which can be characterized by afirst order autoregressive (AR(1)) model. The numerical results indicate that the proposed model can effectively identify two concurrent identical CCPs but for those cases involving one trend pattern and one shift pattern, their recognition accuracy deteriorates to around 20% to 50% depending on the autocorrelation coefficients used in the data model

    Control chart patterns recognition using run rules and fuzzy classifiers considering limited data

    Get PDF
    Statistical process control chart is a common tool used for monitoring and detecting process variations. The process data streams, when graphically plotted on control chart reveal useful patterns. These patterns can be associated with possible assignable causes if properly recognized. These patterns detections are useful for process diagnostic. Different types of control chart pattern recognition methods are reported in literature. Most of the existing data-driven methods require a large amount for training data before putting into practice. Short production run and short product life cycle processes are usually constrained with limited data availability. Thus there is a need to investigate and develop an effective control chart pattern recogniser (CCPR) methods for process monitoring with limited data. Two methods were investigated in this study to recognize fully developed control chart patterns for process with limited data on X-bar chart. The first method was combination of selected run rules, as run rules do not require training data. Classifiers based on fuzzy set theory were the second method. The performance of these methods was evaluated based on percent correct recognition. The methods proposed in this study significantly reduced the requirements of training data. Different combination of Nelson’s run rules; R2,R5,R6 for shift and trend, R3,R5,R6 for cyclic, R4,R5,R8 for systematic and R7 for stratification patterns were found effective for recognizing. Differentiating between the shift and trend patterns remains challenging task for the run rules. Heuristic based Mamdani fuzzy classifier with fuzzy set simplification operations using statistical features gave more than ninety percent correct patterns recognition results. Adaptive neuro fuzzy inference system (ANFIS) fuzzy classifier with fuzzy c-mean using statistical features gave more prominent results. The findings suggest that the proposed methods can be used in short production run and the process with limited data. The fuzzy classifiers can be further studied for different input representation

    Aplicación de la perceptrón en el gráfico de control de mediciones individuales

    Get PDF
    In this article the Perceptron artificial neural network is applied as a classifier system of out of control points, in the field of contrlol chart for individual measurements. The use of geometric properties of the Perceptron as a training method is introduced, replacing in consequence to the known training methods. Some experiments with numerical databases contaminated with altered data in global average was performed, and the ability of the detection of \out of control points" of the control chart with the implementation of the Perceptron trained by geometry was compared. The results reveal greater capacity in the Perceptron. This approach can be generalized to other types of control charts and patterns of natural and special variation, not considered in this research.En este artículo se aplica la red neuronal artificial Perceptrón como sistema clasificador de puntos fuera de control en el ámbito de la carta de control de mediciones individuales. Se introduce el uso de las propiedades geométricas de la Perceptrón como método de entrenamiento para sustituir, en consecuencia, a los métodos de entrenamiento conocidos. Se experimentó con bases de datos numéricas contaminadas con datos alterados en su media global y se comparó la capacidad de la detección de puntos fuera de control de la carta de control con la aplicación de la Perceptrón entrenada por geometría. Los resultados revelan mayor capacidad en la Perceptrón en diferentes porcentajes de contaminación. Esta propuesta puede ser generalizada a otros tipos de gráficos de control y a patrones de variación especial y natural no considerados en esta investigación

    An Unsupervised Consensus Control Chart Pattern Recognition Framework

    Get PDF
    Early identification and detection of abnormal time series patterns is vital for a number of manufacturing. Slide shifts and alterations of time series patterns might be indicative of some anomaly in the production process, such as machinery malfunction. Usually due to the continuous flow of data monitoring of manufacturing processes requires automated Control Chart Pattern Recognition(CCPR) algorithms. The majority of CCPR literature consists of supervised classification algorithms. Less studies consider unsupervised versions of the problem. Despite the profound advantage of unsupervised methodology for less manual data labeling their use is limited due to the fact that their performance is not robust enough for practical purposes. In this study we propose the use of a consensus clustering framework. Computational results show robust behavior compared to individual clustering algorithms

    Recognition of Process Disturbances for an SPC/EPC Stochastic System Using Support Vector Machine and Artificial Neural Network Approaches

    Get PDF
    Because of the excellent performance on monitoring and controlling an autocorrelated process, the integration of statistical process control (SPC) and engineering process control (EPC) has drawn considerable attention in recent years. Both theoretical and empirical findings have suggested that the integration of SPC and EPC can be an effective way to improve the quality of a process, especially when the underlying process is autocorrelated. However, because EPC compensates for the effects of underlying disturbances, the disturbance patterns are embedded and hard to be recognized. Effective recognition of disturbance patterns is a very important issue for process improvement since disturbance patterns would be associated with certain assignable causes which affect the process. In practical situations, after compensating by EPC, the underlying disturbance patterns could be of any mixture types which are totally different from the original patterns. This study proposes the integration of support vector machine (SVM) and artificial neural network (ANN) approaches to recognize the disturbance patterns of the underlying disturbances. Experimental results revealed that the proposed schemes are able to effectively recognize various disturbance patterns of an SPC/EPC system

    Quality control using convolutional neural networks applied to samples of very small size

    Full text link
    Although there is extensive literature on the application of artificial neural networks (NNs) in quality control (QC), to monitor the conformity of a process to quality specifications, at least five QC measurements are required, increasing the related cost. To explore the application of neural networks to samples of QC measurements of very small size, four one-dimensional (1-D) convolutional neural networks (CNNs) were designed, trained, and tested with datasets of n n -tuples of simulated standardized normally distributed QC measurements, for 1n4 1 \leq n \leq 4. The designed neural networks were compared to statistical QC functions with equal probabilities for false rejection, applied to samples of the same size. When the n n -tuples included at least two QC measurements distributed as N(μ,σ2) \mathcal{N}(\mu, \sigma^2) , where 0.2<μ6.0 0.2 < |\mu| \leq 6.0 , and 1.0<σ7.0 1.0 < \sigma \leq 7.0 , the designed neural networks outperformed the respective statistical QC functions. Therefore, 1-D CNNs applied to samples of 2-4 quality control measurements can be used to increase the probability of detection of the nonconformity of a process to the quality specifications, with lower cost.Comment: Article: 21 pages, 5 figures, 8 tables. Appendix: 166 pages, 178 figure
    corecore