15,567 research outputs found

    Drawings of Complete Multipartite Graphs up to Triangle Flips

    Get PDF
    For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its incident edges, represented by the labels of their other endpoints. The extended rotation system (ERS) of the drawing is the collection of the rotations of all vertices and crossings. A drawing is simple if each pair of edges has at most one common point. Gioan's Theorem states that for any two simple drawings of the complete graph Kn with the same crossing edge pairs, one drawing can be transformed into the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3). This operation refers to the act of moving one edge of a triangular cell formed by three pairwise crossing edges over the opposite crossing of the cell, via a local transformation. We investigate to what extent Gioan-type theorems can be obtained for wider classes of graphs. A necessary (but in general not sufficient) condition for two drawings of a graph to be transformable into each other by a sequence of triangle flips is that they have the same ERS. As our main result, we show that for the large class of complete multipartite graphs, this necessary condition is in fact also sufficient. We present two different proofs of this result, one of which is shorter, while the other one yields a polynomial time algorithm for which the number of needed triangle flips for graphs on n vertices is bounded by O(n16). The latter proof uses a Carathéodory-type theorem for simple drawings of complete multipartite graphs, which we believe to be of independent interest. Moreover, we show that our Gioan-type theorem for complete multipartite graphs is essentially tight in the following sense: For the complete bipartite graph Km, n minus two edges and Km, n plus one edge for any m, n ≥ 4, as well as Kn minus a 4-cycle for any n ≥ 5, there exist two simple drawings with the same ERS that cannot be transformed into each other using triangle flips. So having the same ERS does not remain sufficient when removing or adding very few edges

    Non-vanishing of Betti numbers of edge ideals and complete bipartite subgraphs

    Full text link
    Given a finite simple graph one can associate the edge ideal. In this paper we prove that a graded Betti number of the edge ideal does not vanish if the original graph contains a set of complete bipartite subgraphs with some conditions. Also we give a combinatorial description for the projective dimension of the edge ideals of unmixed bipartite graphs.Comment: 19 pages; v2: we added Section 7 and revised mainly Sections 5 and 6; v3 improves the exposition throughou

    Opinion Dynamics in Social Networks with Hostile Camps: Consensus vs. Polarization

    Get PDF
    Most of the distributed protocols for multi-agent consensus assume that the agents are mutually cooperative and "trustful," and so the couplings among the agents bring the values of their states closer. Opinion dynamics in social groups, however, require beyond these conventional models due to ubiquitous competition and distrust between some pairs of agents, which are usually characterized by repulsive couplings and may lead to clustering of the opinions. A simple yet insightful model of opinion dynamics with both attractive and repulsive couplings was proposed recently by C. Altafini, who examined first-order consensus algorithms over static signed graphs. This protocol establishes modulus consensus, where the opinions become the same in modulus but may differ in signs. In this paper, we extend the modulus consensus model to the case where the network topology is an arbitrary time-varying signed graph and prove reaching modulus consensus under mild sufficient conditions of uniform connectivity of the graph. For cut-balanced graphs, not only sufficient, but also necessary conditions for modulus consensus are given.Comment: scheduled for publication in IEEE Transactions on Automatic Control, 2016, vol. 61, no. 7 (accepted in August 2015

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat

    Estimating parameters of a multipartite loglinear graph model via the EM algorithm

    Full text link
    We will amalgamate the Rash model (for rectangular binary tables) and the newly introduced α\alpha-β\beta models (for random undirected graphs) in the framework of a semiparametric probabilistic graph model. Our purpose is to give a partition of the vertices of an observed graph so that the generated subgraphs and bipartite graphs obey these models, where their strongly connected parameters give multiscale evaluation of the vertices at the same time. In this way, a heterogeneous version of the stochastic block model is built via mixtures of loglinear models and the parameters are estimated with a special EM iteration. In the context of social networks, the clusters can be identified with social groups and the parameters with attitudes of people of one group towards people of the other, which attitudes depend on the cluster memberships. The algorithm is applied to randomly generated and real-word data

    On the Minimum Degree up to Local Complementation: Bounds and Complexity

    Full text link
    The local minimum degree of a graph is the minimum degree reached by means of a series of local complementations. In this paper, we investigate on this quantity which plays an important role in quantum computation and quantum error correcting codes. First, we show that the local minimum degree of the Paley graph of order p is greater than sqrt{p} - 3/2, which is, up to our knowledge, the highest known bound on an explicit family of graphs. Probabilistic methods allows us to derive the existence of an infinite number of graphs whose local minimum degree is linear in their order with constant 0.189 for graphs in general and 0.110 for bipartite graphs. As regards the computational complexity of the decision problem associated with the local minimum degree, we show that it is NP-complete and that there exists no k-approximation algorithm for this problem for any constant k unless P = NP.Comment: 11 page
    • …
    corecore