766 research outputs found

    Lossy compression of discrete sources via Viterbi algorithm

    Full text link
    We present a new lossy compressor for discrete-valued sources. For coding a sequence xnx^n, the encoder starts by assigning a certain cost to each possible reconstruction sequence. It then finds the one that minimizes this cost and describes it losslessly to the decoder via a universal lossless compressor. The cost of each sequence is a linear combination of its distance from the sequence xnx^n and a linear function of its kthk^{\rm th} order empirical distribution. The structure of the cost function allows the encoder to employ the Viterbi algorithm to recover the minimizer of the cost. We identify a choice of the coefficients comprising the linear function of the empirical distribution used in the cost function which ensures that the algorithm universally achieves the optimum rate-distortion performance of any stationary ergodic source in the limit of large nn, provided that kk diverges as o(logn)o(\log n). Iterative techniques for approximating the coefficients, which alleviate the computational burden of finding the optimal coefficients, are proposed and studied.Comment: 26 pages, 6 figures, Submitted to IEEE Transactions on Information Theor

    On approximate pattern matching for a class of Gibbs random fields

    Get PDF
    We prove an exponential approximation for the law of approximate occurrence of typical patterns for a class of Gibssian sources on the lattice Zd\mathbb{Z}^d, d2d\ge2. From this result, we deduce a law of large numbers and a large deviation result for the waiting time of distorted patterns.Comment: Published at http://dx.doi.org/10.1214/105051605000000827 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Generalized Asymptotic Equipartition Property: Necessary and Sufficient Conditions

    Full text link
    Suppose a string X1n=(X1,X2,...,Xn)X_1^n=(X_1,X_2,...,X_n) generated by a memoryless source (Xn)n1(X_n)_{n\geq 1} with distribution PP is to be compressed with distortion no greater than D0D\geq 0, using a memoryless random codebook with distribution QQ. The compression performance is determined by the ``generalized asymptotic equipartition property'' (AEP), which states that the probability of finding a DD-close match between X1nX_1^n and any given codeword Y1nY_1^n, is approximately 2nR(P,Q,D)2^{-n R(P,Q,D)}, where the rate function R(P,Q,D)R(P,Q,D) can be expressed as an infimum of relative entropies. The main purpose here is to remove various restrictive assumptions on the validity of this result that have appeared in the recent literature. Necessary and sufficient conditions for the generalized AEP are provided in the general setting of abstract alphabets and unbounded distortion measures. All possible distortion levels D0D\geq 0 are considered; the source (Xn)n1(X_n)_{n\geq 1} can be stationary and ergodic; and the codebook distribution can have memory. Moreover, the behavior of the matching probability is precisely characterized, even when the generalized AEP is not valid. Natural characterizations of the rate function R(P,Q,D)R(P,Q,D) are established under equally general conditions.Comment: 19 page

    Rate-Distortion via Markov Chain Monte Carlo

    Full text link
    We propose an approach to lossy source coding, utilizing ideas from Gibbs sampling, simulated annealing, and Markov Chain Monte Carlo (MCMC). The idea is to sample a reconstruction sequence from a Boltzmann distribution associated with an energy function that incorporates the distortion between the source and reconstruction, the compressibility of the reconstruction, and the point sought on the rate-distortion curve. To sample from this distribution, we use a `heat bath algorithm': Starting from an initial candidate reconstruction (say the original source sequence), at every iteration, an index i is chosen and the i-th sequence component is replaced by drawing from the conditional probability distribution for that component given all the rest. At the end of this process, the encoder conveys the reconstruction to the decoder using universal lossless compression. The complexity of each iteration is independent of the sequence length and only linearly dependent on a certain context parameter (which grows sub-logarithmically with the sequence length). We show that the proposed algorithms achieve optimum rate-distortion performance in the limits of large number of iterations, and sequence length, when employed on any stationary ergodic source. Experimentation shows promising initial results. Employing our lossy compressors on noisy data, with appropriately chosen distortion measure and level, followed by a simple de-randomization operation, results in a family of denoisers that compares favorably (both theoretically and in practice) with other MCMC-based schemes, and with the Discrete Universal Denoiser (DUDE).Comment: 35 pages, 16 figures, Submitted to IEEE Transactions on Information Theor

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods
    corecore