247 research outputs found

    Streaming algorithms for bin packing and vector scheduling

    Get PDF
    Problems involving the efficient arrangement of simple objects, as captured by bin packing and makespan scheduling, are fundamental tasks in combinatorial optimization. These are well understood in the traditional online and offline cases, but have been less well-studied when the volume of the input is truly massive, and cannot even be read into memory. This is captured by the streaming model of computation, where the aim is to approximate the cost of the solution in one pass over the data, using small space. As a result, streaming algorithms produce concise input summaries that approximately preserve the optimum value. We design the first efficient streaming algorithms for these fundamental problems in combinatorial optimization. For BIN PACKING, we provide a streaming asymptotic (1 + ε)-approximation wit

    Streaming algorithms for bin packing and vector scheduling

    Get PDF
    Problems involving the efficient arrangement of simple objects, as captured by bin packing and makespan scheduling, are fundamental tasks in combinatorial optimization. These are well understood in the traditional online and offline cases, but have been less well-studied when the volume of the input is truly massive, and cannot even be read into memory. This is captured by the streaming model of computation, where the aim is to approximate the cost of the solution in one pass over the data, using small space. As a result, streaming algorithms produce concise input summaries that approximately preserve the optimum value. We design the first efficient streaming algorithms for these fundamental problems in combinatorial optimization. For BIN PACKING, we provide a streaming asymptotic (1 + ε)-approximation wit

    Streaming algorithms for bin packing and vector scheduling

    Get PDF
    Problems involving the efficient arrangement of simple objects, as captured by bin packing and makespan scheduling, are fundamental tasks in combinatorial optimization. These are well understood in the traditional online and offline cases, but have been less well-studied when the volume of the input is truly massive, and cannot even be read into memory. This is captured by the streaming model of computation, where the aim is to approximate the cost of the solution in one pass over the data, using small space. As a result, streaming algorithms produce concise input summaries that approximately preserve the optimum value. We design the first efficient streaming algorithms for these fundamental problems in combinatorial optimization. For BIN PACKING, we provide a streaming asymptotic (1 + ε)-approximation wit

    A Simple PTAS for the Dual Bin Packing Problem and Advice Complexity of Its Online Version

    Get PDF
    Recently, Renault (2016) studied the dual bin packing problem in the per-request advice model of online algorithms. He showed that given O(1/eps) advice bits for each input item allows approximating the dual bin packing problem online to within a factor of 1+eps. Renault asked about the advice complexity of dual bin packing in the tape-advice model of online algorithms. We make progress on this question. Let s be the maximum bit size of an input item weight. We present a conceptually simple online algorithm that with total advice O((s + log n)/eps^2) approximates the dual bin packing to within a 1+eps factor. To this end, we describe and analyze a simple offline PTAS for the dual bin packing problem. Although a PTAS for a more general problem was known prior to our work (Kellerer 1999, Chekuri and Khanna 2006), our PTAS is arguably simpler to state and analyze. As a result, we could easily adapt our PTAS to obtain the advice-complexity result. We also consider whether the dependence on s is necessary in our algorithm. We show that if s is unrestricted then for small enough eps > 0 obtaining a 1+eps approximation to the dual bin packing requires Omega_eps(n) bits of advice. To establish this lower bound we analyze an online reduction that preserves the advice complexity and approximation ratio from the binary separation problem due to Boyar et al. (2016). We define two natural advice complexity classes that capture the distinction similar to the Turing machine world distinction between pseudo polynomial time algorithms and polynomial time algorithms. Our results on the dual bin packing problem imply the separation of the two classes in the advice complexity world

    Online Demand Scheduling with Failovers

    Get PDF
    Motivated by cloud computing applications, we study the problem of how to optimally deploy new hardware subject to both power and robustness constraints. To model the situation observed in large-scale data centers, we introduce the Online Demand Scheduling with Failover problem. There are m identical devices with capacity constraints. Demands come one-by-one and, to be robust against a device failure, need to be assigned to a pair of devices. When a device fails (in a failover scenario), each demand assigned to it is rerouted to its paired device (which may now run at increased capacity). The goal is to assign demands to the devices to maximize the total utilization subject to both the normal capacity constraints as well as these novel failover constraints. These latter constraints introduce new decision tradeoffs not present in classic assignment problems such as the Multiple Knapsack problem and AdWords. In the worst-case model, we design a deterministic ? 1/2-competitive algorithm, and show this is essentially tight. To circumvent this constant-factor loss, which represents substantial capital losses for big cloud providers, we consider the stochastic arrival model, where all demands come i.i.d. from an unknown distribution. In this model we design an algorithm that achieves sub-linear additive regret (i.e. as OPT or m increases, the multiplicative competitive ratio goes to 1). This requires a combination of different techniques, including a configuration LP with a non-trivial post-processing step and an online monotone matching procedure introduced by Rhee and Talagrand
    • …
    corecore