1,461 research outputs found

    A performance comparison of fullband and different subband adaptive equalisers

    Get PDF
    We present two different fractionally spaced (FS) equalisers based on subband methods, with the aim of reducing the computational complexity and increasing the convergence rate of a standard fullband FS equaliser. This is achieved by operating in decimated subbands; at a considerably lower update rate and by exploiting the prewhitening effect that a filter bank has on the considerable spectral dynamics of a signal received through a severely distorting channel. The two presented subband structures differ in their level of realising the feedforward and feedback part of the equaliser in the subband domain, with distinct impacts on the updating. Simulation results pinpoint the faster convergence at lower cost for the proposed subband equalisers

    Filter bank based fractional delay filter implementation for widely accurate broadband steering vectors

    Get PDF
    Applications such as broadband angle of arrival estimation require the implementation of accurate broadband steering vectors, which generally rely on fractional delay filter designs. These designs commonly exhibit a rapidly decreasing performance as the Nyquist rate is approached. To overcome this, we propose a filter bank based approach, where standard fractional delay filters operate on a series of frequency-shifted oversampled subband signals, such that they appear in the filter's lowpass region. Simulations demonstrate the appeal of this approach

    Implementation of accurate broadband steering vectors for broadband angle of arrival estimation

    Get PDF
    Motivated by accurate broadband steering vector requirements for applications such as broadband angle of arrival estimation, we review fractional delay filter designs. A common feature across these are their rapidly decreasing performance as the Nyquist rate is approached. We propose a filter bank based approach, which operates standard fractional delay filters on a series of frequency-shifted subband signals, such that they appear in the filters’ lowpass region. We demonstrate the appeal of this approach in simulations

    Optimal cosine modulated nonuniform linear phase FIR filter bank design via stretching and shifting frequency response of prototype filter

    Get PDF
    This paper proposes an optimal cosine modulated nonuniform linear phase finite impulse response (FIR) filter bank design. The frequency responses of all the analysis filters and the synthesis filters of the filter bank are derived based on both stretching and shifting the frequency response of the prototype filter. The total aliasing error of the filter bank is minimized subject to a specification on the maximum amplitude distortion of the filter bank as well as specifications on both the maximum passband ripple magnitude and the maximum stopband ripple magnitude of the prototype filter. This filter bank design problem is actually a functional inequality constrained optimization problem. Our recently developed integration approach is employed for solving the problem. Computer numerical simulation results show that our proposed design method outperforms existing design methods

    MIMO-UFMC Transceiver Schemes for Millimeter Wave Wireless Communications

    Full text link
    The UFMC modulation is among the most considered solutions for the realization of beyond-OFDM air interfaces for future wireless networks. This paper focuses on the design and analysis of an UFMC transceiver equipped with multiple antennas and operating at millimeter wave carrier frequencies. The paper provides the full mathematical model of a MIMO-UFMC transceiver, taking into account the presence of hybrid analog/digital beamformers at both ends of the communication links. Then, several detection structures are proposed, both for the case of single-packet isolated transmission, and for the case of multiple-packet continuous transmission. In the latter situation, the paper also considers the case in which no guard time among adjacent packets is inserted, trading off an increased level of interference with higher values of spectral efficiency. At the analysis stage, the several considered detection structures and transmission schemes are compared in terms of bit-error-rate, root-mean-square-error, and system throughput. The numerical results show that the proposed transceiver algorithms are effective and that the linear MMSE data detector is capable of well managing the increased interference brought by the removal of guard times among consecutive packets, thus yielding throughput gains of about 10 - 13 %\%. The effect of phase noise at the receiver is also numerically assessed, and it is shown that the recursive implementation of the linear MMSE exhibits some degree of robustness against this disturbance

    The role of the discrete-time Kalman-Yakubovitch-Popov lemma in designing statistically optimum FIR orthonormal filter banks

    Get PDF
    We introduce a new approach to design FIR energy compaction filters of arbitrary order N. The optimization of such filters is important due to their close connection to the design of an M-channel orthonormal filter bank adapted to the input signal statistics. The novel procedure finds the optimum product filter Fopt(Z)=H opt(Z)Hopt(Z^-1) corresponding to the compaction filter Hopt(z). The idea is to express F(z) as D(z)+D(z^-1) and reformulate the compaction problem in terms of the state space realization of the causal function D(z). For a fixed input power spectrum, the resulting filter Fopt(z) is guaranteed to be a global optimum due to the convexity of the new formulation. The new design method can be solved quite efficiently and with great accuracy using recently developed interior point methods and is extremely general in the sense that it works for any chosen M and any arbitrary filter length N. Finally, obtaining Hopt(z) from F opt(z) does not require an additional spectral factorization step. The minimum phase spectral factor can be obtained automatically by relating the state space realization of Dopt(z) to that of H opt(z)

    Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals

    Get PDF
    We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)M filters and periodically time-varying quantizers of period M. We study two special cases in great detail
    corecore