73 research outputs found

    Analysis of Urban Impervious Surface in Coastal Cities: A Case Study in Lianyungang, China

    Get PDF
    Impervious surface is an important indicator of the level of urbanization. It is of great significance to study the impervious surface to promote the sustainable development of the city. In the process of urban development, the increase of impervious surface cities is bound to be accompanied by a reduction of one or more types of land use in the city. This paper, taking Lianyungang as an example, introduces the methods of extracting urban impervious surface based on VIS model, NDVI (normalized vegetation index), MNDWI (modified normalized water body index), and unsupervised classification, analyzes the changes of impervious surface in Lianyungang from 1987 to 2014, and on this basis, analyzes the trend and driving forces of land use types in Lianyungang city in depth. The results show that the impervious surface of Lianyungang increased by a total of 29.70% between 1987 and 2014. While the impervious surface continues to increase, the area of cultivated land and coastal areas (including salt works and tidal flats) has been greatly reduced, and the types of land use have undergone significant changes

    An object-based classification approach for mapping "migrant housing" in the mega-urban area of the Pearl River Delta (China)

    Get PDF
    Urban areas develop on formal and informal levels. Informal development is often highly dynamic, leading to a lag of spatial information about urban structure types. In this work, an object-based remote sensing approach will be presented to map the migrant housing urban structure type in the Pearl River Delta, China. SPOT5 data were utilized for the classification (auxiliary data, particularly up-to-date cadastral data, were not available). A hierarchically structured classification process was used to create (spectral) independence from single satellite scenes and to arrive at a transferrable classification process. Using the presented classification approach, an overall classification accuracy of migrant housing of 68.0% is attained

    Trend Analysis of Las Vegas Land Cover and Temperature Using Remote Sensing

    Get PDF
    The Las Vegas urban area expanded rapidly during the last two decades. In order to understand the impacts on the environment, it is imperative that the rate and type of urban expansion is determined. Remote sensing is an efficient and effective way to study spatial change in urban areas and Spectral Mixture Analysis (SMA) is a valuable technique to retrieve subpixel landcover information from remote sensing images. In this research, urban growth trends in Las Vegas are studied over the 1990 to 2010 period using images from Landsat 5 Thematic Mapper (TM) and National Agricultural Imagery Program (NAIP). The SMA model of TM pixels is calibrated using high resolution NAIP classified image. The trends of land cover change are related to the land surface temperature trends derived from TM thermal infrared images. The results show that the rate of change of various land covers followed a linear trend in Las Vegas. The largest increase occurred in residential buildings followed by roads and commercial buildings. Some increase in vegetation cover in the form of tree cover and open spaces (grass) is also seen and there is a gradual decrease in barren land and bladed ground. Trend analysis of temperature shows a reduction over the new development areas with increased vegetation cover especially, in the form of golf courses and parks. This research provides a useful insight about the role of vegetation in ameliorating temperature rise in arid urban areas

    Analysis of urban heat island climates along the I-85/I-40 corridor in central North Carolina

    Get PDF
    Land surface temperature is a significant parameter for identifying micro-climatic changes and their spatial distributions relative to the urban environment. This paper examined and identified the urban heat islands and their spatial and temporal variability along the I-85/I-40 corridor in central North Carolina between 1990 and 2002. More specifically, the study focused on: (1) understanding the behavior of the spectral and thermal signatures of various land cover and land use types and their relationships with UHI development, and (2) applying digital remote sensing techniques to observe and measure the temporal and spatial variability of these surface heat islands. An assemblage of remotely sensed imagery (Landsat data), land surface temperature data, land cover and land use classifications, vegetation indices, and archived weather data was used to create maps, charts and statistical models to indicate and display the magnitude and spatial extent of these thermal climates. The data revealed that urbanization in the I-85/I-40 corridor region increased significantly between 1990 and 2002. Quantitative results from the satellite imagery also indicated that differences in land cover/ land use types, anthropogenic heat sources, and land surface temperature variability likely contributed to a temperature rise in the corridor study area thus thermal climate development

    Linking thermal variability and change to urban growth in Harare Metropolitan City using remotely sensed data.

    Get PDF
    Doctor of Philosophy in Environmental Science. University of KwaZulu-Natal. Pietermaritzburg, 2017.Urban growth, which involves Land Use and Land Cover Changes (LULCC), alters land surface thermal properties. Within the framework of rapid urban growth and global warming, land surface temperature (LST) and its elevation have potential significant socio-economic and environmental implications. Hence the main objectives of this study were to (i) map urban growth, (ii) link urban growth with indoor and outdoor thermal conditions and (iii) estimate implications of thermal trends on household energy consumption as well as predict future urban growth and temperature patterns in Harare Metropolitan, Zimbabwe. To achieve these objectives, broadband multi-spectral Landsat 5, 7 and 8, in-situ LULC observations, air temperature (Ta) and humidity data were integrated. LULC maps were obtained from multi-spectral remote sensing data and derived indices using the Support Vector Machine Algorithm, while LST were derived by applying single channel and split window algorithms. To improve remote sensing based urban growth mapping, a method of combining multi-spectral reflective data with thermal data and vegetation indices was tested. Vegetation indices were also combined with socio-demographic data to map the spatial distribution of heat vulnerability in Harare. Changes in outdoor human thermal discomfort in response to seasonal LULCC were evaluated, using the Discomfort Index (DI) derived parsimoniously from LST retrieved from Landsat 8 data. Responses of LST to long term urban growth were analysed for the period from 1984 to 2015. The implications of urban growth induced temperature changes on household air-conditioning energy demand were analysed using Landsat derived land surface temperature based Degree Days. Finally, the Cellular Automata Markov Chain (CAMC) analysis was used to predict future landscape transformation at 10-year time steps from 2015 to 2045. Results showed high overall accuracy of 89.33% and kappa index above 0.86 obtained, using Landsat 8 bands and indices. Similar results were observed when indices were used as stand-alone dataset (above 80%). Landsat 8 derived bio-physical surface properties and socio-demographic factors, showed that heat vulnerability was high in over 40% in densely built-up areas with low-income when compared to “leafy” suburbs. A strong spatial correlation (α = 0.61) between heat vulnerability and surface temperatures in the hot season was obtained, implying that LST is a good indicator of heat vulnerability in the area. LST based discomfort assessment approach retrieved DI with high accuracy as indicated by mean percentage error of less than 20% for each sub-season. Outdoor thermal discomfort was high in hot dry season (mean DI of 31oC), while the post rainy season was the most comfortable (mean DI of 19.9oC). During the hot season, thermal discomfort was very low in low density residential areas, which are characterised by forests and well maintained parks (DI ≤27oC). Long term changes results showed that high density residential areas increased by 92% between 1984 and 2016 at the expense of cooler green-spaces, which decreased by 75.5%, translating to a 1.98oC mean surface temperature increase. Due to surface alterations from urban growth between 1984 and 2015, LST increased by an average of 2.26oC and 4.10oC in the cool and hot season, respectively. This decreased potential indoor heating energy needed in the cool season by 1 degree day and increased indoor cooling energy during the hot season by 3 degree days. Spatial analysis showed that during the hot season, actual energy consumption was low in high temperature zones. This coincided with areas occupied by low income strata indicating that they do not afford as much energy and air conditioning facilities as expected. Besides quantifying and strongly relating with energy requirement, degree days provided a quantitative measure of heat vulnerability in Harare. Testing vegetation indices for predictive power showed that the Urban Index (UI) was comparatively the best predictor of future urban surface temperature (r = 0.98). The mean absolute percentage error of the UI derived temperature was 5.27% when tested against temperature derived from thermal band in October 2015. Using UI as predictor variable in CAMC analysis, we predicted that the low surface temperature class (18-28oC) will decrease in coverage, while the high temperature category (36-45oC) will increase in proportion covered from 42.5 to 58% of city, indicating further warming as the city continues to grow between 2015 and 2040. Overall, the findings of this study showed that LST, human thermal comfort and air-conditioning energy demand are strongly affected by seasonal and urban growth induced land cover changes. It can be observed that urban greenery and wetlands play a significant role of reducing LST and heat transfer between the surface and lower atmosphere and LST may continue unless effective mitigation strategies, such as effective vegetation cover spatial configuration are adopted. Limitations to the study included inadequate spatial and low temporal resolution of Landsat data, few in-situ observations of temperature and LULC classification which was area specific thus difficult for global comparison. Recommendations for future studies included data merging to improve spatial and temporal representation of remote sensing data, resource mobilization to increase urban weather station density and image classification into local climate zones which are of easy global interpretation and comparison

    A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale

    Get PDF
    Urban green spaces provide cooler microclimates and create localized urban cool islands and, as part of an adaption strategy to cope with future urban climate change, have been proposed as a means to mitigate the urban heat island effect. Numerous previous research papers have discussed green-space size, type, and vegetation density, as well as many other factors that might influence green-space cooling effects. However, little has been done with regard to exploring and quantifying the characteristics of the green-space cool island (UCI). It is also largely unknown whether or how the patterns of green space and land use, as well as the adjacent urban thermal environment, affect UCIs. In this paper, based on the satellite image, the land surface temperature (LST) was retrieved and the UCI was first identified, then the UCI intensity, one of the UCI characteristics, is defined and at last multiple linear regression models used to explore and quantify the combined effects of factors related to UCI intensity. The results show that the intensity differed between UCIs, and that it was correlated significantly with the extent of and mean temperature reduction associated with a UCI. Multiple linear regression analysis shows that UCI intensity was affected by areas of forest vegetation and its spatial arrangements, as well as by the composition of the cool island and its neighboring thermal environment. The study validated the suitability of using intensity as an indicator of the UCI. Identifying the UCI as a result of the green-space cooling effect, will help in the management and planning of the spatial arrangement of green spaces in cities to mitigate the effects of the urban heat environment and help cities adapt to the climate change

    Remote sensing of impervious surface area and its interaction with land surface temperature variability in Pretoria, South Africa

    Get PDF
    Includes summary for chapter 1-5Pretoria, City of Tshwane (COT), Gauteng Province, South Africa is one of the cities that continues to experience rapid urban sprawl as a result of population growth and various land use, leading to the change of natural vegetation lands into impervious surface area (ISA). These are associated with transportation (paved roads, streets, highways, parking lots and sidewalks) and cemented buildings and rooftops, made of completely or partly impermeable artificial materials (e.g., asphalt, concrete, and brick). These landscapes influence the micro-climate (e.g., land surface temperature, LST) of Pretoria City as evidenced by the recent heat waves characterized by high temperature. Therefore, understanding ISA changes will provide information for city planning and environmental management. Conventionally, deriving ISA information has been dependent on field surveys and manual digitizing from hard copy maps, which is laborious and time-consuming. Remote sensing provides an avenue for deriving spatially explicit and timely ISA information. Numerous methods have been developed to estimate and retrieve ISA and LST from satellite imagery. There are limited studies focusing on the extraction of ISA and its relationship with LST variability across major cities in Africa. The objectives of the study were: (i) to explore suitable spectral indices to improve the delineation of built-up impervious surface areas from very high resolution multispectral data (e.g., WorldView-2), (ii) to examine exposed rooftop impervious surface area based on different colours, and their interplay with surface temperature variability, (iii) to determine if the spatio-temporal built-up ISA distribution pattern in relation to elevation influences urban heat island (UHI) extent using an optimal analytical scale and (iv) to assess the spatio-temporal change characteristics of ISA expansion using the corresponding surface temperature (LST) at selected administrative subplace units (i.e., local region scale). The study objectives were investigated using remote sensing data such as WorldView-2 (a very high-resolution multispectral sensor), medium resolution Landsat-5 Thematic Mapper (TM) and Landsat-8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) at multiple scales. The ISA mapping methods used in this study can be grouped into two major categories: (i) the classification-based approach consisting of an object-based multi-class classification with overall accuracy ~90.4% and a multitemporal pixel-based binary classification. The latter yielded an area under the receiver operating characteristic curve (AUROC) = 0.8572 for 1995, AUROC = 0.8709 for 2005, AUROC = 0.8949 for 2015. (ii) the spectral index-based approach such as a new built-up extraction index (NBEI) derived in this study which yielded a high AUROC = ~0.82 compared to Built-up Area Index (BAI) (AUROC = ~0.73), Built-up spectral index (BSI) (AUROC = ~0.78), Red edge / Green Index (RGI) (AUROC = ~0.71) and WorldView-Built-up Index (WV-BI) (AUROC = ~0.67). The multitemporal built-up Index (BUI) also estimated with AUROC = 0.8487 for 1993, AUROC = 0.8302 for 2003, AUROC = 0.8790 for 2013. This indicates that all these methods employed, mapped ISA with high predictive accuracy from remote sensing data. Furthermore, the single-channel algorithm (SCA) was employed to retrieve LST from the thermal infrared (TIR) band of the Landsat images. The LST overall retrieval error for the entire study generally was quite low (overall root mean square RMSE ≤ ~1.48OC), which signifies that the Landsat TIR used provided good results for further analysis. In conclusion, the study showed the potential of multispectral remote sensing data to quantify ISA and evaluate its interaction with surface temperature variability despite the complex urban landscape in Pretoria. Also, using impervious surface LST as a complementary metric in this research helped to reveal urban heat island distribution and improve understanding of the spatio-temporal developing trend of urban expansion at a local spatial scale.Rapid urbanization because of population growth has led to the conversion of natural lands into large man-made landscapes which affects the micro-climate. Rooftop reflectivity, material, colour, slope, height, aspect, elevation are factors that potentially contribute to temperature variability. Therefore, strategically designed rooftop impervious surfaces have the potential to translate into significant energy, long-term cost savings, and health benefits. In this experimental study, we used the semi-automated Environment for Visualizing Images (ENVI) Feature Extraction that uses an object-based image analysis approach to classify rooftop based on colours from WorldView-2 (WV-2) image with overall accuracy ~90.4% and kappa coefficient ~0.87 respectively. The daytime retrieved surface temperatures were derived from 15m pan-sharpened Landsat 8 TIRS with a range of ~14.6OC to ~65OC (retrieval error = 0.38OC) for the same month covering Lynwood Ridge a residential area in Pretoria. Thereafter, the relationship between the rooftops and surface temperature (LST) were examined using multivariate statistical analysis. The results of this research reveal that the interaction between the applicable rooftop explanatory features (i.e., reflectance, texture measures and topographical properties) can explain over 22.10% of the variation in daytime rooftop surface temperatures. Furthermore, analysis of spatial distribution between mean daytime surface temperature and the residential rooftop indicated that the red, brown and green roof surfaces show lower LST values due to high reflectivity, high emissivity and low heat capacity during the daytime. The study concludes that in any study related to the spatial distribution of rooftop impervious surface area surface temperature, effect of various explanatory variables must be considered. The results of this experimental study serve as a useful approach for further application in urban planning and sustainable development.Evaluating changes in built-up impervious surface area (ISA) to understand the urban heat island (UHI) extent is valuable for governments in major cities in developing countries experiencing rapid urbanization and industrialization. This work aims at assessing built-up ISA spatio-temporal and influence on land surface temperature (LST) variability in the context of urban sprawl. Landsat-5 Thematic Mapper (TM) and Landsat-8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) were used to quantify ISA using built-up Index (BUI) and spatio-temporal dynamics from 1993-2013. Thereafter using a suitable analytical sampling scale that represents the estimated ISA-LST, we examined its distribution in relation to elevation using the Shuttle Radar Topography Mission (SRTM) and also create Getis-Ord Gi* statistics hotspot maps to display the UHI extent. The BUI ISA extraction results show a high predictive accuracy with area under the receiver operating characteristic curve, AUROC = 0.8487 for 1993, AUROC = 0.8302 for 2003, AUROC = 0.8790 for 2013. The ISA spatio-temporal changes within ten years interval time frame results revealed a 14% total growth rate during the study year. Based on a suitable analytical scale (90x90) for the hexagon polygon grid, the majority of ISA distribution across the years was at an elevation range of between >1200m – 1600m. Also, Getis-Ord Gi* statistics hotspot maps revealed that hotspot regions expanded through time with a total growth rate of 19% and coldspot regions decreased by 3%. Our findings can represent useful information for policymakers by providing a scientific basis for sustainable urban planning and management.Over the years, rapid urban growth has led to the conversion of natural lands into large man-made landscapes due to enhanced political and economic growth. This study assessed the spatio-temporal change characteristics of impervious surface area (ISA) expansion using its surface temperature (LST) at selected administrative subplace units (i.e., local region scale). ISA was estimated for 1995, 2005 and 2015 from Landsat-5 Thematic Mapper (TM) and Landsat-8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) images using a Random Forest (RF) algorithm. The spatio-temporal trends of ISA were assessed using an optimal analytical scale to aggregate ISA LST coupled with weighted standard deviational ellipse (SDE) method. The ISA was quantified with high predictive accuracy (i.e., AUROC = 0.8572 for 1995, AUROC = 0.8709 for 2005, AUROC = 0.8949 for 2015) using RF classifier. More than 70% of the selected administrative subplaces in Pretoria experienced an increase in growth rate (415.59%) between 1995 and 2015. LST computations from the Landsat TIRS bands yielded good results (RMSE = ~1.44OC, 1.40OC, ~0.86OC) for 1995, 2005 and 2015 respectively. Based on the hexagon polygon grid (90x90), the aggregated ISA surface temperature weighted SDE analysis results indicated ISA expansion in different directions at the selected administrative subplace units. Our findings can represent useful information for policymakers in evaluating urban development trends in Pretoria, City of Tshwane (COT).Globally, the unprecedented increase in population in many cities has led to rapid changes in urban landscape, which requires timely assessments and monitoring. Accurate determination of built-up information is vital for urban planning and environmental management. Often, the determination of the built-up area information has been dependent on field surveys, which is laborious and time-consuming. Remote sensing data is the only option for deriving spatially explicit and timely built-up area information. There are few spectral indices for built-up areas and often not accurate as they are specific to impervious material, age, colour, and thickness, especially using higher resolution images. The objective of this study is to test the utility of a new built-up extraction index (NBEI) using WorldView-2 to improve built-up material mapping irrespective of material type, age and colour. The new index was derived from spectral bands such as Green, Red edge, NIR1 and NIR2 bands that profoundly explain the variation in built-up areas on WorldView-2 image (WV-2). The result showed that NBEI improves the extraction of built-up areas with high accuracy (area under the receiver operating characteristic curve, AUROC = ~0.82) compared to the existing indices such as Built-up Area Index (BAI) (AUROC = ~0.73), Built-up spectral index (BSI) (AUROC = ~0.78 ), Red edge / Green Index (RGI) (AUROC = ~0.71) and WorldView-Built-up Index (WV-BI) (AUROC = ~0.67). The study demonstrated that the new built-up index could extract built-up areas using high-resolution images. The performance of NBEI could be attributed to the fact that it is not material specific, and would be necessary for urban area mapping.Environmental SciencesD. Phil. (Environmental Sciences

    Discriminant Analysis with Spatial Weights for Urban Land Cover Classification

    Get PDF
    Classifying urban area images is challenging because of the heterogeneous nature of the urban landscape resulting in mixed pixels and classes with highly variable spectral ranges. Approaches using ancillary data, such as knowledge based or expert systems, have shown to improve the classification accuracy in urban areas. Appropriate ancillary data, however, may not always be available. The goal of this study is to compare the results of the discriminant analysis statistical technique with discriminant analysis with spatial weights to classify urban land cover. Discriminant analysis is a statistical technique used to predict group membership for a target based on the linear combination of independent variables. Strict per pixel statistical analysis however does not consider the spatial dependencies among neighbouring pixels. Our study shows that approaches using ancillary data continue to outperform strict spectral classifiers but that using a spatial weight improved the results. Furthermore, results show that when the discriminant analysis technique works well then the spatially weighted approach performs better. However, when the discriminant analysis performs poorly, those poor results are magnified in the spatially weighted approach in the same study area. The study shows that for dominant classes, adding spatial weights improves the classification accuracy.

    An Evaluation of Surface Urban Heat Islands in Two Contrasting Cities

    Get PDF
    This thesis presents a comparative study on surface urban heat islands effects in Baghdad and Perth. The first part evaluates expansion of built-up areas and quantifies its effects on land surface temperature patterns. The second part examines the extent to which the urban thermal environment is influenced by spatial patterns of land use and land cover (LULC) categories. The final part investigates the thermophysical behaviour of various urban LULC categories using albedo and LST parameters
    corecore