21,184 research outputs found

    Robust Energy Management for Green and Survivable IP Networks

    Get PDF
    Despite the growing necessity to make Internet greener, it is worth pointing out that energy-aware strategies to minimize network energy consumption must not undermine the normal network operation. In particular, two very important issues that may limit the application of green networking techniques concern, respectively, network survivability, i.e. the network capability to react to device failures, and robustness to traffic variations. We propose novel modelling techniques to minimize the daily energy consumption of IP networks, while explicitly guaranteeing, in addition to typical QoS requirements, both network survivability and robustness to traffic variations. The impact of such limitations on final network consumption is exhaustively investigated. Daily traffic variations are modelled by dividing a single day into multiple time intervals (multi-period problem), and network consumption is reduced by putting to sleep idle line cards and chassis. To preserve network resiliency we consider two different protection schemes, i.e. dedicated and shared protection, according to which a backup path is assigned to each demand and a certain amount of spare capacity has to be available on each link. Robustness to traffic variations is provided by means of a specific modelling framework that allows to tune the conservatism degree of the solutions and to take into account load variations of different magnitude. Furthermore, we impose some inter-period constraints necessary to guarantee network stability and preserve the device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out with realistic networks operated with flow-based routing protocols (i.e. MPLS) show that significant savings, up to 30%, can be achieved also when both survivability and robustness are fully guaranteed

    Delay-Optimal Relay Selection in Device-to-Device Communications for Smart Grid

    Get PDF
    The smart grid communication network adopts a hierarchical structure which consists of three kinds of networks which are Home Area Networks (HANs), Neighborhood Area Networks (NANs), and Wide Area Networks (WANs). The smart grid NANs comprise of the communication infrastructure used to manage the electricity distribution to the end users. Cellular technology with LTE-based standards is a widely-used and forward-looking technology hence becomes a promising technology that can meet the requirements of different applications in NANs. However, the LTE has a limitation to cope with the data traffic characteristics of smart grid applications, thus require for enhancements. Device-to-Device (D2D) communications enable direct data transmissions between devices by exploiting the cellular resources, which could guarantee the improvement of LTE performances. Delay is one of the important communication requirements for the real-time smart grid applications. In this paper, the application of D2D communications for the smart grid NANs is investigated to improve the average end-to-end delay of the system. A relay selection algorithm that considers both the queue state and the channel state of nodes is proposed. The optimization problem is formulated as a constrained Markov decision process (CMDP) and a linear programming method is used to find the optimal policy for the CMDP problem. Simulation results are presented to prove the effectiveness of the proposed scheme

    A state-of-the-art review on torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains

    Get PDF
    © 2019, Levrotto and Bella. All rights reserved. Electric vehicles are the future of private passenger transportation. However, there are still several technological barriers that hinder the large scale adoption of electric vehicles. In particular, their limited autonomy motivates studies on methods for improving the energy efficiency of electric vehicles so as to make them more attractive to the market. This paper provides a concise review on the current state-of-the-art of torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains (FEVIADs). Starting from the operating principles, which include the "control allocation" problem, the peculiarities of each proposed solution are illustrated. All the existing techniques are categorized based on a selection of parameters deemed relevant to provide a comprehensive overview and understanding of the topic. Finally, future concerns and research perspectives for FEVIAD are discussed
    corecore