13,476 research outputs found

    Eye guidance during real-world scene search:The role color plays in central and peripheral vision

    Get PDF
    The visual system utilizes environmental features to direct gaze efficiently when locating objects. While previous research has isolated various features' contributions to gaze guidance, these studies generally used sparse displays and did not investigate how features facilitated search as a function of their location on the visual field. The current study investigated how features across the visual field-particularly color-facilitate gaze guidance during real-world search. A gaze-contingent window followed participants' eye movements, restricting color information to specified regions. Scene images were presented in full color, with color in the periphery and gray in central vision or gray in the periphery and color in central vision, or in grayscale. Color conditions were crossed with a search cue manipulation, with the target cued either with a word label or an exact picture. Search times increased as color information in the scene decreased. A gaze-data based decomposition of search time revealed color-mediated effects on specific subprocesses of search. Color in peripheral vision facilitated target localization, whereas color in central vision facilitated target verification. Picture cues facilitated search, with the effects of cue specificity and scene color combining additively. When available, the visual system utilizes the environment's color information to facilitate different real-world visual search behaviors based on the location within the visual field

    Probabilistic modeling of eye movement data during conjunction search via feature-based attention

    Get PDF
    Where the eyes fixate during search is not random; rather, gaze reflects the combination of information about the target and the visual input. It is not clear, however, what information about a target is used to bias the underlying neuronal responses. We here engage subjects in a variety of simple conjunction search tasks while tracking their eye movements. We derive a generative model that reproduces these eye movements and calculate the conditional probabilities that observers fixate, given the target, on or near an item in the display sharing a specific feature with the target. We use these probabilities to infer which features were biased by top-down attention: Color seems to be the dominant stimulus dimension for guiding search, followed by object size, and lastly orientation. We use the number of fixations it took to find the target as a measure of task difficulty. We find that only a model that biases multiple feature dimensions in a hierarchical manner can account for the data. Contrary to common assumptions, memory plays almost no role in search performance. Our model can be fit to average data of multiple subjects or to individual subjects. Small variations of a few key parameters account well for the intersubject differences. The model is compatible with neurophysiological findings of V4 and frontal eye fields (FEF) neurons and predicts the gain modulation of these cells
    • …
    corecore