30 research outputs found

    Linear vs Nonlinear Extreme Learning Machine for Spectral-Spatial Classification of Hyperspectral Image

    Get PDF
    As a new machine learning approach, extreme learning machine (ELM) has received wide attentions due to its good performances. However, when directly applied to the hyperspectral image (HSI) classification, the recognition rate is too low. This is because ELM does not use the spatial information which is very important for HSI classification. In view of this, this paper proposes a new framework for spectral-spatial classification of HSI by combining ELM with loopy belief propagation (LBP). The original ELM is linear, and the nonlinear ELMs (or Kernel ELMs) are the improvement of linear ELM (LELM). However, based on lots of experiments and analysis, we found out that the LELM is a better choice than nonlinear ELM for spectral-spatial classification of HSI. Furthermore, we exploit the marginal probability distribution that uses the whole information in the HSI and learn such distribution using the LBP. The proposed method not only maintain the fast speed of ELM, but also greatly improves the accuracy of classification. The experimental results in the well-known HSI data sets, Indian Pines and Pavia University, demonstrate the good performances of the proposed method.Comment: 13 pages,8 figures,3 tables,articl

    State Preserving Extreme Learning Machine for Face Recognition

    Get PDF
    Extreme Learning Machine (ELM) has been introduced as a new algorithm for training single hidden layer feed-forward neural networks (SLFNs) instead of the classical gradient-based algorithms. Based on the consistency property of data, which enforce similar samples to share similar properties, ELM is a biologically inspired learning algorithm with SLFNs that learns much faster with good generalization and performs well in classification applications. However, the random generation of the weight matrix in current ELM based techniques leads to the possibility of unstable outputs in the learning and testing phases. Therefore, we present a novel approach for computing the weight matrix in ELM which forms a State Preserving Extreme Leaning Machine (SPELM). The SPELM stabilizes ELM training and testing outputs while monotonically increases its accuracy by preserving state variables. Furthermore, three popular feature extraction techniques, namely Gabor, Pyramid Histogram of Oriented Gradients (PHOG) and Local Binary Pattern (LBP) are incorporated with the SPELM for performance evaluation. Experimental results show that our proposed algorithm yields the best performance on the widely used face datasets such as Yale, CMU and ORL compared to state-of-the-art ELM based classifiers

    Transportation Mode Detection Based on Permutation Entropy and Extreme Learning Machine

    Get PDF
    With the increasing prevalence of GPS devices and mobile phones, transportation mode detection based on GPS data has been a hot topic in GPS trajectory data analysis. Transportation modes such as walking, driving, bus, and taxi denote an important characteristic of the mobile user. Longitude, latitude, speed, acceleration, and direction are usually used as features in transportation mode detection. In this paper, first, we explore the possibility of using Permutation Entropy (PE) of speed, a measure of complexity and uncertainty of GPS trajectory segment, as a feature for transportation mode detection. Second, we employ Extreme Learning Machine (ELM) to distinguish GPS trajectory segments of different transportation. Finally, to evaluate the performance of the proposed method, we make experiments on GeoLife dataset. Experiments results show that we can get more than 50% accuracy when only using PE as a feature to characterize trajectory sequence. PE can indeed be effectively used to detect transportation mode from GPS trajectory. The proposed method has much better accuracy and faster running time than the methods based on the other features and SVM classifier

    Optimized Kernel Extreme Learning Machine for Myoelectric Pattern Recognition

    Get PDF
    Myoelectric pattern recognition (MPR) is used to detect user’s intention to achieve a smooth interaction between human and machine. The performance of MPR is influenced by the features extracted and the classifier employed. A kernel extreme learning machine especially radial basis function extreme learning machine (RBF-ELM) has emerged as one of the potential classifiers for MPR. However, RBF-ELM should be optimized to work efficiently. This paper proposed an optimization of RBF-ELM parameters using hybridization of particle swarm optimization (PSO) and a wavelet function. These proposed systems are employed to classify finger movements on the amputees and able-bodied subjects using electromyography signals. The experimental results show that the accuracy of the optimized RBF-ELM is 95.71% and 94.27% in the healthy subjects and the amputees, respectively. Meanwhile, the optimization using PSO only attained the average accuracy of 95.53 %, and 92.55 %, on the healthy subjects and the amputees, respectively. The experimental results also show that SW-RBF-ELM achieved the accuracy that is better than other well-known classifiers such as support vector machine (SVM), linear discriminant analysis (LDA) and k-nearest neighbor (kNN)

    Linear vs. nonlinear extreme learning machine for spectral-spatial classification of hyperspectral images.

    Get PDF
    As a new machine learning approach, the extreme learning machine (ELM) has received much attention due to its good performance. However, when directly applied to hyperspectral image (HSI) classification, the recognition rate is low. This is because ELM does not use spatial information, which is very important for HSI classification. In view of this, this paper proposes a new framework for the spectral-spatial classification of HSI by combining ELM with loopy belief propagation (LBP). The original ELM is linear, and the nonlinear ELMs (or Kernel ELMs) are an improvement of linear ELM (LELM). However, based on lots of experiments and much analysis, it is found that the LELM is a better choice than nonlinear ELM for the spectral-spatial classification of HSI. Furthermore, we exploit the marginal probability distribution that uses the whole information in the HSI and learns such a distribution using the LBP. The proposed method not only maintains the fast speed of ELM, but also greatly improves the accuracy of classification. The experimental results in the well-known HSI data sets, Indian Pines, and Pavia University, demonstrate the good performance of the proposed method
    corecore