5,890 research outputs found

    Non-Adaptive Distributed Compression in Networks

    Full text link
    In this paper, we discuss non-adaptive distributed compression of inter-node correlated real-valued messages. To do so, we discuss the performance of conventional packet forwarding via routing, in terms of the total network load versus the resulting quality of service (distortion level). As a better alternative for packet forwarding, we briefly describe our previously proposed one-step Quantized Network Coding (QNC), and make motivating arguments on its advantage when the appropriate marginal rates for distributed source coding are not available at the encoder source nodes. We also derive analytic guarantees on the resulting distortion of our one-step QNC scenario. Finally, we conclude the paper by providing a mathematical comparison between the total network loads of one-step QNC and conventional packet forwarding, showing a significant reduction in the case of one-step QNC.Comment: Submitted for 2013 IEEE International Symposium on Information Theor

    Network Information Flow with Correlated Sources

    Full text link
    In this paper, we consider a network communications problem in which multiple correlated sources must be delivered to a single data collector node, over a network of noisy independent point-to-point channels. We prove that perfect reconstruction of all the sources at the sink is possible if and only if, for all partitions of the network nodes into two subsets S and S^c such that the sink is always in S^c, we have that H(U_S|U_{S^c}) < \sum_{i\in S,j\in S^c} C_{ij}. Our main finding is that in this setup a general source/channel separation theorem holds, and that Shannon information behaves as a classical network flow, identical in nature to the flow of water in pipes. At first glance, it might seem surprising that separation holds in a fairly general network situation like the one we study. A closer look, however, reveals that the reason for this is that our model allows only for independent point-to-point channels between pairs of nodes, and not multiple-access and/or broadcast channels, for which separation is well known not to hold. This ``information as flow'' view provides an algorithmic interpretation for our results, among which perhaps the most important one is the optimality of implementing codes using a layered protocol stack.Comment: Final version, to appear in the IEEE Transactions on Information Theory -- contains (very) minor changes based on the last round of review

    Networked Slepian-Wolf: theory, algorithms, and scaling laws

    Get PDF
    Consider a set of correlated sources located at the nodes of a network, and a set of sinks that are the destinations for some of the sources. The minimization of cost functions which are the product of a function of the rate and a function of the path weight is considered, for both the data-gathering scenario, which is relevant in sensor networks, and general traffic matrices, relevant for general networks. The minimization is achieved by jointly optimizing a) the transmission structure, which is shown to consist in general of a superposition of trees, and b) the rate allocation across the source nodes, which is done by Slepian-Wolf coding. The overall minimization can be achieved in two concatenated steps. First, the optimal transmission structure is found, which in general amounts to finding a Steiner tree, and second, the optimal rate allocation is obtained by solving an optimization problem with cost weights determined by the given optimal transmission structure, and with linear constraints given by the Slepian-Wolf rate region. For the case of data gathering, the optimal transmission structure is fully characterized and a closed-form solution for the optimal rate allocation is provided. For the general case of an arbitrary traffic matrix, the problem of finding the optimal transmission structure is NP-complete. For large networks, in some simplified scenarios, the total costs associated with Slepian-Wolf coding and explicit communication (conditional encoding based on explicitly communicated side information) are compared. Finally, the design of decentralized algorithms for the optimal rate allocation is analyzed

    Joint Source-Channel Cooperative Transmission over Relay-Broadcast Networks

    Full text link
    Reliable transmission of a discrete memoryless source over a multiple-relay relay-broadcast network is considered. Motivated by sensor network applications, it is assumed that the relays and the destinations all have access to side information correlated with the underlying source signal. Joint source-channel cooperative transmission is studied in which the relays help the transmission of the source signal to the destinations by using both their overheard signals, as in the classical channel cooperation scenario, as well as the available correlated side information. Decode-and-forward (DF) based cooperative transmission is considered in a network of multiple relay terminals and two different achievability schemes are proposed: i) a regular encoding and sliding-window decoding scheme without explicit source binning at the encoder, and ii) a semi-regular encoding and backward decoding scheme with binning based on the side information statistics. It is shown that both of these schemes lead to the same source-channel code rate, which is shown to be the "source-channel capacity" in the case of i) a physically degraded relay network in which the side information signals are also degraded in the same order as the channel; and ii) a relay-broadcast network in which all the terminals want to reconstruct the source reliably, while at most one of them can act as a relay.Comment: Submitted to IEEE Transactions on Information Theory, 201

    Adaptive-Compression Based Congestion Control Technique for Wireless Sensor Networks

    Get PDF
    Congestion in a wireless sensor network causes an increase in the amount of data loss and delays in data transmission. In this paper, we propose a new congestion control technique (ACT, Adaptive Compression-based congestion control Technique) based on an adaptive compression scheme for packet reduction in case of congestion. The compression techniques used in the ACT are Discrete Wavelet Transform (DWT), Adaptive Differential Pulse Code Modulation (ADPCM), and Run-Length Coding (RLC). The ACT first transforms the data from the time domain to the frequency domain, reduces the range of data by using ADPCM, and then reduces the number of packets with the help of RLC before transferring the data to the source node. It introduces the DWT for priority-based congestion control because the DWT classifies the data into four groups with different frequencies. The ACT assigns priorities to these data groups in an inverse proportion to the respective frequencies of the data groups and defines the quantization step size of ADPCM in an inverse proportion to the priorities. RLC generates a smaller number of packets for a data group with a low priority. In the relaying node, the ACT reduces the amount of packets by increasing the quantization step size of ADPCM in case of congestion. Moreover, in order to facilitate the back pressure, the queue is controlled adaptively according to the congestion state. We experimentally demonstrate that the ACT increases the network efficiency and guarantees fairness to sensor nodes, as compared with the existing methods. Moreover, it exhibits a very high ratio of the available data in the sink
    • 

    corecore