3,239 research outputs found

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    Scalable multi-hop routing in wireless networks

    Get PDF

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Software-Driven and Virtualized Architectures for Scalable 5G Networks

    Full text link
    In this dissertation, we argue that it is essential to rearchitect 4G cellular core networks–sitting between the Internet and the radio access network–to meet the scalability, performance, and flexibility requirements of 5G networks. Today, there is a growing consensus among operators and research community that software-defined networking (SDN), network function virtualization (NFV), and mobile edge computing (MEC) paradigms will be the key ingredients of the next-generation cellular networks. Motivated by these trends, we design and optimize three core network architectures, SoftMoW, SoftBox, and SkyCore, for different network scales, objectives, and conditions. SoftMoW provides global control over nationwide core networks with the ultimate goal of enabling new routing and mobility optimizations. SoftBox attempts to enhance policy enforcement in statewide core networks to enable low-latency, signaling-efficient, and customized services for mobile devices. Sky- Core is aimed at realizing a compact core network for citywide UAV-based radio networks that are going to serve first responders in the future. Network slicing techniques make it possible to deploy these solutions on the same infrastructure in parallel. To better support mobility and provide verifiable security, these architectures can use an addressing scheme that separates network locations and identities with self-certifying, flat and non-aggregatable address components. To benefit the proposed architectures, we designed a high-speed and memory-efficient router, called Caesar, for this type of addressing schemePHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146130/1/moradi_1.pd
    • …
    corecore