3,543 research outputs found

    Energy Harvesting and Management for Wireless Autonomous Sensors

    No full text
    Wireless autonomous sensors that harvest ambient energy are attractive solutions, due to their convenience and economic benefits. A number of wireless autonomous sensor platforms which consume less than 100?W under duty-cycled operation are available. Energy harvesting technology (including photovoltaics, vibration harvesters, and thermoelectrics) can be used to power autonomous sensors. A developed system is presented that uses a photovoltaic module to efficiently charge a supercapacitor, which in turn provides energy to a microcontroller-based autonomous sensing platform. The embedded software on the node is structured around a framework in which equal precedent is given to each aspect of the sensor node through the inclusion of distinct software stacks for energy management and sensor processing. This promotes structured and modular design, allowing for efficient code reuse and encourages the standardisation of interchangeable protocols

    Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT)

    Get PDF
    Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO2 and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings

    Design and implementation of a light-based IoT (LIoT) node using printed electronics

    Get PDF
    Abstract. The recent exponential growth of new radio frequency (RF) based applications such as internet of things (IoT) technology is creating a huge bandwidth demand in the already congested RF spectrum. Meanwhile, visible light communication (VLC) is emerging as a technology which can be used as an alternative wireless communications solution which makes no use of the radio spectrum. In addition, continuously powering up the massively deployed IoT nodes is becoming a challenge when it comes to maintenance costs. Development of energy autonomous IoT nodes would certainly assist to solve the energy challenge. Previous work shows that renewable energy sources can be utilized to address the energy requirement of IoT nodes. Under this context, we have developed a light-based energy autonomous IoT (LIoT) prototype. This thesis presents a feasibility study and proof of concept of LIoT, including design, implementation and validation of LIoT nodes and a transmitter unit. Furthermore, the ability of multiuser communication using VLC as well as indoor light-based energy harvesting were demonstrated and tested in this thesis. To make the concept of LIoT more attractive from an implementation standpoint, and to create a future-looking solution, printed electronics (PE) technology was used as a part of the implementation. Two key components of the prototype were based on PE technology, photovoltaic cells used to harvest energy, and displays used to exhibit information transmitted to the LIoT node. In the future, when PE technology becomes more mature, very low-cost, small form-factor and environmentally friendly LIoT nodes could be implemented on thin substrates. A wide array of possible applications can be created combining the concept of light-based IoT with printed electronics. The proposed LIoT concept shows great promise as an enabling technology for 6G

    Scaling Configuration of Energy Harvesting Sensors with Reinforcement Learning

    Full text link
    With the advent of the Internet of Things (IoT), an increasing number of energy harvesting methods are being used to supplement or supplant battery based sensors. Energy harvesting sensors need to be configured according to the application, hardware, and environmental conditions to maximize their usefulness. As of today, the configuration of sensors is either manual or heuristics based, requiring valuable domain expertise. Reinforcement learning (RL) is a promising approach to automate configuration and efficiently scale IoT deployments, but it is not yet adopted in practice. We propose solutions to bridge this gap: reduce the training phase of RL so that nodes are operational within a short time after deployment and reduce the computational requirements to scale to large deployments. We focus on configuration of the sampling rate of indoor solar panel based energy harvesting sensors. We created a simulator based on 3 months of data collected from 5 sensor nodes subject to different lighting conditions. Our simulation results show that RL can effectively learn energy availability patterns and configure the sampling rate of the sensor nodes to maximize the sensing data while ensuring that energy storage is not depleted. The nodes can be operational within the first day by using our methods. We show that it is possible to reduce the number of RL policies by using a single policy for nodes that share similar lighting conditions.Comment: 7 pages, 5 figure

    Energy Harvesting Techniques for Internet of Things (IoT)

    Get PDF
    The rapid growth of the Internet of Things (IoT) has accelerated strong interests in the development of low-power wireless sensors. Today, wireless sensors are integrated within IoT systems to gather information in a reliable and practical manner to monitor processes and control activities in areas such as transportation, energy, civil infrastructure, smart buildings, environment monitoring, healthcare, defense, manufacturing, and production. The long-term and self-sustainable operation of these IoT devices must be considered early on when they are designed and implemented. Traditionally, wireless sensors have often been powered by batteries, which, despite allowing low overall system costs, can negatively impact the lifespan and the performance of the entire network they are used in. Energy Harvesting (EH) technology is a promising environment-friendly solution that extends the lifetime of these sensors, and, in some cases completely replaces the use of battery power. In addition, energy harvesting offers economic and practical advantages through the optimal use of energy, and the provisioning of lower network maintenance costs. We review recent advances in energy harvesting techniques for IoT. We demonstrate two energy harvesting techniques using case studies. Finally, we discuss some future research challenges that must be addressed to enable the large-scale deployment of energy harvesting solutions for IoT environments
    • …
    corecore