3 research outputs found

    Heavy subgraphs, stability and hamiltonicity

    Full text link
    Let GG be a graph. Adopting the terminology of Broersma et al. and \v{C}ada, respectively, we say that GG is 2-heavy if every induced claw (K1,3K_{1,3}) of GG contains two end-vertices each one has degree at least V(G)/2|V(G)|/2; and GG is o-heavy if every induced claw of GG contains two end-vertices with degree sum at least V(G)|V(G)| in GG. In this paper, we introduce a new concept, and say that GG is \emph{SS-c-heavy} if for a given graph SS and every induced subgraph GG' of GG isomorphic to SS and every maximal clique CC of GG', every non-trivial component of GCG'-C contains a vertex of degree at least V(G)/2|V(G)|/2 in GG. In terms of this concept, our original motivation that a theorem of Hu in 1999 can be stated as every 2-connected 2-heavy and NN-c-heavy graph is hamiltonian, where NN is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs SS such that every 2-connected o-heavy and SS-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu's theorem. Furthermore, our main result improves or extends several previous results.Comment: 21 pages, 6 figures, finial version for publication in Discussiones Mathematicae Graph Theor

    Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs

    Full text link
    Bedrossian characterized all pairs of forbidden subgraphs for a 2-connected graph to be Hamiltonian. Instead of forbidding some induced subgraphs, we relax the conditions for graphs to be Hamiltonian by restricting Ore- and Fan-type degree conditions on these induced subgraphs. Let GG be a graph on nn vertices and HH be an induced subgraph of GG. HH is called \emph{o}-heavy if there are two nonadjacent vertices in HH with degree sum at least nn, and is called ff-heavy if for every two vertices u,vV(H)u,v\in V(H), dH(u,v)=2d_{H}(u,v)=2 implies that max{d(u),d(v)}n/2\max\{d(u),d(v)\}\geq n/2. We say that GG is HH-\emph{o}-heavy (HH-\emph{f}-heavy) if every induced subgraph of GG isomorphic to HH is \emph{o}-heavy (\emph{f}-heavy). In this paper we characterize all connected graphs RR and SS other than P3P_3 such that every 2-connected RR-\emph{f}-heavy and SS-\emph{f}-heavy (RR-\emph{o}-heavy and SS-\emph{f}-heavy, RR-\emph{f}-heavy and SS-free) graph is Hamiltonian. Our results extend several previous theorems on forbidden subgraph conditions and heavy subgraph conditions for Hamiltonicity of 2-connected graphs.Comment: 21 pages, 2 figure
    corecore