3,743 research outputs found

    Rolling horizon policies for multi-stage stochastic assemble-to-order problems

    Full text link
    Assemble-to-order approaches deal with randomness in demand for end items by producing components under uncertainty, but assembling them only after demand is observed. Such planning problems can be tackled by stochastic programming, but true multistage models are computationally challenging and only a few studies apply them to production planning. Solutions based on two-stage models are often short-sighted and unable to effectively deal with non-stationary demand. A further complication may be the scarcity of available data, especially in the case of correlated and seasonal demand. In this paper, we compare different scenario tree structures. In particular, we enrich a two-stage formulation by introducing a piecewise linear approximation of the value of the terminal inventory, to mitigate the two-stage myopic behavior. We compare the out-of-sample performance of the resulting models by rolling horizon simulations, within a data-driven setting, characterized by seasonality, bimodality, and correlations in the distribution of end item demand. Computational experiments suggest the potential benefit of adding a terminal value function and illustrate interesting patterns arising from demand correlations and the level of available capacity. The proposed approach can provide support to typical MRP/ERP systems, when a two-level approach is pursued, based on master production and final assembly scheduling.Comment: This is an Author's Original Manuscript of an article published by Taylor and Francis in the International Journal of Production Research on 21.11.2023, available online: https://doi.org/10.1080/00207543.2023.228357

    Time decomposition of multi-period supply chain models

    Get PDF
    Many supply chain problems involve discrete decisions in a dynamic environment. The inventory routing problem is an example that combines the dynamic control of inventory at various facilities in a supply chain with the discrete routing decisions of a fleet of vehicles that moves product between the facilities. We study these problems modeled as mixed-integer programs and propose a time decomposition based on approximate inventory valuation. We generate the approximate value function with an algorithm that combines data fitting, discrete optimization and dynamic programming methodology. Our framework allows the user to specify a class of piecewise linear, concave functions from which the algorithm chooses the value function. The use of piecewise linear concave functions is motivated by intuition, theory and practice. Intuitively, concavity reflects the notion that inventory is marginally more valuable the closer one is to a stock-out. Theoretically, piecewise linear concave functions have certain structural properties that also hold for finite mixed-integer program value functions. (Whether the same properties hold in the infinite case is an open question, to our knowledge.) Practically, piecewise linear concave functions are easily embedded in the objective function of a maximization mixed-integer or linear program, with only a few additional auxiliary continuous variables. We evaluate the solutions generated by our value functions in a case study using maritime inventory routing instances inspired by the petrochemical industry. The thesis also includes two other contributions. First, we review various data fitting optimization models related to piecewise linear concave functions, and introduce new mixed-integer programming formulations for some cases. The formulations may be of independent interest, with applications in engineering, mixed-integer non-linear programming, and other areas. Second, we study a discounted, infinite-horizon version of the canonical single-item lot-sizing problem and characterize its value function, proving that it inherits all properties of interest from its finite counterpart. We then compare its optimal policies to our algorithm's solutions as a proof of concept.PhDCommittee Chair: George Nemhauser; Committee Member: Ahmet Keha; Committee Member: Martin Savelsbergh; Committee Member: Santanu Dey; Committee Member: Shabbir Ahme

    An Adaptive Large Neighborhood Search Heuristic for the Inventory Routing Problem with Time Windows

    Get PDF
    This research addresses an integrated distribution and inventory control problem which is faced by a large retail chain in the United States. In their current distribution network, a direct shipping policy is used to keep stores stocked with products. The shipping policy specifies that a dedicated trailer should be sent from the warehouse to a store when the trailer is full or after five business days, whichever comes first. Stores can only receive deliveries during a window of time (6 am to 6 pm). The retail chain is seeking more efficient alternatives to this policy, as measured by total transportation, inventory holding and lost sales costs. More specifically, the goal of this research is to determine the optimal timing and magnitudes of deliveries to stores across a planning horizon. While dedicated shipments to stores will be allowed under the optimal policy, options that combine deliveries for multiple stores into a single route should also be considered. This problem is modeled as an Inventory Routing Problem with time window constraints. Due to the complexity and size of this NP-hard combinatorial optimization problem, an adaptive large neighborhood search heuristic is developed to obtain solutions. Results are provided for a realistic set of test instances

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research
    • …
    corecore