
TIME DECOMPOSITION OF MULTI-PERIOD
SUPPLY CHAIN MODELS

A Thesis
Presented to

The Academic Faculty

by

Alejandro Toriello

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2010

Copyright c© 2010 by Alejandro Toriello

TIME DECOMPOSITION OF MULTI-PERIOD
SUPPLY CHAIN MODELS

Approved by:

Professor George L. Nemhauser,
Advisor
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Professor Santanu Dey
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Professor Martin W.P. Savelsbergh
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. Ahmet Keha
Corporate Strategic Research
ExxonMobil Research & Engineering

Professor Shabbir Ahmed
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Date Approved: July 29, 2010

To my grandparents,

Eugenia Bedard,

Eduardo Herreŕıas Estrada,

Maŕıa Mercedes Nájera de Toriello,

and to the memory of my grandfather,

Lionel Toriello Saravia.

To my loving, patient wife, Catherine.

iii

ACKNOWLEDGEMENTS

I owe many thanks to many people.

To Professor George Nemhauser, for his guidance and support as my advisor. To the

other members of the ISyE faculty and of Georgia Tech in general who taught me,

advised me and worked with me during my time here: Shabbir Ahmed, Bill Cook,

Santanu Dey, Richard Duke, Özlem Ergun, Renato Monteiro, Arkadi Nemirovski,

Gary Parker, Dana Randall, Martin Savelsbergh, Joel Sokol, Robin Thomas, Chen

Zhou, and many others.

To my fellow graduate students, who studied with me, challenged me and banged

heads with me: Doug Altner, Dan Dadush, Faram Engineer, Ricardo Fukasawa,

Mike Hewitt, Helder Inacio, Fatma Kılınç, Dimitri Papageorgiou, Claudio Santiago,

Sangho Shim, Dan Steffy, Kael Stilp, Steve Tyber, Juan Pablo Vielma, and many

others I shouldn’t have forgotten.

To ExxonMobil Research & Engineering, especially Kevin Furman, Ahmet Keha and

Jin-Hwa Song.

To the following organizations, for their financial support: ARCS Foundation, Georgia

Tech Office of the President, Roberto C. Goizueta Foundation, and the National

Science Foundation.

To my wife and family.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

I INTRODUCTION . 1

1.1 Contribution . 2

1.2 Literature Review . 3

1.3 Technical Preliminaries . 6

1.3.1 Mixed-Integer Programming and Superadditive Functions . 6

1.3.2 Dynamic Programming and Value Iteration 7

II APPROXIMATE INVENTORY VALUATION 9

2.1 Generic Model and Examples . 10

2.2 An Approximate Dynamic Programming Algorithm 15

2.2.1 Sampling and observing . 17

2.2.2 Fitting . 18

2.2.3 Merging . 18

III VALUE FUNCTION FITTING . 20

3.1 Separable Functions over a Fixed Grid 20

3.2 Non-Separable Functions over Fixed Regions 23

3.3 Non-Separable Functions over Variable Regions 25

3.4 Separable Functions over a Variable Grid 31

3.5 Hybrid Functions . 34

IV INFINITE-HORIZON LOT SIZING . 36

4.1 Optimal Solutions . 38

4.2 The Value Function . 39

v

4.3 Approximate Value Function Comparison 43

V MODEL CASE STUDIES . 48

5.1 Simplified Travel Time . 48

5.2 Variable Travel Time . 56

VI CONCLUSIONS . 64

REFERENCES . 67

vi

LIST OF TABLES

1 Lot-sizing experiment results for two-period optimal replenishment,
using fixed-bucket value function. 44

2 Lot-sizing experiment results for two-period optimal replenishment,
using variable-bucket value function. 45

3 Lot-sizing experiment results for 18-period optimal replenishment, us-
ing variable-bucket value function. 46

4 Simplified time instances, first experiment. 50

5 Simplified time instances, second experiment. 52

6 Simplified time instances, third experiment. 54

7 Variable time instances, first experiment. 60

8 Variable time instances, third experiment. 63

vii

LIST OF FIGURES

1 Univariate PWL concave function over fixed bucket lengths. 21

2 Bivariate non-separable PWL concave function. 24

3 Univariate PWL concave function defined with the minimum operator. 31

4 Bivariate hybrid PWL concave function. 35

5 Single-item LSP value function for fixed w > 0 with k(w) = 2. 41

6 Single-item LSP value function for s = 0. 42

7 Three-dimensional rendering of sample single-item LSP value function. 42

8 Plot of C with fixed- and variable-bucket PWL convex best-fit functions. 47

9 Plot of predicted and observed values for simple-time instance. 56

10 Plot of predicted and observed values for time-expanded instance. . . 61

viii

CHAPTER I

INTRODUCTION

The methodologies of optimization and operations research have been applied since

their inception to problems in supply chain management. The transportation, storage

and management of goods is crucial to a business’ bottom line, and problems inspired

by supply chain management, logistics, transportation and inventory control have

informed and nurtured research in optimization and operations research.

The discrete nature of decisions related to transportation and production with

fixed setups makes these areas amenable to techniques from mixed-integer linear pro-

gramming (MIP). Problems studied in MIP include a combination of discrete (integer)

and continuous decision variables appearing in a linear objective function and linear

constraints. MIP generalizes the well-known linear program (LP), which is similar but

includes only continuous variables and is much easier to solve. Two famous problems

studied by MIP researchers are the traveling salesman problem (TSP) [2] and the

production lot-sizing problem (LSP) [53]. Both problems are inspired by applications

in transportation and production, respectively, and their study has led to MIP-based

decision support tools implemented in practice.

Many applications in inventory control include dynamic, periodic or recursive

components; problems in this area are often studied in dynamic programming (DP).

These problems include a set of possible states (e.g. inventory levels) and available

actions from each state (e.g. order quantities). Canonical models in this field include

the economic order quantity (EOQ) model for the continuous-review, single-item LSP,

which was studied as far back as 1913 [26, 33].

1

1.1 Contribution

The main contribution of this thesis is the study and approximate solution of multi-

period or infinite-horizon supply chain models using a combination of techniques from

MIP and DP. As research has advanced solution techniques for different classical prob-

lems, practitioners and decision makers have introduced more complex variations and

combinations of known models. In general, a holistic approach accounting simulta-

neously for different decisions is desirable, and research in recent decades has focused

on these complex models. One well-known instance is the inventory routing prob-

lem (IRP) [16, 22, 49], which combines transportation and inventory decisions into a

single multi-period or infinite horizon model.

The IRP is a prime example of the type of problem we are interested in. On

one hand, it includes discrete decisions related to the dispatching and routing of a

vehicle or fleet of vehicles; such decisions are readily modeled with integer and/or

binary decision variables inside a MIP. On the other hand, the IRP also concerns the

management of inventory at many points in a supply chain across time; the vector

of initial inventories can thus be viewed as the state variable of a large and complex

DP.

Our methodology seeks to quickly generate high-quality solutions for these com-

plex supply chain models by decomposing them across time into single- or few-period

subproblems, solving these smaller MIP’s directly with known discrete optimization

techniques, and linking the solution “fragments” together via the inventory state vari-

able. To circumvent the ending effect which normally results in myopic solutions, we

construct an approximate inventory value function that we include in the single- or

few-period problem’s objective. We obtain this value function with an approximate

dynamic programming (ADP) algorithm that combines sampling, optimization, data

fitting and DP techniques. Chapter 2 outlines our algorithmic framework using a

generic fixed-charge network flow model, and Chapter 5 gives a computational case

2

study based on various practical model types.

The construction of the inventory value function within the ADP algorithm relies

on data fitting models. Depending on the type of value function considered, the

resulting fitting problem may be non-convex and difficult to solve. Chapter 3 outlines

heuristic and exact optimization methods appropriate for different fitting scenarios,

along with secondary implementation issues related to the function classes. Some

of the exact optimization formulations require new MIP and mixed-integer nonlinear

programming (MINLP) modeling techniques, and constitute a secondary contribution.

In order to efficiently embed the value function into a MIP model of reduced size,

our algorithm makes simplifying assumptions about the function’s structure. The

main simplification is the replacement of superadditive, possibly discontinuous piece-

wise linear (PWL) functions with much simpler concave, continuous PWL functions.

Although the structure of value functions for finite MIP models is well-studied, the

corresponding questions for infinite-horizon models are not as clear. In Chapter 4,

we study the value function of an infinite-horizon version of the canonical uncapaci-

tated, single-item LSP, and compare our algorithm to its optimal policies as a proof

of concept.

1.2 Literature Review

Since the introduction of seminal models like the TSP, many transportation prob-

lems have been studied using MIP. The current state of the art involves ever larger

transportation networks sometimes spanning vast geographic areas and long stretches

of time. One popular MIP technique especially suited to large, complex models is

column generation; recent examples of transportation and IRP research using this

technique include [19, 20, 21, 25, 47]. A general introduction to the concept is [24].

Many researchers have also developed MIP-based heuristic techniques for complex

transportation problems; some examples are [17, 34, 50, 62, 63].

3

The supply chain and inventory control problems studied with DP have also vastly

increased in size. Many problems of practical interest are immune to traditional

DP methodology because of the famous curse of dimensionality : As the size and

dimension of the problem grows, the time required to solve the problem exactly grows

exponentially quickly. ADP is an umbrella term coined in recent years to refer to a

variety of techniques that address the curse by approximating the solution in different

ways; two recent texts that introduce many ADP concepts are [6, 55]. Several authors

have attempted inventory value function approximations for the IRP and related

problems, e.g. [1, 16, 40, 41, 48]. Specifically, the use of data fitting or regression and

other functional approximation techniques goes at least as far back as 1959 [5]. More

recent examples include the following: In [43], the authors use simulation and linear

regression to approximately value different types of American options. Trick and Zin

[68] use cubic splines to approximate the value function of a DP with a discretized

state space; their methodology allows for refinement of the state space discretization

to increase the approximate value function’s accuracy. Finally, in [69] the authors

study “feature-based” algorithms (including linear regression techniques) for finite-

state and -action DP’s and provide convergence results. Our algorithm generalizes

the previously cited works by considering uncountable state and action spaces directly

and by replacing classical least-squares linear regression with more general data fitting

of continuous PWL concave functions.

Because multi-period or infinite-horizon problems are fundamental to supply chain

management, many other methodologies exist beyond what is strictly DP. One im-

portant example is the forecast horizon, in which researchers determine the shortest

multi-period problem whose solution’s first period is identical to the infinite prob-

lem solution’s first period. Variations of LSP are in particular studied under this

paradigm; see [4, 23, 27, 31, 65]. Others have also studied the stability or accuracy

of solutions generated by finite sub-problems for an infinite-horizon problem via a

4

rolling horizon, a recursive procedure where the solution to the finite problem is im-

plemented, the model is updated, and a new problem of equal size is generated that

reflects the previous solution’s changes to the system. One example of such a study

for various supply chain models is [39].

Although the mathematics are more complicated and the algorithms more in-

cipient, there are also infinite optimization techniques available for infinite-horizon

models. Research in this area seeks to characterize optimal solutions, approximate

them with solutions to finite problems (e.g. using forecast horizons), or generate

them with special algorithms. Specific examples of infinite optimization in supply

chain management and related models are [59] (network flows and LSP), [60] (LP

and LSP) and [64] (equipment replacement).

Data fitting and regression problems are fundamental and arise in many areas.

[14, Chapter 6] surveys convex optimization techniques used in approximation and

fitting, while [61] studies statistical techniques relevant to our fitting models. Specific

examples of recent work in different fields that consider fitting problems related to

PWL functions include [28] (neural networks), [35] (Bayesian regression), [54] (com-

puter graphics and visualization), and [66] (statistical inference). Classification and

clustering, which are related to PWL fitting, have previously been studied using

mathematical programming in [7, 42, 52]; the first reference employs MIP techniques

similar to some of the models studied here. Some of the PWL fitting problems we

consider were introduced in [44]; the authors also developed a Gauss-Newton heuristic

we adapt here for our own use.

The value function concept and its relation to cutting planes has been studied in

MIP since the 1970’s [38, 72], and received extensive attention in the work of Blair [9]

and Blair and Jeroslow [10, 11, 12, 13]. However, we are not aware of any other work

that explicitly links the MIP value function concept to value function approximation

in ADP.

5

The single-item LSP is a seminal model studied as far back as 1958 [45, 71].

Two recent surveys of single-item LSP and related models are [15, 73]. The inventory

value function of an infinite-horizon, average-cost, continuous-review, single-item LSP

similar to the one we consider in Chapter 4 was studied in [29].

1.3 Technical Preliminaries

1.3.1 Mixed-Integer Programming and Superadditive Functions

A mixed-integer linear program is an optimization problem

V (s) = max fx+ cz (1.1a)

s.t. Ax+Bz ≤ s (1.1b)

x ∈ Zm
+ , z ∈ Rn

+, (1.1c)

where f ∈ Rm, c ∈ Rn, s ∈ Rk, A ∈ Rk×m, B ∈ Rk×n, and fx represents the inner

product. (Here and elsewhere, we assume all models use rational numbers.) There is

a rich theory and an abundance of applications for MIP models; [51] is a thorough

treatment.

The explicit parametrization of (1.1) based on the right-hand side vector s is of

particular interest to us. The optimal value of the problem as a function of the right-

hand side vector, V (s), is known as the MIP’s value function. The following theorem

summarizes well-known results. A function V : S ⊆ Rk → R∪{±∞} is superadditive

if V (s1) + V (s2) ≤ V (s1 + s2),∀ s1, s2 ∈ S with s1 + s2 ∈ S. A subadditive function

satisfies the reverse inequality.

Theorem 1.1 ([51]). Let V be the value function of a MIP with maximization ob-

jective. Then V is PWL, superadditive, upper semi-continuous, and satisfies V (0) ∈

{0,∞}. If V (0) = 0, then V (s) <∞,∀ s ∈ S.

For a MIP with minimization objective, the theorem’s analogue states that the

value function is subadditive and lower semi-continuous. Note that restrictions of

6

V are not guaranteed to be sub- or superadditive (unlike, say, convex and concave

functions). A main part of this thesis’ approach is the approximation of superadditive

functions with concave ones. The next result motivates this approach.

Proposition 1.2 ([58]). Let V : Rk → R ∪ {−∞} be superadditive and positively

homogeneous. Then V is concave.

A function V is positively homogeneous if V (λs) = λV (s),∀ λ ≥ 0. In particu-

lar, a positively homogeneous function V has V (0) = 0. In addition, although MIP

value functions are not necessarily positively homogeneous, their LP counterparts

are. Rockafellar’s text [58] is a standard reference for convex analysis and in partic-

ular studies the relation between subadditive (superadditive) and convex (concave)

functions.

1.3.2 Dynamic Programming and Value Iteration

Let S,X be finite sets. Let r : S × X → R ∪ {−∞} be a reward function, let

f : S × X → S be a transition function, and let γ ∈ [0, 1) be a discount factor. A

discrete, deterministic, infinite-horizon, discounted dynamic program is given by

V (s) = max

{ ∞∑
t=1

γt−1r(st−1, xt) :

st = f(st−1, xt), xt ∈ X,∀ t ≥ 1; s0 = s

}
,∀ s ∈ S.

(1.2)

The function V ∈ RS is known as the DP’s value function; in minimization contexts it

is also called the cost-to-go function. Stochastic variants in which f is replaced with

a set of probability distributions are known as Markov decision processes (MDP);

a modern reference for DP and MDP is [56]. The following results summarize DP

theory relevant to our work.

Theorem 1.3 ([56]). V is the unique solution to the set of Bellman equations:

V (s) = max
x∈X
{r(s, x) + γV (f(s, x))},∀ s ∈ S. (1.3)

7

The Bellman operator B : RS → RS, closely related to the previous theorem, is

given by

B(V ′(s)) = max
x∈X
{r(s, x) + γV ′(f(s, x))},∀ s ∈ S,∀ V ′ ∈ RS. (1.4)

In the equation above, any maximizing x ∈ X is greedy with respect to V ′.

Theorem 1.4 ([56]). Let V0 ∈ RS be any vector, and let Vn = B(Vn−1),∀ n ∈ N.

Then limn→∞ Vn → V ; moreover,

‖Vn − V ‖∞ ≤ γn‖V0 − V ‖∞,

where ‖·‖∞ is the maximum norm.

The algorithm that constructs the sequence Vn is known as value iteration.

8

CHAPTER II

APPROXIMATE INVENTORY VALUATION

This chapter introduces the algorithmic framework we use to construct approximate

inventory value functions in multi-period or infinite-horizon supply chain models. To

maintain an appropriate level of generality, we use a generic fixed-charge network flow

(FCNF) model as a stand-in for any supply chain model of interest. The FCNF struc-

ture underlies virtually all transportation or logistics models, particularly those with

fixed costs representing routing or production setup choices, and FCNF’s are among

the most difficult and thoroughly studied problems in MIP and discrete optimization

[51].

We study the model with a combined MIP and ADP approach that incorporates

the approximate value function into a MIP framework. By combining the techniques

from mixed integer programming and approximate dynamic programming, we hope

to circumvent difficulties typically encountered when solving multi-period models:

The inventory value function allows us to shorten planning horizons, thus yielding a

model size tractable to MIP methodology.

Within this context, the choice of a value function must balance two competing

interests. The function must be simple enough to fit within a MIP, yet complex enough

to capture the influence inventory has on the model. We have chosen to use PWL

concave functions: From a modeling perspective, these functions can be implemented

in a MIP with only a small number of auxiliary continuous variables, and therefore do

not alter the model’s difficulty. From a practical perspective, concavity captures the

diminishing marginal value one expects in a model of this type, where, for instance,

inventory at a consumer is more valuable the closer the consumer is to a stock-out.

9

Finally, from a theoretical perspective, piecewise linear concave functions are the

“closest” continuous functions to MIP value functions, which are piecewise linear,

superadditive and possibly discontinuous [9, 10, 11]. We must note, however, that

the previous references study finite MIP’s, while our current study extends to infinite-

horizon models. Although value functions for infinite-horizon models are extensively

studied in DP [56] as part of classical algorithms such as value iteration, the structure

of infinite MIP’s is less well understood. We revisit this question for a specific LSP

model in Chapter 4.

Approximate piecewise linear concave value functions have already been stud-

ied for several resource allocation problems [55, Chapter 12] where the single-period

model can usually be formulated as an LP. When the model is solved, the optimal

dual solution is used as a proxy for a resource’s value. After each solve, the dual solu-

tion is used to refine the approximate value function via an algorithm that preserves

the function’s concavity [67].

2.1 Generic Model and Examples

Let G = (S ∪ C,A) be a directed network, where the node set is composed of two

finite, disjoint sets S and C that represent suppliers and consumers. Each supplier

i ∈ S has constant inventory bounds [0, di] (with di > 0) and a constant production

rate 0 < wi ≤ di. Similarly, each consumer j ∈ C has constant inventory bounds

[0, dj] and a constant demand rate 0 < wj ≤ dj. Each node i ∈ S ∪ C has a starting

inventory s0
i ∈ [0, di].

The fixed cost of sending product on arc a ∈ A is fa > 0, and the variable, per-unit

cost of sending product over the arc is ca > 0. The total flow capacity over a period

on arc a ∈ A is κa > 0. The per-unit reward of picking up product from supplier

i ∈ S is ri, and the per-unit reward of delivering product to consumer j ∈ C is rj.

The holding cost per unit per period for inventory at node i ∈ S ∪ C is hi. The per

10

period discount factor representing temporal preference is γ ∈ [0, 1).

Let T = {1, . . . , T} be the set of periods in the planning horizon, where T ∈

N∪ {∞}. Let xta ∈ {0, 1} indicate whether product flows on arc a ∈ A during period

t ∈ T , and let zta indicate the amount of product flow on the arc during the period.

Let qti denote the amount of product picked up from i ∈ S during period t ∈ T

and let qtj denote the amount of product delivered to consumer j ∈ C during period

t ∈ T . Let sti ∈ [0, di] indicate the inventory amount at node i ∈ S ∪ C at the

end of period t ∈ T . We use the notation δ+(i) = {a ∈ A : i is the tail of a} and

δ−(i) = {a ∈ A : i is the head of a}.

The multi-period or infinite-horizon FCNF model is given by

max
∑
t∈T

γt−1

(∑
i∈S∪C

(riq
t
i − histi)−

∑
a∈A

(fax
t
a + caz

t
a)

)
(2.1a)

s.t. sti = st−1
i + wi − qti ,∀ i ∈ S, t ∈ T (2.1b)

stj = st−1
j − wj + qtj,∀ j ∈ C, t ∈ T (2.1c)∑

a∈δ+(i)

zta −
∑

a∈δ−(i)

zta = qti ,∀ i ∈ S, t ∈ T (2.1d)

∑
a∈δ−(j)

zta −
∑

a∈δ+(j)

zta = qtj,∀ j ∈ C, t ∈ T (2.1e)

zta ≤ κax
t
a,∀ a ∈ A, t ∈ T (2.1f)

xta ∈ {0, 1},∀ a ∈ A, t ∈ T (2.1g)

zta ≥ 0,∀ a ∈ A, t ∈ T (2.1h)

qti ≥ 0,∀ i ∈ S ∪ C, t ∈ T (2.1i)

sti ∈ [0, di],∀ i ∈ S ∪ C, t ∈ T . (2.1j)

In this model, the objective (2.1a) maximizes profit over the planning horizon; if

T =∞, we take the set of feasible solutions to be a subset of the sequences with well-

defined and finite objective (cf. [60]). The supplier and consumer inventory balance

constraints (2.1b) and (2.1c) track inventory levels from one period to the next. The

11

product balance constraints (2.1d) and (2.1e) track the amount of product flowing

over the arcs and relate it to the pickup and delivery variables. The variable upper

bound constraint (2.1f) ensures that product flow remains within arc capacity and

is positive only if the arc’s fixed cost is paid. Constraints (2.1g)–(2.1j) establish the

decision variables’ domain.

To simplify our subsequent analysis, we assume that the single-period model ((2.1)

with T = 1) is feasible for any starting inventory vector s0 ∈ [0, d]. (If the assumption

does not hold, the network can be modified in one of several standard ways to create

a new network that does satisfy the assumption.)

Example 2.1 (Single-Item Uncapacitated LSP). One of the simplest examples of

fixed-charge structure in a supply chain model is the single-item LSP. Suppose we

need to manage the production schedule for a single item that experiences constant

per-period demand w > 0. There is no production or inventory capacity, and all

demand must be met each period, either with items produced that period, or items

in inventory. Every period we produce, we incur a fixed cost f > 0 and a variable

cost of c > 0 per unit produced. Items left over at the end of the period after demand

is met incur a holding cost of h > 0 per unit. We can model this problem as

min
∑
t∈T

γt−1(fxt + czt + hst) (2.2a)

s.t. zt + st−1 − st = w,∀ t ∈ T (2.2b)

Mxt − zt ≥ 0,∀ t ∈ T (2.2c)

xt ∈ {0, 1}; zt, st ≥ 0,∀ t ∈ T , (2.2d)

where s0 is the initial stock and M > 0 can be chosen large enough to guarantee

optimality. Note that we adopt the minimization notation, since the model includes

only costs. We study this problem and its value function in Chapter 4.

Example 2.2 (Simple-Time Maritime IRP). Suppose S and C are sets of ports

located far from each other, so that the distances between two ports in the same set

12

are much smaller than distances between two ports of different sets. Homogeneous

capacitated vessels are available to begin a voyage from any supplier, can visit as

many suppliers as necessary, and then travel to visit as many consumers as necessary,

after which the voyage ends (with no return.) At most one vessel may begin a voyage

in any period, and a vessel’s voyage begins and ends in the same period. This last

assumption is not as restrictive as it sounds, because if the travel time between S and

C is assumed constant (say τ periods), then any voyage that begins on the supplier

side in period t ends on the consumer side in period t+τ , and therefore the inventories

on the supplier side for period t may be identified with consumer inventories in period

t+ τ .

As in the FCNF model, each supplier i ∈ S has constant inventory bounds [0, di]

and a constant per period production rate 0 < wi ≤ di, and each consumer j ∈ C

has constant inventory bounds [0, dj] and a constant per period consumption rate

0 < wj ≤ dj. Each supplier or consumer i ∈ S∪C has a starting inventory s0
i ∈ [0, di].

The fixed transportation costs between any two points i, j ∈ S∪C are fij ≥ 0, and the

per unit revenue obtained from delivering product from supplier i ∈ S to consumer

j ∈ C is rij. Since vessels are homogeneous, we normalize product measurements so

that vessels have unit capacity. There are no per-unit transportation and no inventory

holding costs.

We model each period’s transportation decision with a network G = (N,A), where

N = S∪C and A = S2∪ (S×C)∪C2. For period t and a ∈ A, let xta ∈ {0, 1} denote

whether a vessel travels on arc a. Let yti ∈ {0, 1} for i ∈ S denote the indicator

variable that is equal to one if and only if a voyage starts from i in period t, and

let ytj be defined analogously for j ∈ C. Let qtij denote the amount of product from

supplier i ∈ S delivered to consumer j ∈ C in period t, and let zta denote the amount

of product in the vessel when it travels over arc a ∈ A in period t. (Note that the

definition of z does not differentiate by product.) Let sti ∈ [0, di] denote the inventory

13

at i ∈ S ∪ C at the end of period t.

The maritime IRP is modeled as

max
∑
t∈T

γt−1

(∑
i∈S,j∈C

rijq
t
ij −

∑
a∈A

fax
t
a

)
(2.3a)

s.t.
∑

a∈δ+(i)

xta −
∑

a∈δ−(i)

xta = yti ,∀ i ∈ S, t ∈ T (2.3b)

∑
a∈δ−(j)

xta −
∑

a∈δ+(j)

xta = ytj,∀ j ∈ C, t ∈ T (2.3c)

∑
i∈S

yti ≤ 1,∀ t ∈ T (2.3d)

sti = st−1
i + wi −

∑
j∈C

qtij,∀ i ∈ S, t ∈ T (2.3e)

stj = st−1
j − wj +

∑
i∈S

qtij,∀ j ∈ C, t ∈ T (2.3f)

zta ≤ xta,∀ a ∈ A, t ∈ T (2.3g)∑
a∈δ+(i)

zta −
∑

a∈δ−(i)

zta =
∑
j∈C

qtij,∀ i ∈ S, t ∈ T (2.3h)

∑
a∈δ−(j)

zta −
∑

a∈δ+(j)

zta =
∑
i∈S

qtij,∀ j ∈ C, t ∈ T (2.3i)

yti ∈ {0, 1},∀ i ∈ S ∪ C, t ∈ T (2.3j)

xta ∈ {0, 1},∀ a ∈ A, t ∈ T (2.3k)

qtij ≥ 0,∀ i ∈ S, j ∈ C, t ∈ T (2.3l)

zta ≥ 0,∀ a ∈ A, t ∈ T (2.3m)

sti ∈ [0, di],∀ i ∈ S ∪ C, t ∈ T . (2.3n)

The objective (2.3a) maximizes net profit over the planning horizon. The vessel

flow balance constraints (2.3b) and (2.3c) require that a vessel exits a supplier or a

consumer if it visits it. Constraint (2.3d) ensures that no more than one vessel starts a

voyage every period. The supplier and consumer inventory balance constraints (2.3e)

and (2.3f) track inventory levels from one period to the next. The variable upper

14

bound constraint (2.3g) ensures that product flows on an arc only if a vessel travels

on it. The continuous product balance constraints (2.3h) and (2.3i) track the amount

of product on a vessel and relate it to the delivery variables. (Because all pickups

occur before any delivery, we can use the qtij variables in both constraint classes and do

not need to differentiate flow by product.) Note that the variable domain constraints

(2.3j)–(2.3n) along with the variable upper bounds (2.3g) and product balances (2.3h)

and (2.3i) ensure that the total amount delivered and the total on the vessel over any

arc do not exceed the vessel’s unit capacity.

The formulation detailed above does not explicitly include subtour elimination

constraints of the form ∑
a⊆R2

xta ≤ |R| − 1,∀ R ⊆ S or R ⊆ C.

However, since f ≥ 0, the product balance constraints (2.3h) and (2.3i) prevent any

subtour from appearing in an optimal solution.

For T large enough, the model is infeasible if
∑

i∈S wi 6=
∑

j∈C wj. However,

this requirement can be relaxed by adding a third-party supplier i0 and a third-

party consumer j0, and modifying the model accordingly. One approach is to set

wi0 = wj0 = 0, di0 = dj0 = ∞, h0
j0

= 0 and h0
i0

= M , for some large enough M > 0.

These parameters effectively mean that supply and consumption at the third-party

points is unlimited, and delivery to and from these points can be treated as a slack in

the model. Even with a third-party supplier and consumer, however, the model still

requires
∑

i∈S wi ≤ 1 and
∑

j∈C wj ≤ 1; that is, the total supply per period and the

total consumption per period must not exceed the vessel’s capacity.

2.2 An Approximate Dynamic Programming Algorithm

Solution times for models such as (2.1) tend to grow exponentially as T increases.

Moreover, in most practical settings only the decisions related to the first period (or

first few periods) are immediately necessary; once these decisions are implemented,

15

the model can be updated to reflect them and the procedure can repeat recursively

in a rolling horizon framework. However, if we solve (2.1) “as is” with a small T (say

T = 1), the resulting solution is likely to be myopic and far from optimal in terms of a

long or infinite horizon. To counteract this behavior, we can include a value function

V : [0, d] → R in the objective. Specifically, for (2.1) with finite T , we replace the

objective (2.1a) with

max
∑
t∈T

γt−1

(∑
i∈S∪C

(riq
t
i − histi)−

∑
a∈A

(fax
t
a + caz

t
a)

)
+ γTV (sT). (2.4)

For any V , define P (s, V) as problem (2.1) with T = 1, s0 = s and (2.4) replacing

(2.1a). Define X(s), ν(s, V) ∈ R and σ(s, V) ∈ [0, d] respectively as the feasible

region, optimal value and optimal ending inventory of P (s, V); note that X(s) is

independent of V .

In discounted models, the actual value function V ∗ by definition satisfies the

equation

V ∗(s) = max
(x,z,q,s′)∈X(s)

∑
i∈S∪C

(riqi − his′i)−
∑
a∈A

(faxa + caza) + γV ∗(s′), (2.5)

for any s ∈ [0, d]. Of course, if we knew V ∗ and could solve P (s, V ∗), we would have

the optimal first-period decision. However, finding V ∗ essentially entails solving (2.1).

There is also the additional difficulty of representing a function such as V ∗ inside of

a MIP objective in order to solve P (s, V ∗).

We propose instead to compute a function that approximates V ∗ but can be easily

represented within a MIP objective. Specifically, given a set V of PWL concave func-

tions, we would like to compute a function Ṽ ∈ V that approximates V ∗. In Chapter

3, we propose different function sets of interest and the details of implementation for

each set; for now, assume a generic V .

Algorithm 1 details the procedure for computing an approximation of V ∗. In-

tuitively, it successively refines the incumbent value function Vn by sampling initial

random inventory vectors s, observing their optimal value in the problem P (s, Vn),

16

Algorithm 1 Fitting-Based Value Iteration

Require: V0 ∈ V ;K,L,N ∈ N;αn ∈ (0, 1], n = 1, . . . , N
for n = 1, . . . , N do

for k = 1, . . . , K do
sn,k,1 ← sample([0, d])
for ` = 1, . . . , L do
νn,k,` ← ν(sn,k,`, Vn−1)
sn,k,`+1 ← σ(sn,k,`, Vn−1)

end for
end for
V̄ ← fit(sn, νn)
Vn ← merge(Vn−1, V̄ , αn)

end for
return VN

and using these observations to update Vn. It requires an initial value function V0,

which can be chosen based on prior knowledge or set to some default appropriate

for V . The parameters N , K, and L respectively denote the number of algorithm

iterations, the number of inventory vector samples per iteration, and the length of

each sample path, i.e. the number of solves starting from each sample. Although we

don’t consider it here, N can be replaced by an appropriate convergence test, where

the algorithm runs until the change between successive iterates is small enough. The

step size αn is a weighted average that indicates how the current incumbent Vn and

the best-fit function V̄ are merged. The algorithm’s three major tasks are explained

in further detail below.

2.2.1 Sampling and observing

Unlike classical value iteration, since the set of feasible inventory vectors is uncount-

ably infinite, we cannot hope to observe Vn at every point in [0, d]. Instead, we sample

the set a number of times and use these samples as a proxy for the entire space. The

sample function represents any generic sampling procedure that generates a random

point from the set [0, d]; in our experiments we use a uniform distribution, but this

17

may be substituted for any other distribution that more accurately fits a particular ap-

plication. (This may in fact be necessary in stochastic versions of (2.1) [55].) Another

popular technique is to avoid sampling altogether and choose a set of representative

inventory vectors which the algorithm uses at each iteration [69].

2.2.2 Fitting

After collecting a set of observations (sn, νn), the next step is to find the function

V̄ ∈ V that best fits this data according to some measure. The fit function solves an

optimization problem of the form

min
V ∈V

K∑
k=1

L∑
`=1

|V (sn,k,`)− νn,k,`|q, (2.6)

where q ∈ N. Depending on V , (2.6) may be convex or non-convex and can be solved

exactly with an optimization algorithm or approximately with a heuristic. Chapter

3 details solution procedures for various types of sets V .

2.2.3 Merging

The merge function updates the incumbent value function Vn based on the best-

fit obtained from the current iteration’s observation. Formally, we have merge :

V × V × [0, 1]→ V , where the following conditions are satisfied:

merge(V, V ′, 0) = V, ∀ V, V ′ ∈ V (2.7a)

merge(V, V ′, 1) = V ′, ∀ V, V ′ ∈ V (2.7b)

merge(V, V, α) = V, ∀ V ∈ V , α ∈ [0, 1]. (2.7c)

In most cases, V can be represented as a polyhedral cone and the merge function

is the convex combination of two elements in the set, with weights α and (1 − α)

respectively. We detail one exception of interest in Chapter 3.

The step size rule αn indicates the weight given to the best-fit and incumbent

functions at each iteration. In principle, we could simply replace each incumbent with

18

the new best-fit function at each iteration (equivalent to setting αn = 1,∀ n), but in

practice this may result in numerically unstable behavior. Even in simple settings,

theoretical convergence is not guaranteed unless
∑∞

n=1 αn = ∞ and
∑∞

n=1 α
2
n < ∞

[55], but these harmonic step sizes can lead to stalling behavior in practice, where

the algorithm appears to converge because the step size becomes too small. In our

experiments we have chosen to compromise the two extremes by using McClain’s rule

[46]:

αn =

1, n = 1

αn−1

1+αn−1−β , n ≥ 2

(2.8)

where 0 < β � 1 is a parameter. Initially, the rule behaves like a harmonic series,

giving the first few iterations large weight. However, as n grows the rule converges to

β > 0, and thus in the long term later iterations outweigh early ones.

19

CHAPTER III

VALUE FUNCTION FITTING

In Chapter 2 we posed an infinite-horizon FCNF model and an ADP algorithm used

to compute an approximate inventory value function for the model. In particular,

the algorithm considers a set of PWL concave functions and chooses a function from

the set. This chapter considers specific examples of value function sets, and explains

the implementation details for each one, including modeling, fitting and, in one case,

merging. We should note that the modeling of PWL concave functions is folklore

in LP, and all modeling issues presented here are well-known in the optimization

community. [70] is a recent study of more complex PWL modeling in MIP; [14,

Chapter 6] is an extensive survey of convex optimization models for approximation

and fitting.

The second major task of the algorithm, the fitting problem, is the main imple-

mentation question and this chapter’s principal contribution. Given an inventory

domain [0, d] ∈ Rm, a set of PWL concave functions V with V : [0, d] → R,∀ V ∈ V

and a finite set of data points (sk, νk) ∈ [0, d]× R,∀ k = 1, . . . , K, we must solve

min
V ∈V

K∑
k=1

|V (sk)− νk|q, (3.1)

where q ≥ 1; in practical applications we usually have q ∈ {1, 2}. The minimax case

(q =∞, also known as the Chebyshev norm) is also of interest, and obtained simply

by replacing the summation with a max over all absolute differences.

3.1 Separable Functions over a Fixed Grid

Let p ∈ N, and suppose we have an a priori partition 0 = b0i < b1i < · · · < bpi = di of

each inventory dimension i = 1, . . . ,m. (We assume for simplicity of exposition that

20

b1 b2 b3s

V (s)

η

v1

v2

v3

Figure 1: Univariate PWL concave function over fixed bucket lengths.

all dimensions are partitioned into p buckets, although this is not necessary.) We can

define a separable PWL concave function as

V (s) = η +
m∑
i=1

vji (min{si − bj−1
i , bji − b

j−1
i })+, (3.2)

where η ∈ R, v0
i ≥ · · · ≥ vpi ,∀ i and (a)+ = max{a, 0}. The set of all separable PWL

concave functions over grid b is then parametrized by

VSF = {(v, η) ∈ Rm×p × R : v0
i ≥ · · · ≥ vpi ,∀ i = 1, . . . ,m}. (3.3)

Figure 1 shows a univariate example.

Example 3.1 (Example 2.2 continued). Consider again the maritime IRP model in-

troduced in Chapter 2. If we can assume that each port’s inventory value is indepen-

dent of the other ports, a separable value function is an appropriate choice. An intu-

itive partition of the inventory domain would then be p = 2, and b1i = di−wi,∀ i ∈ S,

b1j = wj,∀ j ∈ C. In words, this partition assumes the value of each consumer’s inven-

tory is higher when inventory is below one period’s consumption; i.e. a stock-out is

imminent. Similarly, each supplier’s inventory value is less when inventory is within

one period’s production of capacity, and a pickup must occur.

To model any V = (v, η) ∈ VSF, we define auxiliary variables sji , i = 1, . . . ,m, j =

21

1, . . . , p and solve

V (s) = η + max
m∑
i=1

p∑
j=1

vji s
j
i (3.4a)

s.t.

p∑
j=1

sji = si,∀ i = 1, . . . ,m (3.4b)

0 ≤ sji ≤ bji − b
j−1
i . (3.4c)

Because the slopes v are monotonically non-increasing in each dimension i, the

optimal solution always increases the auxiliary variables in order from s1
i to spi until

their sum equals si, thus yielding (3.2). In the literature, this model is sometimes

called the incremental model [70].

To fit a function from VSF to the data points {(sk, νk)}Kk=1, (3.1) becomes

min
K∑
k=1

∣∣∣∣η +
m∑
i=1

p∑
j=1

vji (min{ski − b
j−1
i , bji − b

j−1
i })+ − νk

∣∣∣∣q (3.5a)

s.t. v1
i ≥ · · · ≥ vpi ,∀ i = 1, . . . ,m (3.5b)

v ∈ Rm×p, η ∈ R. (3.5c)

Because the sk are given, the quantity (min{ski − bj−1
i , bji − bj−1

i })+ can be pre-

computed and therefore (3.5) is convex; in particular, for q ∈ {1, 2} it becomes

respectively an LP or a convex quadratic program (QP). Both problems are efficiently

solvable by commercial optimization code. The problem is also equivalent to con-

strained univariate linear spline regression, which is extensively studied in statistics

[61].

When merging two functions (v, η), (v′, η′) ∈ VSF, we can equivalently consider

them as two points in the polyhedral cone given by (3.3). By convexity, a weighted

average of the two in the usual sense is also a member of VSF:

merge((v, η), (v′, η′), α) = (1− α)(v, η) + α(v′, η′),

where the sum is considered component-wise. A similar parametrization applies to

all function classes we consider except for the non-separable functions over variable

22

regions in Section 3.3; the convex combination serves as merge function in all cases

but the latter.

3.2 Non-Separable Functions over Fixed Regions

We now suppose the inventory domain [0, d] is partitioned into a finite set of polytopes

P satisfying

i) each P ∈ P is full-dimensional,

ii)
⋃
P∈P P = [0, d],

iii) int(P) ∩ int(Q) = ∅, for every distinct P,Q ∈ P ,

iv) P ∩Q is a face of P and Q for every P,Q ∈ P .

We define a PWL concave function over this partition as

V (s) = min
P∈P
{vP s+ ηP}. (3.6)

In this definition, (vP , ηP) ∈ Rm × R, vs is the inner product of v, s ∈ Rm, and the

following condition is satisfied:

vP s+ ηP ≤ vQs+ ηQ,∀ Q ∈ P \ {P}, s ∈ P, ∀ P ∈ P . (3.7)

Figure 2 shows a two-dimensional example. The set of all non-separable PWL concave

functions over the partition is then clearly VNF = {(v, η) ∈ (Rm × R)P : (3.7)}.

To model any V = (v, η) ∈ VNF inside a maximization LP or MIP, we define an

auxiliary variable ν and solve

V (s) = max ν (3.8a)

s.t. ν ≤ vP s+ ηP ,∀ P ∈ P (3.8b)

ν ∈ R. (3.8c)

To fit these functions, we must first give an alternate characterization of VNF, for

which we use the following result.

23

s2

s1

V

Figure 2: Bivariate non-separable PWL concave function.

Proposition 3.1 ([18]). Any (v, η) ∈ (Rm × R)P is concave if and only if it is con-

tinuous and its restriction to any two polytopes from P that share a facet is concave.

Let Φ(P) be the set of vertices of P , let Φ(P) =
⋃
P∈P Φ(P), and for each ϕ ∈

Φ(P), let Pϕ ⊆ P be the set of polytopes that contain ϕ. Let Ψ(P) be the set of facets

of P ∈ P that are also facets of another polytope in P , and let Ψ(P) =
⋃
P∈P Ψ(P).

For any facet ψ ∈ Ψ(P), let Pψ, Qψ ∈ P be the unique pair of polytopes that satisfies

Pψ ∩ Qψ = ψ. Choose %ψ ∈ ψ and δψ ∈ Rm \ {0} to satisfy %ψ + δψ ∈ Pψ and

rψ − δψ ∈ Qψ.

Corollary 3.2. The set VNF can alternately be characterized by the following two sets

of inequalities:

vPϕ+ ηP = vQϕ+ ηQ,∀ P,Q ∈ Pϕ,∀ ϕ ∈ Φ(P) (3.9a)

1

2
(vPψ(%ψ + δψ) + ηPψ + vQψ(%ψ − δψ) + ηQψ) ≤ vPψrψ + ηPψ ,∀ ψ ∈ Ψ(P). (3.9b)

VNF is therefore a polyhedral cone.

Proof. The first set of inequalities enforces continuity at the vertices ϕ ∈ Φ(P),

which implies continuity everywhere. The second set of inequalities imposes mid-

point concavity along each triple %ψ, %ψ± δψ; because all functions (vP , ηP) are affine,

this translates into concavity across ψ ∈ Ψ, which gives concavity everywhere by

Proposition 3.1. �

24

For each data point sk, let Pk ∈ P be a polytope that contains sk. The fitting

formulation (3.1) becomes

min
K∑
k=1

|vPksk + ηPk − νk|q (3.10a)

s.t. (3.9) (3.10b)

(v, η) ∈ (Rm × R)P . (3.10c)

For q ∈ {1, 2}, this problem is again an LP or QP, respectively. However, unlike in

the separable case, the number of parameters (i.e. vertices and facets) to compute

and hence the number of constraints may be significant.

The increase in computational effort is not the only issue we encounter when

switching from separable to non-separable functions. Suppose |P| = p; then the

number of parameters defining a function in VNF, Θ(mp), is of the same order of

magnitude as for VSF. However, in the separable case these parameters yield pm hy-

percubes in the grid, whereas in the non-separable case we only get p polytopes. This

drastic difference in the granularity of the partitions indicates that a non-separable

function may only be appropriate in low dimensions.

As in the separable case, because the affine functions defining each V ∈ VNF are

indexed by region (polytope), the merging operation is a simple convex combination.

However, this no longer applies when the regions defined by V are allowed to change.

3.3 Non-Separable Functions over Variable Regions

The obvious extension of the set of non-separable PWL concave functions over fixed

regions defined by the polytopes in P is the similar set of functions which is not

required to be defined over any fixed set of polytopes. Specifically, suppose we have

p ∈ N affine functions (vj, ηj) ∈ Rm × R, j = 1, . . . , p; then the function

V (s) = min
j=1,...,p

{vjs+ ηj} (3.11)

25

is PWL concave and V implies a partition of [0, d] into (at most) p polytopes via

Pj = {s ∈ [0, d] : vjs+ ηj ≤ v`s+ η`,∀ ` 6= j}. (3.12)

This larger set of PWL concave functions defined by p affine functions over variable

regions can be described simply as VNV = (Rm×R)p; unfortunately, this parametriza-

tion is not one-to-one, since a permutation of the affine functions’ indexing would leave

the resulting PWL function unchanged. However, modeling remains exactly the same

as before, and is accomplished with (3.8).

Example 3.2 (Example 2.2 continued). Consider again the maritime IRP model

(2.3). Unlike Example 3.1, suppose we cannot assume separability, perhaps because

different groups of ports are geographically close to one another and thus influence

each others’ routing decisions. If we are unable to determine polyhedral regions within

which inventory values are approximately affine, a variable region value function can

determine the regions instead, while at the same time determining value in each

region.

The fitting problem (3.1) becomes

min
(v,η)

K∑
k=1

∣∣ min
j=1,...,p

{vjsk + ηj} − νk
∣∣q, (3.13)

and is non-convex because the min operator appears inside the absolute value. (Nonethe-

less, to the best of our knowledge there is no known proof of the problem’s NP-

hardness.)

For any s ∈ [0, d], we can model V (s) disjunctively as

V (s) ≤ vjs+ ηj,∀ j = 1, . . . , p

p∨
j=1

V (s) ≥ vjs+ ηj.

This disjunction involves the union of unbounded polyhedra with different recession

cones, so we cannot hope to model it in a MIP using traditional disjunctive program-

ming techniques [3, 37]. Instead, we resort to a big-M method, where the disjunction

26

is replaced by

V (s) ≥ vjs+ ηj −M(1− yj),∀ j = 1, . . . , p

p∑
j=1

yj = 1, y ∈ {0, 1}p.

For each sk, define µk = V (sk) and let yk ∈ {0, 1}p. Then (3.1) is

min
K∑
k=1

|µk − νk|q (3.14a)

s.t. µk ≤ vjsk + ηj,∀ j = 1, . . . , p (3.14b)

µk ≥ vjsk + ηj −M(1− ykj),∀ j = 1, . . . , p; k = 1, . . . , K (3.14c)

p∑
j=1

ykj = 1,∀ k = 1, . . . , K (3.14d)

(v, η) ∈ (Rm × R)p, y ∈ {0, 1}p×K , µ ∈ RK . (3.14e)

Although technically correct, the preceding formulation suffers from symmetry, be-

cause a permutation of the j indices yields another feasible solution of equal objective.

The following result addresses this issue.

Proposition 3.3. An optimal solution of (3.14) satisfies

v1
1 ≤ . . . ≤ vp1. (3.15)

Proof. Let (ṽ, η̃) be an optimal solution of (3.13), and let π : {1, . . . , p} → {1, . . . , p}

be a permutation satisfying ṽ
π(1)
1 ≤ · · · ≤ ṽ

π(p)
1 . Define

vj∗i = ṽ
π(j)
i ,∀ i = 1, . . . ,m; j = 1, . . . , p

η∗j = η̃π(j),∀ j = 1, . . . , p.

In words, (v∗, η∗) permutes the j-indices of (ṽ, η̃) to order the resulting solution by

the first coordinate of the v variables. Since the maximum operator is invariant under

permutations, (v∗, η∗) is also optimal for (3.13). �

27

The addition of constraints (3.15) imposes an ordering of the feasible region and

removes solution symmetry. Of course, in highly degenerate cases where the optimal

solution has all first-coordinate slopes equal to one another, the symmetry would

not be broken. However, the symmetry breaking constraints can be imposed in any

dimension, so different variations of the problem can be implemented if degeneracy

is encountered.

The LP relaxations of big-M formulations in MIP are notoriously weak. In order

to partially mitigate this weakness in formulation (3.14), we consider an additional

set of constraints, for which we first establish a technical result.

Lemma 3.4. For each j = 1, . . . , p, define the set

Sj = {µ ∈ R, a ∈ Rp
+ : µ = aj;µ ≥ a`,∀ ` 6= j},

and define also the set

S =

{
µ ∈ R, a ∈ Rp

+ : µ ≤
p∑
j=1

aj;µ ≥ aj,∀ j = 1, . . . , p

}
.

Then S = conv
(⋃

j Sj
)
.

Proof. Both S and Sj,∀ j are pointed polyhedral cones contained in the positive

orthant. Let ej ∈ Rp be the j-th unit vector. For each Sj, a complete set of extreme

rays is

(µ, a) =

(
1, ej +

∑
`∈T

e`

)
,∀ T ⊆ {1, . . . , p} \ {j}.

This can be verified by noting that at any extreme ray, exactly one of the pair of

constraints µ ≥ a` and a` ≥ 0 can be binding for each ` 6= j. (Both are binding only

at the origin.)

Similarly, a complete set of extreme rays of S is

(µ, a) =

(
1,

∑
j∈T

ej

)
,∀ T ⊆ {1, . . . , p}, T 6= ∅.

28

As in the previous case, at any extreme ray exactly one of µ ≥ aj and aj ≥ 0 can be

binding for each j. The constraint µ ≤
∑

j aj ensures that at least one of the former

is always binding.

The union over all j of the sets of extreme rays of Sj gives the set of rays for S,

which proves the result. �

The preceding lemma gives a polyhedral description of the convex hull of a union

of polyhedra with differing recession cones (see also [57, Theorem 1]). Letting µ = µk

and aj = −vjsk − ηj for each k, we apply the lemma as follows.

Corollary 3.5. Suppose an optimal solution of (3.13) satisfies

vjsk + ηj ≤ 0,∀ j = 1, . . . , p; k = 1, . . . , K. (3.16)

Then the following constraints are valid for (3.14):

µk ≥
p∑
j=1

(vjsk + ηj),∀ k = 1, · · ·K. (3.17)

We can apply constraints (3.17) without loss of generality if we subtract a large

enough number from all νk.

Model (3.14) has Θ(pK) binary variables, Θ(K + mp) continuous variables, and

Θ(pK) constraints. Because of the relatively large number of binary variables, the

model may only be computationally tractable for small-to-medium data sets. This

computational difficulty would be especially apparent when q = 2 and (3.14) becomes

a MINLP with convex quadratic objective. In these cases, heuristic methods may be

used in tandem or instead of exact techniques. Magnani and Boyd [44] introduced

a Gauss-Newton heuristic for (3.13); we reproduce it here in Algorithm 2 with our

notation. Note that the linear fitting problem referred to in the algorithm is classi-

cal linear (affine) fitting, equivalent to (3.5) with p = 1 and without the concavity

constraints.

29

Algorithm 2 Gauss-Newton heuristic for non-separable fitting over variable regions

randomly partition {sk}Kk=1 into p non-empty sets with pairwise non-intersecting
convex hulls
repeat

for j = 1, . . . , p do
solve linear fitting problem for points in set j to obtain best-fit affine function
(vj∗, η∗j)

end for
set V ∗(s)← minj{vj∗s+ η∗j}
partition {sk}Kk=1 into p sets according to (3.12), breaking ties arbitrarily

until partition is unchanged
return V ∗

The invariance of functions in VNV under permutations of the j-indices creates

a problem for the merge function. Specifically, for any (v, η), (v′, η′) ∈ VNV, any

permutation π : {1, . . . , p} → {1, . . . , p} yields a valid merge via

(
mergeπ((v, η), (v

′, η′), α)
)j

= (1− α)(vj, ηj) + α((v′)π(j), η′π(j)).

The appropriate permutation may depend on the particular application; we present

one tractable option.

One way to choose a permutation is by maximizing the “overlap” between parti-

tions; i.e. solving

max
π

p∑
j=1

vol(Pj ∩ P ′
π(j)),

where P ∈ P and P ′ ∈ P ′ denote the partitions of [0, d] implied by (v, η), (v′, η′)

according to (3.12). However, calculating the volumes involves high-dimensional inte-

gration over polytopes, which we cannot hope to solve efficiently. Instead, we propose

the use of the `q norm in Rm+1 as a proxy. This yields

min
π

p∑
j=1

‖(vj, ηj)− ((v′)π(j), η′π(j))‖q, (3.18)

where q may or may not be the same norm used in the fitting objective. These norms

are readily calculated, and the resulting problem is a min-cost perfect matching.

30

V (s)

s

η2

η3

η1
v1

v2

v3

Figure 3: Univariate PWL concave function defined with the minimum operator.

3.4 Separable Functions over a Variable Grid

Whether the functions are defined over fixed or variable regions, the large number

of parameters required for non-separable modeling and fitting in high dimensions re-

mains an issue. We next present a compromise between the simplicity of separable

functions and the versatility of non-separable functions over variable regions: We

impose separability to maintain a manageable number of parameters, but allow vari-

ability in the bucket lengths that define the grid to increase versatility. In this case,

we have

V (s) =
m∑
i=1

min
j=1,...,p

{vji si + ηji }, (3.19)

where (v, η) ∈ Rm×p × Rm×p. We lose nothing by assuming that the slopes in each

dimension are non-increasing, v1
i ≥ · · · ≥ vpi ,∀ i, and this in turn implies a non-

decreasing order of intercepts, η1
i ≤ · · · ≤ ηpi ,∀ i. Figure 3 shows a univariate example.

We use the following proposition to further simplify the set of functions.

Proposition 3.6. For any function defined by (3.19), we may assume

η1
i = 0,∀ i = 2, . . . ,m.

Proof. Let V = (v, η) be defined as above, and let V̂ = (v, η̂), where

η̂ji =

ηji +

∑m
`=2 η

1
` , i = 1

ηji − η1
i , i ≥ 2

,∀ j = 1, . . . , p.

31

The function V̂ shifts intercepts in the first dimension up, and shifts all other in-

tercepts down by the corresponding amount. For any s ∈ [0, d], we then have

V (s) = V̂ (s). �

Corollary 3.7. The set of separable functions defined over p variable buckets in each

dimension has a parametrization given by

VSV = {(v, η) ∈ Rm×p × Rm×p : v1
i ≥ · · · ≥ vpi , η

1
i ≤ · · · ≤ ηpi ,∀ i = 1, . . . ,m;

η1
i = 0,∀ i = 2, . . . ,m}.

(3.20)

We can model these functions in one of two equivalent ways. The incremental

model (3.4) still applies using

bji =
ηj+1
i − ηji
vji − v

j+1
i

,∀ j = 1, . . . , p− 1. (3.21)

However, this equation is valid only if all univariate affine functions (vji , η
j
i) are min-

imal for some si ∈ [0, di]. Otherwise, we have bj+1
i − bji < 0 for some j; however, we

can eliminate this problem by re-parametrizing the set of functions as

VSV = {(v, η, b) ∈ Rm×p × R× Rm×(p+1) : v1
i ≥ · · · ≥ vpi ,∀ i = 1, . . . ,m

0 = b0i ≤ · · · ≤ bpi = di,∀ i = 1, . . . ,m}.
(3.22)

The second modeling possibility mirrors (3.8). Define auxiliary variables ν ∈ Rm;

any V = (v, η) ∈ VSV is given by

V (s) = max
m∑
i=1

νi (3.23a)

s.t. νi ≤ vji si + ηji ,∀ j = 1, . . . , p (3.23b)

ν ∈ Rm, (3.23c)

where (v, η) follows the parametrization in (3.20).

We also use the second modeling formulation as a starting point for the fitting

problem. Applying the same modeling techniques used in (3.14) yields

min
K∑
k=1

∣∣∣∣ m∑
i=1

µki − νk
∣∣∣∣q (3.24a)

32

s.t. µki ≤ vji s
k
i + ηji ,∀ i = 1, . . . ,m; j = 1, . . . , p (3.24b)

µki ≥ vji s
k
i + ηji −M(1− ykij),∀ i = 1, . . . ,m; j = 1, . . . , p; k = 1, . . . , K (3.24c)

p∑
j=1

ykij = 1,∀ i = 1, . . . ,m; k = 1, . . . , K (3.24d)

v1
i ≥ · · · ≥ vpi ,∀ i = 1, . . . ,m (3.24e)

η1
i ≤ · · · ≤ ηpi ,∀ i = 1, . . . ,m (3.24f)

η1
i = 0,∀ i = 2, . . . ,m (3.24g)

(v, η) ∈ (Rm × Rm)p, y ∈ {0, 1}m×p×K , µ ∈ Rm×K . (3.24h)

Paradoxically, the separability of the functions, which simplifies modeling in vari-

ous ways, complicates fitting by increasing the number of variables required in the

formulation. In particular, the number of binary variables increases by an order of

magnitude to Θ(mpK), which may again limit the model’s scalability. Fortunately,

the Gauss-Newton heuristic developed in [44] can be adapted for this setting as well.

To adapt the heuristic, we need a first-order approximation fitting problem. Given

a partition b of [0, d], define an assignment function h(i, k) = min{j : ski < bji},∀ i =

1, . . . ,m, k = 1, . . . , K; this function indicates which bucket a point sk belongs to in

each dimension i. The first-order approximation fitting problem is

min
K∑
k=1

∣∣∣∣ m∑
i=1

v
h(i,k)
i ski + η

h(i,k)
i − νk

∣∣∣∣q (3.25a)

s.t. v1
i ≥ · · · ≥ vpi ,∀ i = 1, . . . ,m (3.25b)

η1
i ≤ · · · ≤ ηpi ,∀ i = 1, . . . ,m (3.25c)

η1
i = 0,∀ i = 2, . . . ,m (3.25d)

(v, η) ∈ Rm×p × Rm×p. (3.25e)

This problem is convex, and therefore efficiently solvable. Intuitively, for a separa-

ble PWL function defined over b, the affine function
∑

i(v
h(i,k)
i s + η

h(i,k)
i) gives the

derivative, or first-order approximation, at point sk. This formulation thus attempts

33

to fit a function from VSV based on the derivative implied by grid b. If the resulting

best-fit function changes the grid, we can reassign and repeat. Algorithm 3 details

the heuristic.

Algorithm 3 Gauss-Newton heuristic adapted for separable fitting

pick a random grid b of the domain [0, d] with p buckets in each dimension
repeat

(re)define h according to b
solve first-order approximation fitting problem (3.25) with h
let (v∗, η∗) be the optimal solution
update b according to (v∗, η∗) via (3.21)

until b is unchanged
return (v∗, η∗)

Either parametrization of VSV is a polyhedral cone, and therefore merging is again

simply a convex combination. However, we should note that the merge functions

implied by each parametrization are not equivalent: For a fixed α, if we merge two

functions parametrized by (3.20) and then compute the resulting grid, we obtain

a different set of bucket lengths than if we convert each function to its equivalent

parametrization according to (3.22) and merge the two resulting grids. The converse

starting from a function parametrized via (3.22) also holds.

3.5 Hybrid Functions

Although we have presented the different function classes as separate entities, they

may in fact be combined in a variety of ways according to the user’s particular ap-

plication. Since the minimum of two concave functions is again concave, we could

define a hybrid function

V (s) = min{V1(s), V2(s)},

where V1 and V2 belong to different classes of functions. Figure 4 gives a two-

dimensional example. The modeling, fitting and merging can be adapted to address

any “mix and match” scenario based on the principles we have outlined in this chap-

ter.

34

s2

s1

V

Figure 4: Bivariate hybrid PWL concave function.

Example 3.3 (Example 2.2 continued). Consider once more the maritime IRP model

introduced in Chapter 2. If the number of ports in the model is relatively large, it

is computationally intractable to employ a non-separable value function. However,

it may be that inventory value cannot be accurately approximated by a separable

function over its entire domain. For instance, we may believe that two consumer

ports, j1 and j2, have inventory value that is separable when the combined inventory

is above a certain amount I. However, when sj1 + sj2 ≤ I, a certain interaction

between the two ports further reduces inventory value. In this case, a hybrid value

function similar to Figure 4’s example may be an appropriate compromise.

35

CHAPTER IV

INFINITE-HORIZON LOT SIZING

In Chapter 2 we presented an algorithm that approximates inventory value in a generic

multi-period or infinite-horizon supply chain model with maximization objective. The

algorithm uses DP and data fitting techniques to construct a PWL concave approxi-

mate inventory value function. The choice of PWL concave functions is motivated by

true maximization MIP value functions, known to be PWL, superadditive and upper

semi-continuous. However, though the aforementioned structure of value functions is

well-known in finite MIP’s, the infinite case is not as well understood. This chapter

studies a particular infinite-horizon problem and its value function; we show that the

structural characteristics of the finite case carry over to the infinite case with only

minor adjustments. In addition, as a proof of concept we compare heuristic solutions

generated with Algorithm 1’s approximate value function to the optimal solutions.

The particular problem we study is a discounted, infinite-horizon version of the

classical single-item uncapacitated LSP, already introduced in Example 2.1. Suppose

we need to manage the production schedule for a single item that experiences con-

stant per-period demand w. There is no production or inventory capacity, and all

demand must be met each period, either with items produced that period, or items

in inventory. Every period we produce, we incur a fixed cost f > 0 and a variable

cost of c > 0 per unit produced. Items left over at the end of the period after demand

is met incur a holding cost of h > 0 per unit. We can model this problem as

C(s, w) = min
∞∑
t=1

γt−1(fxt + czt + hst) (4.1a)

s.t. zt + st−1 − st = w,∀ t = 1, . . . (4.1b)

36

Mwxt − zt ≥ 0,∀ t = 1, . . . (4.1c)

s0 = s (4.1d)

xt ∈ {0, 1}; zt, st ≥ 0,∀ t = 1, . . . , (4.1e)

where γ ∈ [0, 1) and Mw > 0 is a large number; we add the subscript to make its

dependence on w explicit. We take the set of feasible solutions to be a subset of

the sequences (xt, zt, st) with well-defined and finite objective (cf. [60]). Unlike our

generic FCNF model (2.1), we employ a minimization objective more natural in the

current case; this also motivates our use of cost notation instead of value notation

in this chapter. We also explicitly parametrize both the initial inventory s and the

demand rate w, and assume both are non-negative. We include the degenerate case

w = 0 so the domain of C is the closed cone R2
+.

Problem (4.1) and its many variations have a long history in operations research.

The structure of optimal solutions in the finite, dynamic case was studied in the sem-

inal work of Wagner and Whitin [71], and many researchers have since attempted to

generalize their results for more complex models. Most authors have given results per-

taining to optimal solutions’ structure, and related issues such as regeneration points

and replenishment intervals (see Theorem 4.1 below.) For example, Graves and Orlin

[32] study a cyclic generalization of (4.1) and its long-run average cost counterpart,

proving various structural results and providing algorithmic implementations with

worst-case running times.

However, the value function itself has received relatively little attention. The

one important exception is [29], where the authors give a closed-form expression for

the value function of a continuous-time, average-cost single-item lot-sizing problem.

This chapter’s theoretical results can be viewed as the analogue in the discrete-time,

discounted case.

37

4.1 Optimal Solutions

The following theorem summarizes the structure of optimal solutions for (4.1). These

results are well-known throughout the MIP, DP and inventory control community,

and similar results exist for different variations of LSP. [71] has the original proofs

for a finite variant of the problem; however, the arguments carry over to (4.1) with

minor changes.

Theorem 4.1. Suppose w > 0, and let t∗ = b s
w
c + 1. Any optimal solution to (4.1)

satisfies the following statements.

i) zt = 0,∀ t < t∗.

ii) zt∗ > 0, and st∗−1 + zt∗ = kt∗w for some kt∗ ∈ N.

iii) st−1zt = 0,∀ t > t∗, and if zt > 0, then zt = ktw, for some kt ∈ N.

Proof. For t < t∗, if zt > 0 we can always postpone production and decrease the

objective. This also implies zt∗ > 0 by feasibility. For t > t∗, if we produce an

amount that is not an integer multiple of w, we can always decrease production to

the largest integer multiple of w and postpone the remaining production to the next

period of positive production while improving the objective. This implies we only

produce when incoming inventory is at zero. If s− (t∗− 1)w > 0, a similar argument

shows that st∗−1 + zt∗ is an integer multiple of w. �

The theorem states that optimal solutions have a replenishment interval structure:

Production is always equal to the cumulative demand for an interval of consecutive

periods; for (4.1), we shall see that replenishment intervals are always equal because

the data is stationary, except in degenerate cases when two interval lengths are opti-

mal.

38

4.2 The Value Function

The most basic non-trivial case occurs when the initial inventory is zero.

Proposition 4.2. Suppose w > 0. Then

C(0, w) = min
k∈N

{
1

1− γk

(
f + kcw + hw

k−1∑
`=1

γ`−1(k − `)
)}

.

For any w, at most two consecutive integers k(w), k(w) + 1 minimize the quantity

inside the brackets.

Proof. This well-known proof uses standard DP techniques; see, e.g., [56]. By Theo-

rem 4.1, we know that production must occur in integer multiples of w, and thus all

future inventories will be integer multiples of w. We can thus consider a finite-state

and -action DP with state space S = {0, . . . , K}, where the integer K is chosen large

enough. The set of feasible actions (i.e. actions with finite cost) are the “do noth-

ing” action for all positive states, and the actions corresponding to a replenishment of

length k, k = 1, . . . , K in the zero state. The quantity inside the minimization bracket

is precisely the present value of replenishing inventory every k periods into perpetu-

ity, and the minimum over all such quantities gives the optimal policy. Moreover, as

a function of k the expression inside the brackets is strictly convex and eventually

increasing, so the minimum over all natural numbers can be achieved by at most two

consecutive numbers. �

This result also shows that we can take Mw ≥ (k(w) + 1)w in (4.1) to guarantee

the feasibility of all optimal solutions, where k(w) is an optimal replenishment length.

Corollary 4.3. C is subadditive.

Proof. This proof is almost identical to the finite case; see [51]. Let s, s′ and w,w′ be

pairs of starting inventories and demands, with respective optimal solutions (xt, zt, st)

and (x′t, z
′
t, s

′
t). Then x̂t = max{xt, x′t}, (ẑt, ŝt) = (zt, st) + (z′t, s

′
t) is feasible for C(s+

39

s′, w + w′), where we take Mw+w′ = Mw + Mw′ ≥ (k(w + w′) + 1)(w + w′), and has

an objective no greater than C(s, w) + C(s′, w′). �

Corollary 4.4. C(s, w) = C(0, w)− cs,∀ 0 ≤ s < w, ∀ w > 0.

Proof. For simplicity, assume the optimal replenishment length is unique, and let

k(w) ∈ N be the length. It suffices to prove that any optimal solution satisfies

x1 = k(w)w − s. Suppose not; by Theorem 4.1, x1 = k′w − s, for some k′ 6= k(w).

Then

f + c(k′w − s) + hw
k′−1∑
`=1

γ`−1(k′ − `) + γk
′
C(0, w) ≤

f + c(k(w)w − s) + hw

k(w)−1∑
`=1

γ`−1(k(w)− `) + γk(w)C(0, w)

However, s can be eliminated from both sides, and the resulting relation implies that

k′ is an optimal replenishment lenght, contradicting our assumption. �

Corollary 4.5. C(s, w) = h(s− w) + γC(s− w,w),∀ s ≥ w,∀ w.

Proof. Follows directly from Theorem 4.1(i). �

The next theorem summarizes the preceding results into a single formula.

Theorem 4.6. C is given by

C(s, 0) =
hs

1− γ
,∀ s ≥ 0 (4.2)

C(0, w) = min
k∈N

{
1

1− γk

(
f + kcw + hw

k−1∑
`=1

γ`−1(k − `)
)}

,∀ w > 0 (4.3)

C(s, w) = C(0, w)− cs,∀ 0 ≤ s < w (4.4)

C(s, w) = s

(
h

(
1− γk

1− γ

)
− γkc

)
− w

(
h

k∑
`=1

`γ`−1 − γkkc
)

+ γkC(0, w),∀ kw ≤ s < (k + 1)w,∀ k ∈ N.

(4.5)

40

C(s, w)

s
w 2w 3w 4w 5w

C(0, w)

Figure 5: Single-item LSP value function for fixed w > 0 with k(w) = 2.

Proof. The first equation is directly obvious but also follows by setting t∗ = ∞ in

the proof of Theorem 4.1. The second and third equations are restatements previous

results. The last equation follows by induction from Corollary 4.5. �

Figure 5 shows an example plot of C(s, w) for a fixed w > 0 with optimal re-

plenishment interval of two periods. The discontinuities in C occur along the lines

s = kw, for each k ∈ N. Within each region {(s, w) : kw ≤ s < (k + 1)w}, C(s, w)

is PWL and continuous. Figure 6 shows a sample plot with s = 0. Figure 7 shows a

three-dimensional sample plot of C.

Corollary 4.7. C is PWL, with a countably infinite number of regions in which it is

affine.

This last result contrasts with the finite MIP case, in which value functions are

PWL but defined by finitely many regions [13, Theorem 6.1]. However, any bounded

subset of R2
+ that doesn’t intersect the ray w = 0 contains finitely many regions in

which C is affine.

Corollary 4.8. C is lower semi-continuous.

Proof. (w > 0) If w is positive, discontinuities occur when s is an integer multiple of

41

C(0, w)

w
k(w) = 1k(w) = 2· · ·

k(w) = 3

f

Figure 6: Single-item LSP value function for s = 0.

Figure 7: Three-dimensional rendering of sample single-item LSP value function.

42

w. First suppose that s = w; then using the basic fact C(0, w) ≥ cw
1−γ , we have

C(0, w)− cw ≥ γC(0, w),

where the quantity on the left is lims↑w C(s, w) and the right-hand side is C(w,w).

A similar argument, also using C(0, w) ≥ cw
1−γ , establishes lower semi-continuity for

s = kw, k ≥ 2.

(w = 0) The proof is trivial for C(0, 0), since all other function values are positive.

So suppose s > 0, and let (ŝ, ŵ) satisfy ŝ > 0, 0 < ŵ < ŝ
2
. Using the identity

k∑
`=1

`γ`−1 =
kγk+1 − kγk + 1− γk

(1− γ)2
,

we have

C(ŝ, ŵ) = ŝ

[
h

(
1− γb ŝŵ c

1− γ

)
− γb

ŝ
ŵ
cc

]
+ γb

ŝ
ŵ
cC(0, ŵ)

− ŵ
[

h

(1− γ)2

(⌊ ŝ
ŵ

⌋
γb

ŝ
ŵ
c+1 −

⌊ ŝ
ŵ

⌋
γb

ŝ
ŵ
c + 1− γb

ŝ
ŵ
c
)
− γb

ŝ
ŵ
c
⌊ ŝ
ŵ

⌋
c

]
=

hŝ

1− γ
− hŵ

(ŝ
ŵ
−

⌊ ŝ
ŵ

⌋) γb
ŝ
ŵ
c

1− γ
+ ŵ

(ŝ
ŵ
−

⌊ ŝ
ŵ

⌋)
γb

ŝ
ŵ
cc

− hŵ
(

1− γb ŝŵ c

1− γ

)
+ γb

ŝ
ŵ
cC(0, ŵ)→ hs

1− γ
= C(s, 0),

as (ŝ, ŵ)→ (s, 0). �

4.3 Approximate Value Function Comparison

In the remainder of the chapter, we report the results of a set of experiments designed

to validate the algorithm presented in Chapter 2: We generate a value function for

instances of (4.1) using Algorithm 1, and then compare solutions obtained by solving

a single-period instance with the value function to optimal solutions as given by

Theorems 4.1 and 4.6.

In our first experiment, we use an instance with the following parameters: f = 3,

c = 1, h = 2, γ = 0.99, w = 1. The reader may verify that the optimal replenish-

ment quantity is 2w = 2. Our choice of value function class is a two-bucket PWL

43

convex function with fixed bucket points; see Section 3.1. (The LSP is formulated in

minimization terms, and therefore we swap concave functions for convex ones.) As

function breakpoint we use b1 = w = 1, reasoning as in Example 3.1 that the most

significant change in value occurs below one period’s consumption. To run Algorithm

1, we set an upper bound b2 = 2w = 2.

Table 1 shows the result of this experiment. After obtaining the value function, we

solve instances from several different starting inventories, shown in the first column.

The resulting solution’s production quantity is shown in the second column, and the

optimal production quantity given by Theorems 4.1 and 4.6 is shown for reference

in the third. Clearly, the approximate value function in this case implies exactly the

optimal production quantity for all the starting inventories tested.

Table 1: Lot-sizing experiment results for two-period optimal replenishment, using
fixed-bucket value function.

Start. Inv. Prod. Qty. Opt. Prod. Qty.
0.0 2.00 2.00
0.2 1.80 1.80
0.4 1.60 1.60
0.6 1.40 1.40
0.8 1.20 1.20
1.0 0.00 0.00
1.2 0.00 0.00
1.4 0.00 0.00
1.6 0.00 0.00
1.8 0.00 0.00
2.0 0.00 0.00

The first experiment’s results are optimal in part because of the choice of bucket

breakpoint b1, which is exactly w less than the optimal reorder quantity. In the next

experiment, we use the same instance but instead generate a two-bucket PWL convex

value function with a variable breakpoint (cf. Sections 3.3 and 3.4). The resulting

value function has a shifted breakpoint b1 = 1.54.

Table 2 outlines the second experiment’s results. In this case, the solution’s pro-

duction quantity reflects the shifted breakpoint and is equal to 2.54 when there is

44

no initial inventory, an excess of 27%. In general, the order-up-to quantity implied

by the value function is 2.54 instead of 2. To put this discrepancy into perspective,

it is helpful to calculate the present value of each policy. Using Theorem 4.6, the

reader may verify that C(0, 1) = 351.76, whereas if the initial order is 2.54 and the

subsequent ordering is optimal, the present value is

f + 2.54c+ h(1.54 + γ0.54) + γ2(C(0, 1)− 0.54c) = 353.92,

an increase of 0.61%. However, if the order-up-to quantity 2.54 is used into perpetuity,

the present value is

f + 2.54c+ h(1.54 + γ0.54) + γ2

(
C(0, 1) +

0.54h

1− γ

)
= 460.30,

an increase of 30.86%.

Table 2: Lot-sizing experiment results for two-period optimal replenishment, using
variable-bucket value function.

Start. Inv. Prod. Qty. Opt. Prod. Qty.
0.0 2.54 2.00
0.2 2.34 1.80
0.4 2.14 1.60
0.6 1.94 1.40
0.8 1.74 1.20
1.0 0.00 0.00
1.2 0.00 0.00
1.4 0.00 0.00
1.6 0.00 0.00
1.8 0.00 0.00
2.0 0.00 0.00

As a final test, we repeated the second experiment for an instance with a much

larger optimal replenishment quantity. The new instance’s parameters that differ from

the previous ones are f = 60, c = 10, h = 0.25, yielding an optimal replenishment

quantity of 18w = 18; we also increased the upper bound to b2 = 20w = 20. In

this case, the value function generated by Algorithm 1 has a breakpoint b1 = 18.24,

45

Table 3: Lot-sizing experiment results for 18-period optimal replenishment, using
variable-bucket value function.

Start. Inv. Prod. Qty. Opt. Prod. Qty.
0.0 19.24 18.00
0.2 19.04 17.80
0.4 18.84 17.60
0.6 18.64 17.40
0.8 18.44 17.20
1.0 0.00 0.00
1.2 0.00 0.00
1.4 0.00 0.00
1.6 0.00 0.00
1.8 0.00 0.00
2.0 0.00 0.00

yielding an order-up-to quantity of 19.24, as Table 3 shows. In this case, the order-

up-to quantity exceeds the optimum by only 6.89%.

Using the same argument as before, we have C(0, 1) = 1, 669.53, whereas if the

first order quantity is 19.24 and subsequent ordering is optimal, the present value is

f + 19.24c+ h
18∑
`=1

γ`(19− `) + γ19(C(0, 1)− 0.24c) = 1, 670.15,

an increase of 0.037%. Similarly, if the order-up-to quantity 19.24 is used into perpe-

tuity, the present value is

0.24c+
1

1− γ19

(
f + 19c+ h

18∑
`=1

γ`−1(19− `)
)

+
0.24h

1− γ
= 1, 679.11,

an increase of 0.57%. The modest increase in the present value of the policy implied

by the approximate value function in this second case suggests that the approximate

approach is more effective in situations with longer replenishment intervals.

Why does the variable-bucket value function overshoot the optimal policy? Figure

8 plots the value function for the instance used in the first and second experiment.

Along with the true value function, plotted in a solid line, we plot its best-fit two-

bucket PWL convex functions obtained by solving two different problems: The best-

fit function with fixed bucket at b1 = 1 is plotted in a dotted line, while the best-fit

46

C(s, 1)

s

C(0, 1)

C(1, 1)

Figure 8: Plot of C with fixed- and variable-bucket PWL convex best-fit functions.

variable-bucket function is plotted with a dashed line. The variable-bucket best-

fit function decreases the squared error by over 40%; however, in this example the

resulting breakpoint implies a sub-optimal policy, while the fixed-bucket function

with a worst fit implies the optimal policy. The example indicates that fixed-bucket

or -region functions may be more appropriate when we have additional information

about the problem and its value function. Nonetheless, all three experiments do show

that we can use approximate value functions to generate solutions of high quality;

the particular class of value function and the resulting solution’s quality depend on

our knowledge of the problem.

47

CHAPTER V

MODEL CASE STUDIES

This chapter details several experiments designed to test the approximate inventory

valuation algorithm described in Chapter 2. The experiments use the approximate

inventory value functions constructed by the algorithm to generate heuristic solutions

for multi-period models, and we infer the accuracy of the value function by examining

the quality of these solutions.

The specific models we use in the experiments are IRP’s inspired by applications

in maritime petrochemical transportation [30]. However, in its most general form the

IRP has applications in virtually any transportation setting. We include experiments

for two types of instances. The first type of instance includes a simplified travel

time scheme, in which all voyages are assumed to take place within a single period.

The more complex instances allow for different travel times depending on origin-

destination pairs.

All computations were performed on a Xeon 2.66 GHz workstation with 8 Gb of

RAM. CPLEX 11 was used as the optimization solver.

5.1 Simplified Travel Time

Our first set of experiments concerns the simple-time model (2.3) already described in

Chapter 2. The instances used in the computational study were randomly generated

based on problem characteristics found in real-world situations. For example, the

transportation costs were randomly generated to satisfy the triangle inequality, with

travel from suppliers to consumers about 15 times as costly as travel within either

group. Similarly, production and consumption rates wi, i ∈ S ∪ C were randomly

generated so that the expected total production and the expected total consumption

48

per period were both approximately 85% of vessel capacity. However, a third-party

supply port and a third-party consumption port were added to the model in case

the two total rates were not equal. The number of suppliers and consumers in each

instance was six and five respectively (plus third parties).

The value function class we chose for these experiments is the set of separable PWL

concave functions over fixed grids, described in Section 3.1. Each port’s inventory

domain was divided into three buckets of equal length.

In the first experiment, we constructed five instances of (2.3) and randomly gener-

ated five starting inventories, for a total of 25 problem instances. Letting the planning

horizon length be T = 60, we used two methods to generate solutions:

• 1P: Construct a solution one period at a time by solving the single-period sub-

problem (with approximate value function in the objective) to optimality and

using its optimal ending inventory as the next starting inventory.

• 60P: Attempt to solve the entire 60-period instance (with approximate value

function in the objective) using CPLEX, emphasizing feasibility, with a one-

hour time limit.

We added the value function to the 60-period instances to ensure a fair comparison;

i.e. both methods optimized with respect to the same objective. Table 4 presents the

results of this experiment, with all times reported in seconds. Column Inst indexes

the instance-starting inventory pair. Columns 1P Obj and 60P Obj respectively

give the objective value of each solution. The Bound column has the best dual

bound found by CPLEX within the time limit. Columns 1P Time and 60P Time

show the computation time used to obtain the best solution via both methods.

We observe that the single-period heuristic generates competitive solutions, beat-

ing the 60P solution in all but three instances: 1-3, 3-3 and 5-1. However, the more

notable result is the drastic time difference. The single-period heuristic is able to

49

Table 4: Simplified time instances, first experiment.
Obj Time (sec.)

Inst 1P 2P 60P Bound 1P 2P 60P
1-1 -810.19 -804.50 -827.59 -753.51 11 226 1963
1-2 -817.10 -823.54 -845.76 -757.60 14 345 1040
1-3 -892.84 -874.21 -847.39 -755.11 66 21362 3284
1-4 -813.53 -803.40 -828.75 -748.21 17 308 3246
1-5 -809.03 -807.93 -838.18 -754.80 13 261 2902
2-1 -745.49 -729.36 -750.48 -676.77 10 105 804
2-2 -715.36 -715.33 -745.97 -677.38 7 73 3253
2-3 -711.62 -708.11 -737.63 -663.68 9 141 1568
2-4 -708.93 -710.70 -733.13 -668.69 7 83 2953
2-5 -726.17 -721.23 -753.60 -676.24 8 58 1610
3-1 2794.40 2795.62 2771.41 2873.24 42 3060 235
3-2 2812.60 2818.29 2786.35 2902.84 52 2517 3309
3-3 2578.34 2667.05 2669.78 2841.47 193 48455 3147
3-4 2795.49 2798.76 2759.93 2875.42 43 1671 3313
3-5 2805.63 2808.43 2771.71 2880.39 38 1830 531
4-1 3342.36 3348.26 3300.65 3421.72 21 405 3424
4-2 3353.05 3363.90 3318.68 3424.61 19 245 3380
4-3 3287.23 3296.66 3266.03 3371.86 19 459 3266
4-4 3290.45 3296.85 3271.44 3363.51 22 324 3260
4-5 3335.52 3342.43 3305.05 3410.97 20 393 2092
5-1 -820.62 -812.62 -820.42 -741.29 13 188 3406
5-2 -803.15 -796.33 -834.64 -739.56 12 141 3347
5-3 -786.86 -782.59 -799.52 -721.43 16 216 2827
5-4 -797.96 -787.52 -819.95 -730.08 12 164 1895
5-5 -812.43 -812.41 -836.13 -738.71 11 173 3178

generate a solution in a few seconds (the average is 27.8,) while CPLEX does not

find its best 60P solution until much later, after an average of 2,529 seconds. This

drastic time difference suggests that one can generate a good solution quickly using

the single-period heuristic.

The results of the first experiment suggested an additional experiment. Instead

of constructing a solution by solving single-period instances, the same method could

be applied with two-period instances linked by inventory levels:

• 2P: Construct a solution by solving the two-period subproblem (with approxi-

mate value function in the objective) to optimality and using its optimal ending

inventory as the next starting inventory.

Table 4 shows the results of the two-period heuristic for the same instances, using

50

the same naming convention outlined earlier. Except for instances 1-2 and 2-4, the

two-period heuristic solution has a better objective than the single-period heuristic

solution and is only worse than the 60P solution in instances 1-3 and 3-3. The objec-

tive improvement, however, comes at the expense of a drastic increase in computation

time that seems to depend on the particular instance. For example, the average time

for all models derived from instances 2, 4 and 5 increases only by a factor of 15,

from 14 seconds to 211 seconds. On the other hand, the two-period heuristic solution

for instances 1-3 and 3-3 took many hours to complete, and indicates that the time

required to solve even small problems of only a few periods depends heavily on the

starting inventory vector.

In our second experiment, we wanted to investigate whether the solutions gen-

erated by the value function are myopic. Using the same parameters from the first

experiment, we constructed five instances with planning horizon length T = 10 and

used the five random starting inventories for a total of 25 problem instances. We

generated solutions with two methods:

• 1P + 9P: Solve the single-period problem with approximate value function to

optimality using CPLEX, and record the optimal solution. Use the optimal

ending inventory as the starting inventory of a nine-period problem, solve this

problem using CPLEX with optimality emphasis and a 24-hour limit. Concate-

nate the two solutions.

• 10P: Solve the entire ten-period problem using CPLEX, emphasizing optimality

with a 24-hour limit.

Table 5 gives the results of the second experiment. As before, the naming conven-

tion for column Inst pairs instances with starting inventories. The next two columns

detail each solution’s objective; 10P denotes the objective for the solution obtained

51

by solving the ten-period model, while (1P + 9P) denotes the objective of the solu-

tion obtained by solving the first period with a single-period model and then solving

the remaining nine-period model. The Bound column has the best bound for the

ten-period model obtained by CPLEX as part of its optimization to generate the 10P

solution.

Table 5: Simplified time instances, second experiment.
Obj (w/ val)

Inst 1P + 9P 10P Bound

1-1 -133.44 -134.55 -130.6
1-2 -138.17 -136.89 -134.29
1-3 -136.32 -135.3 -125.02
1-4 -128.16 -127.89 -124.75
1-5 -135.53 -135.29 -132.04
2-1 -118.18 -117.77 -113.97
2-2 -118.82 -118.61 -116.19
2-3 -108.16 -107.62 -104.04
2-4 -109.49 -109.08 -107.23
2-5 -117.85 -116.16 -114.84
3-1 462.63 462.68 467.07
3-2 480.46 480.2 487.15
3-3 380.83 385.82 393.72
3-4 446.18 463.5 467.14
3-5 465.69 467.41 472.05
4-1 590.29 590.55 598.82
4-2 595.63 597.39 601.12
4-3 532.89 531.75 546.46
4-4 532.22 534.67 540.14
4-5 577.41 580.57 587.33
5-1 -126.35 -125.89 -120.84
5-2 -125.24 -124.06 -120.74
5-3 -113.82 -112.83 -105.39
5-4 -116.22 -115.07 -111.44
5-5 -123.4 -123.5 -119.37

The results in Table 5 indicate that the solutions generated by the two methods

are very similar. The (1P + 9P) solution’s objective is on average only 0.55% less than

the 10P objective, and is greater in four instances: 1-1, 3-2, 4-3 and 5-5. Moreover,

the largest relative gap between objectives is only 3.74%, occurring on instance 3-4,

and every other (1P + 9P) objective is within 1.5% of the 10P objective. Results are

similar when we compare objectives to the CPLEX dual bound; the average relative

gap for the (1P + 9P) solution is 3.01%, while the same average for the 10P solution

52

is 2.47%. Both measures indicate that implementing the 1P solutions results in an

objective only about half a percentage point below what could be obtained by solving

the entire ten-period model.

The preceding experiments do not compare an actual solution as it would be

generated in practice. The typical approach to solving multi-period models involves

solving an instance with a long planning horizon, e.g. T = 60, but then implementing

only the decisions of the first few periods of the resulting solution. This process is then

repeated inside of a rolling horizon framework. A more practical comparison therefore

involves comparing the first few periods of solutions generated by our method against

the traditional approach.

In our third experiment, we created three five-period instances and five starting

inventories, for a total of 15 problem instances. We generated solutions via two

methods:

• 5P: Solve the five-period instance (with approximate value function in the objec-

tive) using CPLEX, emphasizing feasibility and with an eight-hour time limit.

• Trad: Solve a 60-period instance (without value function in the objective)

using CPLEX, emphasizing feasibility with a 24-hour time limit. Truncate to

the first five periods of the problem’s solution.

However, comparing the two solutions is not a simple matter. One can consider

the objective function value of each (without value function), but this does not take

ending inventories into account, and is thus an incomplete comparison. On the other

hand, if we use our approximate value function to measure the ending inventories’

value, we are skewing the results in our favor (an optimal solution to the five-period

problem with approximate value function included would always be the best solution

according to this second measure.) We therefore decided on a compromise measure

that attempts to capture the inherent value of inventory without using Algorithm

53

1’s value function: If an instance has costs but not revenue in the objective of (2.3)

(r = 0), then it is always better to have less inventory at the suppliers and more

inventory at the consumers, because if a supplier has more inventory, its product

must be picked up sooner (which entails a cost), and similarly, if a consumer has less

inventory, its product must be dropped off sooner (which again entails a cost).

Table 6 details the results of the third experiment, using base instances with no

revenue. The naming convention for column Inst is the same as for Table 4. Columns

5P Obj and Trad Obj respectively show the objective value of each method’s

solution (without value function). Columns 5P Time and Trad Time show the time

needed to find each solution, in minutes. The four columns under S Inv and C Inv

show each solution’s total ending inventory for suppliers and consumers, respectively.

Table 6: Simplified time instances, third experiment.
Obj Time (min.) S Inv C Inv

Inst 5P Trad 5P Trad 5P Trad 5P Trad

5-1 -75.6 -77.07 425 1394 1.72 2.91 2.34 2.09
5-2 -75.49 -77.39 9 1344 2.59 2.78 2.78 2.67
5-3 -63.29 -64.57 434 1417 3.68 3.68 3.56 2.57
5-4 -60.73 -78.66 0.5 1407 2.85 2.09 2.30 2.89
5-5 -76.15 -80.28 100 1242 1.93 2.66 2.54 2.54
6-1 -81.47 -84.02 95 1317 1.60 2.93 2.34 2.29
6-2 -82.55 -81.54 17 1213 2.59 3.47 2.78 2.50
6-3 -67.05 -69.38 4 1437 3.68 3.84 3.56 3.4
6-4 -66.25 -67.34 29 1365 2.68 3.67 2.3 2.18
6-5 -82.94 -83.5 0.1 1375 1.74 2.74 2.54 2.54
7-1 -81.49 -83.06 10 1432 1.71 3.19 2.39 2.38
7-2 -83.74 -83.78 14 1124 2.55 2.84 2.83 2.68
7-3 -67.96 -54.69 435 1315 3.65 4.63 3.6 2.48
7-4 -83.87 -68.25 3 1405 1.63 2.81 3.35 2.34
7-5 -83.31 -83.4 123 1428 1.82 2.43 2.59 2.58

We observe that the 5P solution method clearly outperforms the traditional ap-

proach. The average objective values are very similar (-75.46 for the 5P solution

and -75.8 for the traditional solution,) with the 5P solution beating the traditional

solution in all but three instances, 6-2, 7-3, and 7-4. However, the average ending

inventories show a marked difference. The average total ending supplier inventory is

54

2.43 for 5P versus 3.11 for the traditional solution, and the analogous statistic for

consumer inventory is 2.79 versus 2.54. So on average, the 5P solutions end with 22%

less inventory at suppliers and 9.6% more inventory at the consumers, even though

they spend less to achieve this. The last statement can be underlined by one addi-

tional fact: For all instances except 5-4, 6-2, 7-3 and 7-4, the 5P solution dominates

the traditional solution, implying that the 5P solutions do more with less in most

instances, and not just on the average.

As in the first experiment, the drastic difference in computation time is notewor-

thy. The 5P solutions are generated in an average of 113 minutes, as opposed to the

traditional solutions, which take an average of 22.5 hours, close to the 24-hour limit.

In fact, only for instances 5-1, 5-3 and 7-3 do the 5P times approach the eight-hour

limit; in the rest of the cases the solution is found relatively quickly, at an aver-

age of only 31 minutes. As before, the shorter computation times suggest that the

approximate value function can be used to generate a good solution quickly.

One of Algorithm 1’s underlying goals is to compute an approximate value function

that approximately satisfies the Bellman equation (2.5). Our fourth experiment tested

how closely instance 5’s value function satisfies the recursion by generating a set of

25 random inventories, directly calculating what their value is (as measured by the

approximate value function) and then solving a single-period model with the value

function. Figure 9 plots the results, with the predicted values along the x-axis and

the observed values from the single-period solve in the y-axis.

As the plot shows, the approximate value function matches predicted and observed

values quite closely. The geometric mean of the normalized absolute error between

observed and predicted values is 7.33%, and only four points have an absolute error

exceeding the average absolute error plus one standard deviation. This result indicates

the PWL concave approximate value function approximates its true discontinuous

analogue well for this instance, and gives further insight into our previous experiments’

55

observed

predicted

Figure 9: Plot of predicted and observed values for simple-time instance.

results.

An interesting question is whether we could gain anything by using the variable-

bucket class of value functions introduced in Section 3.4. After obtaining the value

function for instance 5 using fixed buckets, we reran Algorithm 1 allowing the buckets

to vary. Our original intent was to compare solutions generated by each function;

however, after several iterations we found the buckets almost unchanged, with none

varying by more than a small fraction of the original bucket size. This outcome

indicates that the original bucket choice of dividing each inventory domain into equal

thirds was an appropriate one. It also suggests a second use for the variable-region

version of Algorithm 1 as validation for a previously obtained approximate value

function.

5.2 Variable Travel Time

In the next set of experiments, we add complexity to the previous model by allowing

travel time to vary depending on the pair of ports involved. In addition to the

parameters already defined, we have a travel time θa ∈ Z+ for a ∈ A indicating the

56

number of periods it takes to travel along a, and a maximum voyage length Θ ∈ Z+.

Vessels may now stay at a port for a period in the middle of a voyage, incurring a

demurrage cost fd > 0. We assume a ship cannot be redirected once a voyage is

scheduled, and multiple ships may visit a port in the same period.

For a planning horizon T , let GT denote the time-expanded network constructed

from G, Θ and T by creating T + Θ copies of each port i ∈ S ∪ C, and for any

t ∈ {1, . . . , T + Θ} connecting node (i, t) with node (j, t+ τ) if and only if

i) (i, j) ∈ A, τ = θij and t+ τ ≤ T + Θ, or

ii) i = j, τ = 1 and t ≤ T + Θ− 1.

The first type of arcs corresponds to actual travel, while the second type corresponds

to demurrage. Let AT denote the arc set of this network, and At ⊆ AT denote the

subset of arcs that a vessel starting a voyage on period t can traverse, for t ∈ T .

Specifically,

At = {((i, τ1), (j, τ2)) ∈ AT : τ1 ≥ t, τ2 ≤ t+ Θ}.

For t ∈ T and a ∈ At, let xta indicate whether the voyage starting in period t traverses

arc a ∈ At. Let yti indicate whether the voyage starting in t begins at supplier i ∈ S,

and let yt,τj denote whether the voyage starting in t ends at consumer j ∈ C in period

t+ τ . Let zta denote the amount of product on board while traversing arc a ∈ At on

the vessel that started in t. Let qt,τi be the amount of product picked up from supplier

i ∈ S in period t + τ by the vessel that started in t, and define qt,τj analogously for

j ∈ C. Let sti be the amount of product at port i ∈ S ∪ C at the end of t. We use

the notation δ+
t (i, t′) to denote the set of outgoing arcs of (i, t′) contained in At, and

a similar definition for δ−t .

The variable-time maritime IRP is given by

max
∑
t∈T

Θ∑
τ=0

γt
(∑
i∈S∪C

riq
t,τ
i −

∑
a∈At

fax
t
a

)
(5.1a)

57

s.t.
∑

a∈δ+t (i,t)

xta −
∑

a∈δ−t (i,t)

xta = yti , i ∈ S, t ∈ T

∑
a∈δ+t (i,t+τ)

xta −
∑

a∈δ−t (i,t+τ)

xta = 0, i ∈ S, t ∈ T , 0 ≤ τ ≤ Θ

∑
a∈δ−t (j,t+τ)

xta −
∑

a∈δ+t (j,t+τ)

xta = yt,τj , j ∈ C, t ∈ T , 0 ≤ τ ≤ Θ

(5.1b)

∑
i∈S

yti ≤ 1, t ∈ T

∑
j∈C

Θ∑
τ=0

yt,τj ≤ 1, t ∈ T
(5.1c)

zta ≤ xta, a ∈ At, t ∈ T (5.1d)∑
a∈δ+t (i,t+τ)

zta −
∑

a∈δ−t (i,t+τ)

zta = qt,τi , i ∈ S, t ∈ T , 0 ≤ τ ≤ Θ

∑
a∈δ−t (j,t+τ)

zta −
∑

a∈δ+t (j,t+τ)

zta = qt,τj , j ∈ C, t ∈ T , 0 ≤ τ ≤ Θ

(5.1e)

sti = st−1
i + wi −

min{Θ,t}∑
τ=max{0,t−T}

qt−τ,τi , i ∈ S, t ∈ T ∪ {T + τ}Θτ=1

stj = st−1
j − wj +

min{Θ,t}∑
τ=max{0,t−T}

qt−τ,τj , j ∈ C, t ∈ T ∪ {T + τ}Θτ=1

(5.1f)

sti ∈ [0, di], i ∈ S ∪ C, t ∈ T

sti ≥ 0, i ∈ S, t ∈ {T + τ}Θτ=1

stj ≤ dj, j ∈ C, t ∈ {T + τ}Θτ=1

(5.1g)

xta ∈ {0, 1}, a ∈ Aθ,t, t ∈ T

yti ∈ {0, 1}, i ∈ S, t ∈ T

yt,τj ∈ {0, 1}, j ∈ C, t ∈ T , 0 ≤ τ ≤ Θ

zta ≥ 0, a ∈ Aθ,t, t ∈ T

qt,τi ≥ 0, i ∈ S, t ∈ T , 0 ≤ τ ≤ Θ

qt,τj ≥ 0, j ∈ C, t ∈ T , 0 ≤ τ ≤ Θ

(5.1h)

58

In this formulation, the objective (5.1a) maximizes the difference between revenue

and transportation cost, where we set fa = fd for demurrage arcs. We assume that

all transactions related to a voyage take place on the voyage’s first period, implying

all revenues and costs from a voyage starting in t are discounted by γt; however,

this assumption may be altered if necessary. Constraints (5.1b) enforce flow balance

on the routing variables. Constraints (5.1c) enforce a limit of at most one voyage

per period; note that the second set of inequalities is redundant and implied by the

first. The variable upper bounds (5.1d) ensure product flows on an arc only if a

vessel traverses it. Constraints (5.1e) enforce product flow balance, while (5.1f) track

inventory levels across periods. Finally, (5.1g) establishes bounds for the inventory

state variables and (5.1h) establishes other variable bounds. Note that (5.1g) enforces

only lower bounds for suppliers and upper bounds for consumers in periods after T .

In this new model, the state of the system is not only the inventory currently on

hand, but also the previously pickups and dropoffs Θ − 1 periods into the future.

Specifically, in addition to the initial inventory s0
i at each port, we have the scheduled

quantities q0,τ
i for τ = 1, . . . ,Θ − 1. This implies that the dimension of the state

space increases by a factor of Θ, which increases the computational challenge of these

models.

The experimental instances were generated in a similar fashion to the previous

section, with travel times θ also satisfying the triangle inequality. All test instances

had three suppliers, four consumers, maximum voyage length Θ = 3, and expensive

slack variables were added to (5.1f) to ensure feasibility. The value function class we

chose was an extension of the class used in the previous section: Each port’s inventory

domain was subdivided into three buckets of equal length, and future deliveries q0,τ
i

were assigned a single linear value coefficient (i.e. one bucket).

In the first experiment for the time-expanded instances, we repeated the first

experiment from the previous section. We generated four instances of (5.1) and five

59

random starting inventory vectors, for a total of 20 problem instances. We generated

solutions using methods 1P and 60P, explained above. Table 7 details the results,

using a similar display convention. The Inst column denotes the instance-inventory

pair, with letters replacing numbers to emphasize the change to model (5.1). For each

solution method, we display the solution’s objective value, separated into contribution

from the solution in (5.1a) (column Obj. − EV) and contribution from the ending

inventory’s value (EV), and then totalled in a third column, Obj. We report the time

to generate solutions via method 60P in an additional column, but we do not report

solution times for 1P as all solutions were generated within two seconds. The final

Bound column reports the best bound obtained by CPLEX during the computation

for method 60P.

Table 7: Variable time instances, first experiment.
1P 60P

Inst Obj. − EV EV Obj. Obj. − EV EV Obj. Time (sec.) Bound

A-1 -149.70 10.72 -138.98 -141.00 9.54 -131.46 3229 -95.85
A-2 -145.50 9.97 -135.53 -147.50 16.69 -130.81 3539 -96.96
A-3 -157.70 16.54 -141.16 -132.70 3.55 -129.15 3538 -99.40
A-4 -151.50 8.73 -142.77 -157.70 9.83 -147.87 1599 -96.84
A-5 -145.00 9.59 -135.41 -153.90 11.37 -142.53 3232 -98.11
B-1 -15.13 2.75 -12.38 -11.46 3.08 -8.38 3466 -6.91
B-2 -13.69 2.56 -11.13 -11.04 2.70 -8.34 2867 -6.72
B-3 -15.06 2.33 -12.73 -11.89 2.82 -9.07 3496 -7.09
B-4 -13.92 2.75 -11.17 -12.10 3.14 -8.96 3392 -7.08
B-5 -14.05 2.37 -11.68 -11.22 2.54 -8.68 3386 -7.12
C-1 -17.66 1.64 -16.02 -11.88 1.76 -10.12 2901 -7.99
C-2 -16.88 1.54 -15.34 -11.75 1.57 -10.18 3265 -8.06
C-3 -16.39 1.50 -14.89 -11.44 1.33 -10.11 3275 -8.13
C-4 -15.63 1.34 -14.29 -11.65 1.98 -9.67 3581 -8.15
C-5 -16.88 1.58 -15.30 -11.38 1.45 -9.93 2021 -8.34
D-1 -9.42 2.14 -7.28 -8.11 2.58 -5.53 417 -4.37
D-2 -9.81 2.03 -7.78 -8.11 2.59 -5.52 3527 -4.42
D-3 -9.47 1.83 -7.64 -7.94 2.19 -5.75 2818 -4.26
D-4 -9.60 1.62 -7.98 -8.17 2.39 -5.78 2976 -4.37
D-5 -10.42 1.68 -8.74 -8.21 2.45 -5.76 2303 -4.75

In this case, while the heuristic solutions remain competitive, the results are more

mixed. Ending value is on average 6% higher than the benchmark solution’s value,

but the heuristic solution’s “actual” objective value in (5.1a) is 23% more expensive.

60

observed

predicted

Figure 10: Plot of predicted and observed values for time-expanded instance.

In addition, only the solutions for instances A-4 and A-5 beat the benchmark in

terms of the total objective (Obj). Nonetheless, the benchmark solutions still take

an average of 49 minutes to generate (with all but one taking over 26 minutes), while

the heuristic solutions can be generated instantly.

For our second experiment, we repeated the previous section’s fourth experiment

to investigate how closely the approximate value function satisfies Bellman’s equation

(2.5). Using instance A from the previous experiment, we generated 20 random

inventory vectors. For each one, we calculated the approximate value as measured by

the value function, and then solved a single-period instance of (5.1). Figure 10 plots

the results, with the predicted values along the x-axis and the observed values from

the single-period solve in the y-axis.

As the plot shows, the approximate value function again matches predicted and

observed values quite closely. The geometric mean of the normalized absolute error

between observed and predicted values is 10.8%, with only three points above 50%

and five above 30%. In six of the cases, the observed value is larger than the predicted

value, with the reverse holding in the remaining cases.

Notwithstanding the second experiment’s results, there is clearly a difference in

61

quality between solutions for the time-expanded model (5.1) and those generated for

the simpler model (2.3). Allowing the bucket lengths to vary in Algorithm 1 also

did not help, as it once again validated the previously chosen buckets. We believe

the quality decrease stems from an underlying structural issue: Not only do variable

travel times increase the state space dimension by an order of magnitude, they also

fundamentally alter how the states are related. For example, the value of inventory

scheduled for delivery in one period should depend on the current inventory level.

This complicated interaction suggests the use of more complex basis functions (cf.

[55]) within the algorithmic framework. Since time-expanded networks are present

in many practical applications, further research in this vein should prove valuable in

practical as well as theoretical terms.

Another important issue is the premium in solution quality obtained by using

PWL concave value functions instead of simpler affine functions. As a simple test,

we computed an approximate value function for instance A with simple linear co-

efficients for each state variable s0
i , q

0,τ
i , and compared solutions generated by this

function to the three-bucket inventory value function used in this section’s first ex-

periment. Specifically, we generated solutions for 60-period models with the same

starting inventories as that experiment, and compared the solutions’ objective value

in (5.1a); we did not include ending inventory value in the measure to ensure a fair

comparison. As a sanity check, we also computed myopic solutions (that is, with no

value function) for the same instances. Table 8 details the results; column Inst iden-

tifies the instance, and columns 3B, 1B and No VF respectively give the objective

value for the three-bucket, one-bucket (linear value function) and myopic solutions.

As the table shows, there is an average cost increase of 50% between the 3B and 1B

solutions, while both solutions generated with value functions incur a small fraction

of the myopic solution’s cost. Of course, the solutions’ cost difference stems from

the three-bucket value function’s concavity. It would be reasonable to expect smaller

62

Table 8: Variable time instances, third experiment.
Inst 3B 1B No VF

A-1 -149.70 -220.80 -19675.50
A-2 -145.50 -229.00 -19302.20
A-3 -157.70 -224.40 -19618.00
A-4 -151.50 -219.00 -19607.00
A-5 -145.00 -229.00 -20045.40

differences as the value function “flattens out,” becoming less concave and more

linear. In addition, there may be situations in which solutions generated by value

functions with fewer breakpoints have a better objective than solutions generated

by value functions with more buckets; e.g. if the breakpoint placement varies in the

two value functions. Issues related to sensitivity of solution quality with respect to a

value function’s number of buckets (or regions in the non-separable case) are certainly

important and could shed further light on our methodology.

63

CHAPTER VI

CONCLUSIONS

This thesis details a time decomposition framework for multi-period supply chain

planning models that uses approximate dynamic programming and data fitting method-

ologies to construct an approximate inventory value function. The framework is

generic and versatile, amenable to quite complex models such as the maritime IRP

problems presented in Chapter 5. The choice of PWL concave functions as approxi-

mate inventory value functions is justified by their close relationship to maximization

MIP value functions, including the infinite-horizon LSP we study in Chapter 4. Al-

though we have had empirical success with these techniques, we also believe this work

opens many questions of theoretical and practical interest.

One important question for the ADP algorithm is theoretical convergence. For

example, [69] prove convergence for a fitting-based DP scheme similar but simpler

than our own. However, even their proof makes certain assumptions that are wholly

impossible in our case, such as the evaluation of every possible state at each iteration.

Nonetheless, convergence issues could be investigated further. Another issue is the

extension of the framework for stochastic variants, where the stationary parameters

are replaced by known distributions, or robust variants, where they are replaced by

uncertainty sets. For the stochastic case, there is a fairly developed body of work,

cf. [55]; the robust case is still in its infancy, although some DP issues have received

attention, e.g. [36].

The choice of PWL concave functions as value functions, motivated also by their

ease of implementation within maximization MIP objectives, has influenced our in-

vestigation and development of fitting models in Chapter 3. One obvious extension is

64

to upper semi-continuous PWL superadditive functions, which can also be modeled

within a maximization MIP’s objective, although at a higher computational cost.

Fitting models for PWL sub/superadditive functions would require a better char-

acterization of sub/superadditivity, a question of fundamental importance for MIP

in general because of its relation to cutting planes. A secondary issue is the im-

provement of fitting models for function classes with variable regions. The use of the

big-M method implies weak linear relaxations and possibly long solve times. Lower

bounding procedures such as those presented in [8] could be useful.

We discuss another important issue related to value functions in Chapter 5. Specif-

ically, the sensitivity of solution quality to a value function’s number of regions is

important, especially as the problem’s dimension grows and computation times in-

crease. Ideally, we would like the simplest function that produces solutions of a certain

quality, perhaps with some guarantee. A related but more fundamental question is

whether the number of regions can be updated dynamically within the ADP algo-

rithm: As iterations progress, we observe the evolving value function, and subdivide

or merge its domain’s regions based on our observations. This dynamic updating

would place our algorithm closer to constraint generation, Bender’s decomposition

and other techniques currently used in dynamic and stochastic programming.

At the end of Chapter 4, we note that value functions obtained over fixed regions

or buckets may be superior to variable-region value functions. In particular, the

example showed that an approximate value function with a breakpoint aligning with

the true value function’s discontinuity induced a better solution than the variable-

bucket approximate value function, even though the latter’s fit with respect to the

true function was more accurate. An interesting follow-up question is whether we can

discover discontinuities in a problem’s true value function and use these to plan for

the structure of the approximate value function.

In the same chapter we detail the value function of an simple infinite MIP, the

65

single-item LSP. The result has obvious extensions to general MIP and DP, in addi-

tion to variants such as the average cost optimality criterion, stochastic and robust

MIP and DP, etc. We believe that a more general result in this vein, such as the char-

acterization of infinite MIP value functions under various optimality criteria, would

illuminate connections between MIP and DP that researchers have studied since the

beginning of operations research. Moreover, if fully developed, any result on the con-

nection of infinite MIP’s and DP’s could extend these fields’ applicability to a new

class of models.

66

REFERENCES

[1] Adelman, D., “A Price-Directed Approach to Stochastic Inventory/Routing,”
Operations Research, vol. 52, pp. 499–514, 2004.

[2] Applegate, D., Bixby, R., Chvátal, V., and Cook, W., The Traveling
Salesman Problem: A Computational Study. Princeton University Press, 2006.

[3] Balas, E., “Disjunctive programming: Properties of the convex hull of feasible
points,” Discrete Applied Mathematics, vol. 89, pp. 3–44, 1998.

[4] Bean, J., Smith, R., and Yano, C., “Forecast horizons for the discounted
dynamic lot-size problem allowing speculative motive,” Naval Research Logistics,
vol. 34, pp. 761–774, 1987.

[5] Bellman, R. and Dreyfus, S., “Functional Approximation and Dynamic
Programming,” Mathematical Tables and Other Aids to Computation, vol. 13,
pp. 247–251, 1959.

[6] Bertsekas, D. and Tsitsiklis, J., Neuro-Dynamic Programming. Athena
Scientific, 1996.

[7] Bertsimas, D. and Shioda, R., “Classification and Regression via Integer
Optimization,” Operations Research, vol. 55, pp. 252–271, 2007.

[8] Bienstock, D., “Eigenvalue techniques for proving bounds for convex objective,
nonconvex programs.” Working paper, 2009.

[9] Blair, C., “A closed-form representation of mixed-integer program value func-
tions,” Mathematical Programming, vol. 71, pp. 127–136, 1995.

[10] Blair, C. and Jeroslow, R., “The value function of a mixed integer program:
I,” Discrete Mathematics, vol. 19, pp. 121–138, 1977.

[11] Blair, C. and Jeroslow, R., “The value function of a mixed integer program:
II,” Discrete Applied Mathematics, vol. 25, pp. 7–19, 1979.

[12] Blair, C. and Jeroslow, R., “The value function of an integer program,”
Mathematical Programming, vol. 23, pp. 237–273, 1982.

[13] Blair, C. and Jeroslow, R., “Constructive characterizations of the value-
function of a mixed-integer program I,” Discrete Applied Mathematics, vol. 9,
pp. 217–233, 1984.

[14] Boyd, S. and Vandenberghe, L., Convex Optimization. Cambridge Univer-
sity Press, 2004.

67

[15] Brahimi, N., Dauzere-Peres, S., Najid, N., and Nordli, A., “Single item
lot sizing problems,” European Journal of Operational Research, vol. 168, pp. 1–
16, 2006.

[16] Campbell, A., Clarke, L., Kleywegt, A., and Savelsbergh, M., “The
Inventory Routing Problem,” in Fleet Management and Logistics (Crainic,
T. G. and Laporte, G., eds.), ch. 4, pp. 95–114, Springer, 1998.

[17] Campbell, A. and Savelsbergh, M., “A Decomposition Approach for the
Inventory-Routing Problem,” Transportation Science, vol. 38, pp. 488–502, 2004.

[18] Carnicer, J. and Floater, M., “Piecewise linear interpolants to Lagrange
and Hermite convex scattered data,” Numerical Algorithms, vol. 13, pp. 345–364,
1996.

[19] Christiansen, M., “Decomposition of a Combined Inventory and Time Con-
strained Ship Routing Problem,” Transportation Science, vol. 33, pp. 3–16, 1999.

[20] Christiansen, M. and Nygreen, B., “A method for solving ship routing
problems with inventory constraints,” Annals of Operations Research, vol. 81,
pp. 357–378, 1998.

[21] Christiansen, M. and Nygreen, B., “Modelling path flows for a combined
ship routing and inventory management problem,” Annals of Operations Re-
search, vol. 82, pp. 391–412, 1998.

[22] Cordeau, J.-F., Laporte, G., Savelsbergh, M., and Vigo, D., “Vehi-
cle Routing,” in Handbook in Operations Research and Management Science:
Transportation, Volume 14 (Barnhart, C. and Laporte, G., eds.), ch. 6,
pp. 367–428, Elsevier, 2007.

[23] Dawande, M., Gavirneni, S., Naranpanawe, S., and Sethi, S., “Fore-
cast Horizons for a Class of Dynamic Lot-Size Problems Under Discrete Future
Demand,” Operations Research, vol. 55, pp. 688–702, 2007.

[24] Desaulniers, G., Desrosiers, J., and Solomon, M., eds., Column Gener-
ation. Springer, 2005.

[25] Engineer, F., Shortest path based column generation for integer programming.
PhD thesis, Georgia Institute of Technology, 2009.

[26] Erlenkotter, D., “Ford Whitman Harris and the Economic Order Quantity
Model,” Operations Research, vol. 38, pp. 937–946, 1990.

[27] Federgruen, A. and Tzur, M., “The dynamic lot-sizing model with backlog-
ging: A simple O(n log n) algorithm and minimal forecast horizon procedure,”
Naval Research Logistics, vol. 40, pp. 459–478, 1993.

68

[28] Ferrari-Trecate, G., Muselli, M., Liberati, D., and Morari, M.,
“A learning algorithm for piecewise linear regression,” in Neural Nets: WIRN
VIETRI-01, 12th Italian Workshop on Neural Nets (Marinaro, M. and Tagli-
aferri, R., eds.), Springer, 2001.

[29] Fisher, M., Ramdas, K., and Zheng, Y.-S., “Ending Inventory Valuation in
Multiperiod Production Scheduling,” Management Science, vol. 47, pp. 679–692,
2001.

[30] Furman, K., Song, J.-H., Kocis, G., McDonald, M., and Warrick,
P., “Feedstock Routing in the ExxonMobil Downstream Sector.” To appear in
Interfaces , 2010.

[31] Ghate, A. and Smith, R., “Optimal Backlogging Over an Infinite Horizon
Under Time Varying Convex Production and Inventory Costs,” Manufacturing
and Service Operations Management, vol. 11, pp. 362–368, 2009.

[32] Graves, S. and Orlin, J., “The Infinite-Horizon Dynamic Lot-Size Prob-
lem with Cyclic Demand and Costs,” Tech. Rep. OR 101-80, Operations Re-
search Center, Massachusetts Institute of Technology, 1980. Available on-line at
http://hdl.handle.net/1721.1/5365.

[33] Harris, F., “How many parts to make at once,” Operations Research, vol. 38,
pp. 947–950, 1990. Reprinted from Factory, The Magazine of Management, vol.
10, pp. 135–136, 1913.

[34] Hewitt, M., Nemhauser, G., and Savelsbergh, M., “Combining Exact and
Heuristic Approaches for the Capacitated Fixed Charge Network Flow Problem,”
INFORMS Journal on Computing, vol. 22, pp. 314–325, 2010.

[35] Holmes, C. and Mallick, B., “Bayesian regression with multivariate linear
splines,” Journal of the Royal Statistical Society, Series B, vol. 63, pp. 3–17,
1999.

[36] Iyengar, G., “Robust dynamic programming,” Mathematics of Operations Re-
search, vol. 30, pp. 1–21, 2005.

[37] Jeroslow, R. and Lowe, J., “Modeling with integer variables,” Mathematical
Programming Study, vol. 22, pp. 167–184, 1984.

[38] Johnson, E., “On the group problem for mixed integer programming,” Math-
ematical Programming Studies, vol. 2, pp. 137–179.

[39] Kimms, A., “Stability Measures for Rolling Schedules with Applications to Ca-
pacity Expansion Planning, Master Production Scheduling, and Lot Sizing,”
Omega, vol. 26, pp. 355–366, 1998.

69

[40] Kleywegt, A., Nori, V., and Savelsbergh, M., “The Stochastic Inventory
Routing Problem with Direct Deliveries,” Transportation Science, vol. 36, pp. 94–
118, 2002.

[41] Kleywegt, A., Nori, V., and Savelsbergh, M., “Dynamic Programming
Approximations for a Stochastic Inventory Routing Problem,” Transportation
Science, vol. 38, pp. 42–70, 2004.

[42] Lau, K.-N., Leung, P.-L., and Tse, K.-K., “A mathematical programming
approach to clusterwise regression model and its extensions,” European Journal
of Operational Research, vol. 116, pp. 640–652, 1999.

[43] Longstaff, F. and Schwartz, E., “Valuing American Options by Simulation:
A Simple Least-Squares Approach,” The Review of Financial Studies, vol. 14,
pp. 113–147, 2001.

[44] Magnani, A. and Boyd, S., “Convex Piecewise-Linear Fitting,” Optimization
and Engineering, vol. 10, pp. 1–17, 2009.

[45] Manne, A., “Programming of economic lot sizes,” Management Science, vol. 4,
pp. 115–135, 1958.

[46] McClain, J., “Dynamics of exponential smoothing with trend and seasonal
terms,” Management Science, vol. 20, pp. 1300–1304, 1974.

[47] Michel, S. and Vanderbeck, F., “A Column Generation based Tac-
tical Planning Method for Inventory Routing,” Tech. Rep. 00169311, IN-
RIA Bordeaux Sud-Ouest, team RealOpt, 2008. Available on-line at
http://hal.inria.fr/docs/00/33/90/37/PDF/techRepR2.pdf.

[48] Minkoff, A., “A Markov decision model and decomposition heuristic for dy-
namic vehicle dispatching,” Operations Research, vol. 41, pp. 77–90, 1993.

[49] Moin, N. and Salhi, S., “Inventory routing problems: a logistical overview,”
Journal of the Operational Research Society, vol. 58, pp. 1185–1194, 2007.

[50] Nananukul, N., Lot-Sizing and Inventory Routing for a Production-
Distribution Supply Chain. PhD thesis, The University of Texas at Austin, 2008.

[51] Nemhauser, G. and Wolsey, L., Integer and Combinatorial Optimization.
John Wiley & Sons, Inc., 1999.

[52] Pardalos, P. and Kundakcioglu, O., “Classification via Mathematical Pro-
gramming (Survey),” Applied and Computational Mathematics, vol. 8, pp. 23–35,
2009.

[53] Pochet, Y. and Wolsey, L., Production Planning by Mixed Integer Program-
ming. Springer, 2006.

70

[54] Pottmann, H., Krasauskas, R., Hamann, B., Joy, K., and Seibold,
W., “On Piecewise Linear Approximation of Quadratic Functions,” Journal for
Geometry and Graphics, vol. 4, pp. 31–53, 2000.

[55] Powell, W., Approximate Dynamic Programming: Solving the curses of di-
mensionality. John Wiley & Sons, Inc., 2007.

[56] Puterman, M., Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., 2005.

[57] Queyranne, M. and Wang, Y., “On the convex hull of feasible solutions to
certain combinatorial problems,” Operations Research Letters, vol. 11, pp. 1–11,
1992.

[58] Rockafellar, R., Convex Analysis. Princeton University Press, 1997.

[59] Romeijn, H., Sharma, D., and Smith, R., “Extreme Point Characterizations
for Infinite Network Flow Problems,” Networks, vol. 48, pp. 209–222, 2006.

[60] Romeijn, H. and Smith, R., “Shadow Prices in Infinite Dimensional Linear
Programming,” Mathematics of Operations Research, vol. 23, pp. 239–256, 1998.

[61] Ruppert, D., Wand, M., and Carroll, R., Semiparametric Regression.
Cambridge University Press, 2003.

[62] Savelsbergh, M. and Song, J.-H., “Inventory Routing with Continuous
Moves,” Computers and Operations Research, vol. 34, pp. 1744–1763, 2007.

[63] Savelsbergh, M. and Song, J.-H., “An Optimization Algorithm for the In-
ventory Routing Problem with Continuous Moves,” Computers and Operations
Research, vol. 35, pp. 2266–2282, 2008.

[64] Schochetman, I. and Smith, R., “Infinite Horizon Optimality Criteria for
Equipment Replacement under Technological Change,” Operations Research Let-
ters, vol. 35, pp. 485–492, 2007.

[65] Smith, R. and Zhang, R., “Infinite Horizon Production Planning in Time-
Varying Systems with Convex Production and Inventory Costs,” Management
Science, vol. 44, pp. 1313–1320, 1998.

[66] Strikholm, B., “Determining the number of breaks in a piecewise linear re-
gression model,” tech. rep., Department of Economic Statistics and Decision
Support, Stockholm School of Economics, 2006. SSE/EFI Working Paper Series
in Economics and Finance, No. 648.

[67] Topaloglu, H. and Powell, W., “An Algorithm for Approximating Piece-
wise Linear Concave Functions from Sample Gradients,” Operations Research
Letters, vol. 31, pp. 66–76, 2003.

71

[68] Trick, M. and Zin, S., “Spline Approximations to Value Functions: A Linear
Programming Approach,” Macroeconomic Dynamics, vol. 1, pp. 255–277, 1997.

[69] Tsitsiklis, J. and van Roy, B., “Feature-Based Methods for Large Scale
Dynamic Programming,” Machine Learning, vol. 22, pp. 59–94, 1996.

[70] Vielma, J., Ahmed, S., and Nemhauser, G., “Mixed-Integer Models for Non-
separable Piecewise Linear Optimization: Unifying Framework and Extensions,”
Operations Research, vol. 58, pp. 303–315, 2010.

[71] Wagner, H. and Whitin, T., “Dynamic version of the economic lot size
model,” Management Science, vol. 5, pp. 89–96, 1958.

[72] Wolsey, L., “The b-hull of an integer program,” Discrete Applied Mathematics,
vol. 3, pp. 193–201, 1981.

[73] Wolsey, L., “Progress with single-item lot-sizing,” Journal of Operational Re-
search, vol. 86, pp. 395–401, 1995.

72

