3 research outputs found

    Price decomposition in large-scale stochastic optimal control

    Get PDF
    We are interested in optimally driving a dynamical system that can be influenced by exogenous noises. This is generally called a Stochastic Optimal Control (SOC) problem and the Dynamic Programming (DP) principle is the natural way of solving it. Unfortunately, DP faces the so-called curse of dimensionality: the complexity of solving DP equations grows exponentially with the dimension of the information variable that is sufficient to take optimal decisions (the state variable). For a large class of SOC problems, which includes important practical problems, we propose an original way of obtaining strategies to drive the system. The algorithm we introduce is based on Lagrangian relaxation, of which the application to decomposition is well-known in the deterministic framework. However, its application to such closed-loop problems is not straightforward and an additional statistical approximation concerning the dual process is needed. We give a convergence proof, that derives directly from classical results concerning duality in optimization, and enlghten the error made by our approximation. Numerical results are also provided, on a large-scale SOC problem. This idea extends the original DADP algorithm that was presented by Barty, Carpentier and Girardeau (2010)

    Decomposition of large-scale stochastic optimal control problems

    Get PDF
    In this paper, we present an Uzawa-based heuristic that is adapted to some type of stochastic optimal control problems. More precisely, we consider dynamical systems that can be divided into small-scale independent subsystems, though linked through a static almost sure coupling constraint at each time step. This type of problem is common in production/portfolio management where subsystems are, for instance, power units, and one has to supply a stochastic power demand at each time step. We outline the framework of our approach and present promising numerical results on a simplified power management problem

    A Stochastic Gradient Type Algorithm for Closed Loop Problems

    Get PDF
    We focus on solving closed-loop stochastic problems, and propose a perturbed gradient algorithm to achieve this goal. The main hurdle in such problems is the fact that the control variables are infinite dimensional, and have hence to be represented in a finite way in order to numerically solve the problem. In the same way, the gradient of the criterion is itself an infinite dimensional object. Our algorithm replaces this exact (and unknown) gradient by a perturbed one, which consists in the product of the true gradient evaluated at a random point and a kernel function which extends this gradient to the neighbourhood of the random point. Proceeding this way, we explore the whole space iteration after iteration through random points. Since each kernel function is perfectly known by a finite (and small) number of parameters, say N, the control at iteration k is perfectly known as an infinite dimensional object by at most N x k parameters.The main strength of this method is that it avoids any discretization of the underlying space, provided that we can draw as many points as needed in this space. Hence, we can take into account in a new way the possible measurability constraints of the problem.Moreover, the randomization of this algorithm implies that the most probable parts of the space are the most explored ones, what is a priori an interesting feature.In this paper, we first show a convergence result of this algorithm in the general case, and then give a few numerical examples showing the interest of this method for solving practical stochastic optimization problems
    corecore