2 research outputs found

    Taxonomy of P2P Applications

    Get PDF
    Peer-to-peer (p2p) networks have gained immense popularity in recent years and the number of services they provide continuously rises. Where p2p-networks were formerly known as file-sharing networks, p2p is now also used for services like VoIP and IPTV. With so many different p2p applications and services the need for a taxonomy framework rises. This paper describes the available p2p applications grouped by the services they provide. A taxonomy framework is proposed to classify old and recent p2p applications based on their characteristics

    Decision Strategies for a P2P Computing System

    Full text link
    Peer-to-Peer (P2P) computing (also called ‘public-resource computing’) is an effective approach to perform computation of large tasks. Currently used P2P computing systems (e.g., BOINC) are most often centrally managed, i.e., the final result of computations is created at a central node using partial results – what may be not efficient in the case when numerous participants are willing to download the final result. In this paper, we propose a novel approach to P2P computing systems. We assume that results can be delivered to all peers in a distributed way using three types of network flows: unicast, Peer-to-Peer and anycast. We describe our concept of the system architecture with a special focus on the decision strategies developed for system participants. Using our discrete realtime simulator we evaluate the proposed strategies in various scenarios and present a comprehensive analysis of obtained results. According to obtained results, the Peer-to-Peer flow provides lower operational cost of the computing system compared to unicast and anycast flows. Moreover, an appropriate selection of decision strategy can significantly reduce the operational cost
    corecore