10,306 research outputs found

    A statistical approach for uncertain stability analysis of mobile robots

    Full text link
    Stability prediction is an important concern for mobile robots operating in rough environments. Having the capacity to predict areas of instability means pro-actively being able to plan safer traversable paths. The most influential tip-over stability measures are based on two criteria, the robot's center of mass (CM) and the supporting polygon (SP) defined by the convex area spanned between the ground contact-points. However, there is significant uncertainty associated with many parameters in the planning pipe-line: the actual robot kino-dynamic model, its localisation in the ground, and the terrain models, particularly in uneven terrain. This article proposes a statistical analysis of stability prediction to account for some of the uncertainties. This is accomplished using the force angle (FA) stability measure for a reconfigurable multi-tracked vehicle fitted with flippers, a manipulator arm and a sensor head. Probability density function (PDF) of contact-points, CM and the FA stability measure are numerically estimated, with simulation results performed on the open dynamics engine (ODE) simulator based on uncertain parameters. Two techniques are presented: a conventional Monte Carlo scheme, and a structured unscented transform (UT) which results in significant improvement in computational efficiency. Experimental results on maps obtained from a range camera fitted on the sensor head while the robot traverses over a ramp and a series of steps are presented that confirms the validity of the proposed probabilistic stability prediction method. © 2013 IEEE

    Stabilization Control of the Differential Mobile Robot Using Lyapunov Function and Extended Kalman Filter

    Get PDF
    This paper presents the design of a control model to navigate the differential mobile robot to reach the desired destination from an arbitrary initial pose. The designed model is divided into two stages: the state estimation and the stabilization control. In the state estimation, an extended Kalman filter is employed to optimally combine the information from the system dynamics and measurements. Two Lyapunov functions are constructed that allow a hybrid feedback control law to execute the robot movements. The asymptotical stability and robustness of the closed loop system are assured. Simulations and experiments are carried out to validate the effectiveness and applicability of the proposed approach.Comment: arXiv admin note: text overlap with arXiv:1611.07112, arXiv:1611.0711

    Spectral analysis for long-term robotic mapping

    Get PDF
    This paper presents a new approach to mobile robot mapping in long-term scenarios. So far, the environment models used in mobile robotics have been tailored to capture static scenes and dealt with the environment changes by means of ‘memory decay’. While these models keep up with slowly changing environments, their utilization in dynamic, real world environments is difficult. The representation proposed in this paper models the environment’s spatio-temporal dynamics by its frequency spectrum. The spectral representation of the time domain allows to identify, analyse and remember regularly occurring environment processes in a computationally efficient way. Knowledge of the periodicity of the different environment processes constitutes the model predictive capabilities, which are especially useful for long-term mobile robotics scenarios. In the experiments presented, the proposed approach is applied to data collected by a mobile robot patrolling an indoor environment over a period of one week. Three scenarios are investigated, including intruder detection and 4D mapping. The results indicate that the proposed method allows to represent arbitrary timescales with constant (and low) memory requirements, achieving compression rates up to 106 . Moreover, the representation allows for prediction of future environment’s state with ∼ 90% precision

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

    Full text link
    To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict pedestrian motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.Comment: Submitted to 2014 International Workshop on the Algorithmic Foundations of Robotic

    Probabilistic stable motion planning with stability uncertainty for articulated vehicles on challenging terrains

    Full text link
    © 2015, Springer Science+Business Media New York. A probabilistic stable motion planning strategy applicable to reconfigurable robots is presented in this paper. The methodology derives a novel statistical stability criterion from the cumulative distribution of a tip-over metric. The measure is dynamically updated with imprecise terrain information, localization and robot kinematics to plan safety-constrained paths which simultaneously allow the widest possible visibility of the surroundings by simultaneously assuming highest feasible vantage robot configurations. The proposed probabilistic stability metric allows more conservative poses through areas with higher levels of uncertainty, while avoiding unnecessary caution in poses assumed at well-known terrain sections. The implementation with the well known grid based A* algorithm and also a sampling based RRT planner are presented. The validity of the proposed approach is evaluated with a multi-tracked robot fitted with a manipulator arm and a range camera using two challenging elevation terrains data sets: one obtained whilst operating the robot in a mock-up urban search and rescue arena, and the other from a publicly available dataset of a quasi-outdoor rover testing facility
    corecore