7,157 research outputs found

    Event detection in field sports video using audio-visual features and a support vector machine

    Get PDF
    In this paper, we propose a novel audio-visual feature-based framework for event detection in broadcast video of multiple different field sports. Features indicating significant events are selected and robust detectors built. These features are rooted in characteristics common to all genres of field sports. The evidence gathered by the feature detectors is combined by means of a support vector machine, which infers the occurrence of an event based on a model generated during a training phase. The system is tested generically across multiple genres of field sports including soccer, rugby, hockey, and Gaelic football and the results suggest that high event retrieval and content rejection statistics are achievable

    Social Saliency: Visual Psychophysics and Single-Neuron Recordings in Humans

    Get PDF
    My thesis studies how people pay attention to other people and the environment. How does the brain figure out what is important and what are the neural mechanisms underlying attention? What is special about salient social cues compared to salient non-social cues? In Chapter I, I review social cues that attract attention, with an emphasis on the neurobiology of these social cues. I also review neurological and psychiatric links: the relationship between saliency, the amygdala and autism. The first empirical chapter then begins by noting that people constantly move in the environment. In Chapter II, I study the spatial cues that attract attention during locomotion using a cued speeded discrimination task. I found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The more ecologically valid the motion features became (e.g., temporal expansion of each object, spatial depth structure implied by distribution of the size of the objects), the stronger the attentional effects. However, compared to inanimate objects and cues, people preferentially attend to animals and faces, a process in which the amygdala is thought to play an important role. To directly compare social cues and non-social cues in the same experiment and investigate the neural structures processing social cues, in Chapter III, I employ a change detection task and test four rare patients with bilateral amygdala lesions. All four amygdala patients showed a normal pattern of reliably faster and more accurate detection of animate stimuli, suggesting that advantageous processing of social cues can be preserved even without the amygdala, a key structure of the “social brain”. People not only attend to faces, but also pay attention to others’ facial emotions and analyze faces in great detail. Humans have a dedicated system for processing faces and the amygdala has long been associated with a key role in recognizing facial emotions. In Chapter IV, I study the neural mechanisms of emotion perception and find that single neurons in the human amygdala are selective for subjective judgment of others’ emotions. Lastly, people typically pay special attention to faces and people, but people with autism spectrum disorders (ASD) might not. To further study social attention and explore possible deficits of social attention in autism, in Chapter V, I employ a visual search task and show that people with ASD have reduced attention, especially social attention, to target-congruent objects in the search array. This deficit cannot be explained by low-level visual properties of the stimuli and is independent of the amygdala, but it is dependent on task demands. Overall, through visual psychophysics with concurrent eye-tracking, my thesis found and analyzed socially salient cues and compared social vs. non-social cues and healthy vs. clinical populations. Neural mechanisms underlying social saliency were elucidated through electrophysiology and lesion studies. I finally propose further research questions based on the findings in my thesis and introduce my follow-up studies and preliminary results beyond the scope of this thesis in the very last section, Future Directions

    Dance and emotion in posterior parietal cortex: a low-frequency rTMS study

    Get PDF
    Background: The neural bases of emotion are most often studied using short non-natural stimuli and assessed using correlational methods. Here we use a brain perturbation approach to make causal inferences between brain activity and emotional reaction to a long segment of dance. <p>Objective/Hypothesis: We aimed to apply offline rTMS over the brain regions involved in subjective emotional ratings to explore whether this could change the appreciation of a dance performance.</p> <p>Methods: We first used functional magnetic resonance imaging (fMRI) to identify regions correlated with fluctuating emotional rating during a 4-minutes dance performance, looking at both positive and negative correlation. Identified regions were further characterized using meta-data interrogation. Low frequency repetitive TMS was applied over the most important node in a different group of participants prior to them rating the same dance performance as in the fMRI session.</p> <p>Results: FMRI revealed a negative correlation between subjective emotional judgment and activity in the right posterior parietal cortex. This region is commonly involved in cognitive tasks and not in emotional task. Parietal rTMS had no effect on the general affective response, but it significantly (p<0.05 using exact t-statistics) enhanced the rating of the moment eliciting the highest positive judgments.</p> <p>Conclusion: These results establish a direct link between posterior parietal cortex activity and emotional reaction to dance. They can be interpreted in the framework of competition between resources allocated to emotion and resources allocated to cognitive functions. They highlight potential use of brain stimulation in neuro-ĂŠsthetic investigations.</p&gt

    Blind Dates: Examining the Expression of Temporality in Historical Photographs

    Get PDF
    This paper explores the capacity of computer vision models to discern temporal information in visual content, focusing specifically on historical photographs. We investigate the dating of images using OpenCLIP, an open-source implementation of CLIP, a multi-modal language and vision model. Our experiment consists of three steps: zero-shot classification, fine-tuning, and analysis of visual content. We use the De Boer Scene Detection dataset, containing 39,866 gray-scale historical press photographs from 1950 to 1999. The results show that zero-shot classification is relatively ineffective for image dating, with a bias towards predicting dates in the past. Fine-tuning OpenCLIP with a logistic classifier improves performance and eliminates the bias. Additionally, our analysis reveals that images featuring buses, cars, cats, dogs, and people are more accurately dated, suggesting the presence of temporal markers. The study highlights the potential of machine learning models like OpenCLIP in dating images and emphasizes the importance of fine-tuning for accurate temporal analysis. Future research should explore the application of these findings to color photographs and diverse datasets.</p

    Blind Dates: Examining the Expression of Temporality in Historical Photographs

    Full text link
    This paper explores the capacity of computer vision models to discern temporal information in visual content, focusing specifically on historical photographs. We investigate the dating of images using OpenCLIP, an open-source implementation of CLIP, a multi-modal language and vision model. Our experiment consists of three steps: zero-shot classification, fine-tuning, and analysis of visual content. We use the \textit{De Boer Scene Detection} dataset, containing 39,866 gray-scale historical press photographs from 1950 to 1999. The results show that zero-shot classification is relatively ineffective for image dating, with a bias towards predicting dates in the past. Fine-tuning OpenCLIP with a logistic classifier improves performance and eliminates the bias. Additionally, our analysis reveals that images featuring buses, cars, cats, dogs, and people are more accurately dated, suggesting the presence of temporal markers. The study highlights the potential of machine learning models like OpenCLIP in dating images and emphasizes the importance of fine-tuning for accurate temporal analysis. Future research should explore the application of these findings to color photographs and diverse datasets
    • 

    corecore